1064 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1064 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| /*
 | |
| 2007-09-09
 | |
| Refactored by Francisco Le?n
 | |
| email: projectileman@yahoo.com
 | |
| http://gimpact.sf.net
 | |
| */
 | |
| 
 | |
| #include "btGeneric6DofConstraint.h"
 | |
| #include "BulletDynamics/Dynamics/btRigidBody.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| #include <new>
 | |
| 
 | |
| 
 | |
| 
 | |
| #define D6_USE_OBSOLETE_METHOD false
 | |
| #define D6_USE_FRAME_OFFSET true
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
 | |
| : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
 | |
| , m_frameInA(frameInA)
 | |
| , m_frameInB(frameInB),
 | |
| m_useLinearReferenceFrameA(useLinearReferenceFrameA),
 | |
| m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
 | |
| m_flags(0),
 | |
| m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
 | |
| {
 | |
| 	calculateTransforms();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
 | |
|         : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
 | |
| 		m_frameInB(frameInB),
 | |
| 		m_useLinearReferenceFrameA(useLinearReferenceFrameB),
 | |
| 		m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
 | |
| 		m_flags(0),
 | |
| 		m_useSolveConstraintObsolete(false)
 | |
| {
 | |
| 	///not providing rigidbody A means implicitly using worldspace for body A
 | |
| 	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
 | |
| 	calculateTransforms();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #define GENERIC_D6_DISABLE_WARMSTARTING 1
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
 | |
| btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
 | |
| {
 | |
| 	int i = index%3;
 | |
| 	int j = index/3;
 | |
| 	return mat[i][j];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
 | |
| bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
 | |
| bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
 | |
| {
 | |
| 	//	// rot =  cy*cz          -cy*sz           sy
 | |
| 	//	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
 | |
| 	//	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
 | |
| 	//
 | |
| 
 | |
| 	btScalar fi = btGetMatrixElem(mat,2);
 | |
| 	if (fi < btScalar(1.0f))
 | |
| 	{
 | |
| 		if (fi > btScalar(-1.0f))
 | |
| 		{
 | |
| 			xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
 | |
| 			xyz[1] = btAsin(btGetMatrixElem(mat,2));
 | |
| 			xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
 | |
| 			return true;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
 | |
| 			xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
 | |
| 			xyz[1] = -SIMD_HALF_PI;
 | |
| 			xyz[2] = btScalar(0.0);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
 | |
| 		xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
 | |
| 		xyz[1] = SIMD_HALF_PI;
 | |
| 		xyz[2] = 0.0;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| //////////////////////////// btRotationalLimitMotor ////////////////////////////////////
 | |
| 
 | |
| int btRotationalLimitMotor::testLimitValue(btScalar test_value)
 | |
| {
 | |
| 	if(m_loLimit>m_hiLimit)
 | |
| 	{
 | |
| 		m_currentLimit = 0;//Free from violation
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (test_value < m_loLimit)
 | |
| 	{
 | |
| 		m_currentLimit = 1;//low limit violation
 | |
| 		m_currentLimitError =  test_value - m_loLimit;
 | |
| 		if(m_currentLimitError>SIMD_PI) 
 | |
| 			m_currentLimitError-=SIMD_2_PI;
 | |
| 		else if(m_currentLimitError<-SIMD_PI) 
 | |
| 			m_currentLimitError+=SIMD_2_PI;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else if (test_value> m_hiLimit)
 | |
| 	{
 | |
| 		m_currentLimit = 2;//High limit violation
 | |
| 		m_currentLimitError = test_value - m_hiLimit;
 | |
| 		if(m_currentLimitError>SIMD_PI) 
 | |
| 			m_currentLimitError-=SIMD_2_PI;
 | |
| 		else if(m_currentLimitError<-SIMD_PI) 
 | |
| 			m_currentLimitError+=SIMD_2_PI;
 | |
| 		return 2;
 | |
| 	};
 | |
| 
 | |
| 	m_currentLimit = 0;//Free from violation
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btRotationalLimitMotor::solveAngularLimits(
 | |
| 	btScalar timeStep,btVector3& axis,btScalar jacDiagABInv,
 | |
| 	btRigidBody * body0, btRigidBody * body1 )
 | |
| {
 | |
| 	if (needApplyTorques()==false) return 0.0f;
 | |
| 
 | |
| 	btScalar target_velocity = m_targetVelocity;
 | |
| 	btScalar maxMotorForce = m_maxMotorForce;
 | |
| 
 | |
| 	//current error correction
 | |
| 	if (m_currentLimit!=0)
 | |
| 	{
 | |
| 		target_velocity = -m_stopERP*m_currentLimitError/(timeStep);
 | |
| 		maxMotorForce = m_maxLimitForce;
 | |
| 	}
 | |
| 
 | |
| 	maxMotorForce *= timeStep;
 | |
| 
 | |
| 	// current velocity difference
 | |
| 
 | |
| 	btVector3 angVelA = body0->getAngularVelocity();
 | |
| 	btVector3 angVelB = body1->getAngularVelocity();
 | |
| 
 | |
| 	btVector3 vel_diff;
 | |
| 	vel_diff = angVelA-angVelB;
 | |
| 
 | |
| 
 | |
| 
 | |
| 	btScalar rel_vel = axis.dot(vel_diff);
 | |
| 
 | |
| 	// correction velocity
 | |
| 	btScalar motor_relvel = m_limitSoftness*(target_velocity  - m_damping*rel_vel);
 | |
| 
 | |
| 
 | |
| 	if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON  )
 | |
| 	{
 | |
| 		return 0.0f;//no need for applying force
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// correction impulse
 | |
| 	btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
 | |
| 
 | |
| 	// clip correction impulse
 | |
| 	btScalar clippedMotorImpulse;
 | |
| 
 | |
| 	///@todo: should clip against accumulated impulse
 | |
| 	if (unclippedMotorImpulse>0.0f)
 | |
| 	{
 | |
| 		clippedMotorImpulse =  unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		clippedMotorImpulse =  unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// sort with accumulated impulses
 | |
| 	btScalar	lo = btScalar(-BT_LARGE_FLOAT);
 | |
| 	btScalar	hi = btScalar(BT_LARGE_FLOAT);
 | |
| 
 | |
| 	btScalar oldaccumImpulse = m_accumulatedImpulse;
 | |
| 	btScalar sum = oldaccumImpulse + clippedMotorImpulse;
 | |
| 	m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
 | |
| 
 | |
| 	clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
 | |
| 
 | |
| 	btVector3 motorImp = clippedMotorImpulse * axis;
 | |
| 
 | |
| 	body0->applyTorqueImpulse(motorImp);
 | |
| 	body1->applyTorqueImpulse(-motorImp);
 | |
| 
 | |
| 	return clippedMotorImpulse;
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| //////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
 | |
| 
 | |
| 
 | |
| int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
 | |
| {
 | |
| 	btScalar loLimit = m_lowerLimit[limitIndex];
 | |
| 	btScalar hiLimit = m_upperLimit[limitIndex];
 | |
| 	if(loLimit > hiLimit)
 | |
| 	{
 | |
| 		m_currentLimit[limitIndex] = 0;//Free from violation
 | |
| 		m_currentLimitError[limitIndex] = btScalar(0.f);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (test_value < loLimit)
 | |
| 	{
 | |
| 		m_currentLimit[limitIndex] = 2;//low limit violation
 | |
| 		m_currentLimitError[limitIndex] =  test_value - loLimit;
 | |
| 		return 2;
 | |
| 	}
 | |
| 	else if (test_value> hiLimit)
 | |
| 	{
 | |
| 		m_currentLimit[limitIndex] = 1;//High limit violation
 | |
| 		m_currentLimitError[limitIndex] = test_value - hiLimit;
 | |
| 		return 1;
 | |
| 	};
 | |
| 
 | |
| 	m_currentLimit[limitIndex] = 0;//Free from violation
 | |
| 	m_currentLimitError[limitIndex] = btScalar(0.f);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btTranslationalLimitMotor::solveLinearAxis(
 | |
| 	btScalar timeStep,
 | |
| 	btScalar jacDiagABInv,
 | |
| 	btRigidBody& body1,const btVector3 &pointInA,
 | |
| 	btRigidBody& body2,const btVector3 &pointInB,
 | |
| 	int limit_index,
 | |
| 	const btVector3 & axis_normal_on_a,
 | |
| 	const btVector3 & anchorPos)
 | |
| {
 | |
| 
 | |
| 	///find relative velocity
 | |
| 	//    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
 | |
| 	//    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
 | |
| 	btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
 | |
| 	btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();
 | |
| 
 | |
| 	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
 | |
| 	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
 | |
| 	btVector3 vel = vel1 - vel2;
 | |
| 
 | |
| 	btScalar rel_vel = axis_normal_on_a.dot(vel);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	/// apply displacement correction
 | |
| 
 | |
| 	//positional error (zeroth order error)
 | |
| 	btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
 | |
| 	btScalar	lo = btScalar(-BT_LARGE_FLOAT);
 | |
| 	btScalar	hi = btScalar(BT_LARGE_FLOAT);
 | |
| 
 | |
| 	btScalar minLimit = m_lowerLimit[limit_index];
 | |
| 	btScalar maxLimit = m_upperLimit[limit_index];
 | |
| 
 | |
| 	//handle the limits
 | |
| 	if (minLimit < maxLimit)
 | |
| 	{
 | |
| 		{
 | |
| 			if (depth > maxLimit)
 | |
| 			{
 | |
| 				depth -= maxLimit;
 | |
| 				lo = btScalar(0.);
 | |
| 
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				if (depth < minLimit)
 | |
| 				{
 | |
| 					depth -= minLimit;
 | |
| 					hi = btScalar(0.);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					return 0.0f;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
 | |
| 	btScalar sum = oldNormalImpulse + normalImpulse;
 | |
| 	m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
 | |
| 	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
 | |
| 
 | |
| 	btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
 | |
| 	body1.applyImpulse( impulse_vector, rel_pos1);
 | |
| 	body2.applyImpulse(-impulse_vector, rel_pos2);
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	return normalImpulse;
 | |
| }
 | |
| 
 | |
| //////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
 | |
| 
 | |
| void btGeneric6DofConstraint::calculateAngleInfo()
 | |
| {
 | |
| 	btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
 | |
| 	matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
 | |
| 	// in euler angle mode we do not actually constrain the angular velocity
 | |
| 	// along the axes axis[0] and axis[2] (although we do use axis[1]) :
 | |
| 	//
 | |
| 	//    to get			constrain w2-w1 along		...not
 | |
| 	//    ------			---------------------		------
 | |
| 	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
 | |
| 	//    d(angle[1])/dt = 0	ax[1]
 | |
| 	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
 | |
| 	//
 | |
| 	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
 | |
| 	// to prove the result for angle[0], write the expression for angle[0] from
 | |
| 	// GetInfo1 then take the derivative. to prove this for angle[2] it is
 | |
| 	// easier to take the euler rate expression for d(angle[2])/dt with respect
 | |
| 	// to the components of w and set that to 0.
 | |
| 	btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
 | |
| 	btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
 | |
| 
 | |
| 	m_calculatedAxis[1] = axis2.cross(axis0);
 | |
| 	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
 | |
| 	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
 | |
| 
 | |
| 	m_calculatedAxis[0].normalize();
 | |
| 	m_calculatedAxis[1].normalize();
 | |
| 	m_calculatedAxis[2].normalize();
 | |
| 
 | |
| }
 | |
| 
 | |
| void btGeneric6DofConstraint::calculateTransforms()
 | |
| {
 | |
| 	calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| }
 | |
| 
 | |
| void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
 | |
| {
 | |
| 	m_calculatedTransformA = transA * m_frameInA;
 | |
| 	m_calculatedTransformB = transB * m_frameInB;
 | |
| 	calculateLinearInfo();
 | |
| 	calculateAngleInfo();
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{	//  get weight factors depending on masses
 | |
| 		btScalar miA = getRigidBodyA().getInvMass();
 | |
| 		btScalar miB = getRigidBodyB().getInvMass();
 | |
| 		m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
 | |
| 		btScalar miS = miA + miB;
 | |
| 		if(miS > btScalar(0.f))
 | |
| 		{
 | |
| 			m_factA = miB / miS;
 | |
| 		}
 | |
| 		else 
 | |
| 		{
 | |
| 			m_factA = btScalar(0.5f);
 | |
| 		}
 | |
| 		m_factB = btScalar(1.0f) - m_factA;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::buildLinearJacobian(
 | |
| 	btJacobianEntry & jacLinear,const btVector3 & normalWorld,
 | |
| 	const btVector3 & pivotAInW,const btVector3 & pivotBInW)
 | |
| {
 | |
| 	new (&jacLinear) btJacobianEntry(
 | |
|         m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
|         m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
|         pivotAInW - m_rbA.getCenterOfMassPosition(),
 | |
|         pivotBInW - m_rbB.getCenterOfMassPosition(),
 | |
|         normalWorld,
 | |
|         m_rbA.getInvInertiaDiagLocal(),
 | |
|         m_rbA.getInvMass(),
 | |
|         m_rbB.getInvInertiaDiagLocal(),
 | |
|         m_rbB.getInvMass());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::buildAngularJacobian(
 | |
| 	btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
 | |
| {
 | |
| 	 new (&jacAngular)	btJacobianEntry(jointAxisW,
 | |
|                                       m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
|                                       m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
|                                       m_rbA.getInvInertiaDiagLocal(),
 | |
|                                       m_rbB.getInvInertiaDiagLocal());
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
 | |
| {
 | |
| 	btScalar angle = m_calculatedAxisAngleDiff[axis_index];
 | |
| 	angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
 | |
| 	m_angularLimits[axis_index].m_currentPosition = angle;
 | |
| 	//test limits
 | |
| 	m_angularLimits[axis_index].testLimitValue(angle);
 | |
| 	return m_angularLimits[axis_index].needApplyTorques();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::buildJacobian()
 | |
| {
 | |
| #ifndef __SPU__
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 
 | |
| 		// Clear accumulated impulses for the next simulation step
 | |
| 		m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
 | |
| 		int i;
 | |
| 		for(i = 0; i < 3; i++)
 | |
| 		{
 | |
| 			m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
 | |
| 		}
 | |
| 		//calculates transform
 | |
| 		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 
 | |
| 		//  const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
 | |
| 		//  const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
 | |
| 		calcAnchorPos();
 | |
| 		btVector3 pivotAInW = m_AnchorPos;
 | |
| 		btVector3 pivotBInW = m_AnchorPos;
 | |
| 
 | |
| 		// not used here
 | |
| 		//    btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
 | |
| 		//    btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
 | |
| 
 | |
| 		btVector3 normalWorld;
 | |
| 		//linear part
 | |
| 		for (i=0;i<3;i++)
 | |
| 		{
 | |
| 			if (m_linearLimits.isLimited(i))
 | |
| 			{
 | |
| 				if (m_useLinearReferenceFrameA)
 | |
| 					normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
 | |
| 				else
 | |
| 					normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
 | |
| 
 | |
| 				buildLinearJacobian(
 | |
| 					m_jacLinear[i],normalWorld ,
 | |
| 					pivotAInW,pivotBInW);
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// angular part
 | |
| 		for (i=0;i<3;i++)
 | |
| 		{
 | |
| 			//calculates error angle
 | |
| 			if (testAngularLimitMotor(i))
 | |
| 			{
 | |
| 				normalWorld = this->getAxis(i);
 | |
| 				// Create angular atom
 | |
| 				buildAngularJacobian(m_jacAng[i],normalWorld);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| #endif //__SPU__
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info)
 | |
| {
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 0;
 | |
| 	} else
 | |
| 	{
 | |
| 		//prepare constraint
 | |
| 		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 6;
 | |
| 		int i;
 | |
| 		//test linear limits
 | |
| 		for(i = 0; i < 3; i++)
 | |
| 		{
 | |
| 			if(m_linearLimits.needApplyForce(i))
 | |
| 			{
 | |
| 				info->m_numConstraintRows++;
 | |
| 				info->nub--;
 | |
| 			}
 | |
| 		}
 | |
| 		//test angular limits
 | |
| 		for (i=0;i<3 ;i++ )
 | |
| 		{
 | |
| 			if(testAngularLimitMotor(i))
 | |
| 			{
 | |
| 				info->m_numConstraintRows++;
 | |
| 				info->nub--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
 | |
| {
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 0;
 | |
| 	} else
 | |
| 	{
 | |
| 		//pre-allocate all 6
 | |
| 		info->m_numConstraintRows = 6;
 | |
| 		info->nub = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info)
 | |
| {
 | |
| 	btAssert(!m_useSolveConstraintObsolete);
 | |
| 
 | |
| 	const btTransform& transA = m_rbA.getCenterOfMassTransform();
 | |
| 	const btTransform& transB = m_rbB.getCenterOfMassTransform();
 | |
| 	const btVector3& linVelA = m_rbA.getLinearVelocity();
 | |
| 	const btVector3& linVelB = m_rbB.getLinearVelocity();
 | |
| 	const btVector3& angVelA = m_rbA.getAngularVelocity();
 | |
| 	const btVector3& angVelB = m_rbB.getAngularVelocity();
 | |
| 
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{ // for stability better to solve angular limits first
 | |
| 		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 	}
 | |
| 	else
 | |
| 	{ // leave old version for compatibility
 | |
| 		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| 	
 | |
| 	btAssert(!m_useSolveConstraintObsolete);
 | |
| 	//prepare constraint
 | |
| 	calculateTransforms(transA,transB);
 | |
| 
 | |
| 	int i;
 | |
| 	for (i=0;i<3 ;i++ )
 | |
| 	{
 | |
| 		testAngularLimitMotor(i);
 | |
| 	}
 | |
| 
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{ // for stability better to solve angular limits first
 | |
| 		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 	}
 | |
| 	else
 | |
| 	{ // leave old version for compatibility
 | |
| 		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| //	int row = 0;
 | |
| 	//solve linear limits
 | |
| 	btRotationalLimitMotor limot;
 | |
| 	for (int i=0;i<3 ;i++ )
 | |
| 	{
 | |
| 		if(m_linearLimits.needApplyForce(i))
 | |
| 		{ // re-use rotational motor code
 | |
| 			limot.m_bounce = btScalar(0.f);
 | |
| 			limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
 | |
| 			limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
 | |
| 			limot.m_currentLimitError  = m_linearLimits.m_currentLimitError[i];
 | |
| 			limot.m_damping  = m_linearLimits.m_damping;
 | |
| 			limot.m_enableMotor  = m_linearLimits.m_enableMotor[i];
 | |
| 			limot.m_hiLimit  = m_linearLimits.m_upperLimit[i];
 | |
| 			limot.m_limitSoftness  = m_linearLimits.m_limitSoftness;
 | |
| 			limot.m_loLimit  = m_linearLimits.m_lowerLimit[i];
 | |
| 			limot.m_maxLimitForce  = btScalar(0.f);
 | |
| 			limot.m_maxMotorForce  = m_linearLimits.m_maxMotorForce[i];
 | |
| 			limot.m_targetVelocity  = m_linearLimits.m_targetVelocity[i];
 | |
| 			btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
 | |
| 			int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 			limot.m_normalCFM	= (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
 | |
| 			limot.m_stopCFM		= (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
 | |
| 			limot.m_stopERP		= (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
 | |
| 			if(m_useOffsetForConstraintFrame)
 | |
| 			{
 | |
| 				int indx1 = (i + 1) % 3;
 | |
| 				int indx2 = (i + 2) % 3;
 | |
| 				int rotAllowed = 1; // rotations around orthos to current axis
 | |
| 				if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
 | |
| 				{
 | |
| 					rotAllowed = 0;
 | |
| 				}
 | |
| 				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return row;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| 	btGeneric6DofConstraint * d6constraint = this;
 | |
| 	int row = row_offset;
 | |
| 	//solve angular limits
 | |
| 	for (int i=0;i<3 ;i++ )
 | |
| 	{
 | |
| 		if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
 | |
| 		{
 | |
| 			btVector3 axis = d6constraint->getAxis(i);
 | |
| 			int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 			if(!(flags & BT_6DOF_FLAGS_CFM_NORM))
 | |
| 			{
 | |
| 				m_angularLimits[i].m_normalCFM = info->cfm[0];
 | |
| 			}
 | |
| 			if(!(flags & BT_6DOF_FLAGS_CFM_STOP))
 | |
| 			{
 | |
| 				m_angularLimits[i].m_stopCFM = info->cfm[0];
 | |
| 			}
 | |
| 			if(!(flags & BT_6DOF_FLAGS_ERP_STOP))
 | |
| 			{
 | |
| 				m_angularLimits[i].m_stopERP = info->erp;
 | |
| 			}
 | |
| 			row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
 | |
| 												transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return row;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btGeneric6DofConstraint::updateRHS(btScalar	timeStep)
 | |
| {
 | |
| 	(void)timeStep;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
 | |
| {
 | |
| 	m_frameInA = frameA;
 | |
| 	m_frameInB = frameB;
 | |
| 	buildJacobian();
 | |
| 	calculateTransforms();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
 | |
| {
 | |
| 	return m_calculatedAxis[axis_index];
 | |
| }
 | |
| 
 | |
| 
 | |
| btScalar	btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
 | |
| {
 | |
| 	return m_calculatedLinearDiff[axisIndex];
 | |
| }
 | |
| 
 | |
| 
 | |
| btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
 | |
| {
 | |
| 	return m_calculatedAxisAngleDiff[axisIndex];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::calcAnchorPos(void)
 | |
| {
 | |
| 	btScalar imA = m_rbA.getInvMass();
 | |
| 	btScalar imB = m_rbB.getInvMass();
 | |
| 	btScalar weight;
 | |
| 	if(imB == btScalar(0.0))
 | |
| 	{
 | |
| 		weight = btScalar(1.0);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		weight = imA / (imA + imB);
 | |
| 	}
 | |
| 	const btVector3& pA = m_calculatedTransformA.getOrigin();
 | |
| 	const btVector3& pB = m_calculatedTransformB.getOrigin();
 | |
| 	m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btGeneric6DofConstraint::calculateLinearInfo()
 | |
| {
 | |
| 	m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
 | |
| 	m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
 | |
| 	for(int i = 0; i < 3; i++)
 | |
| 	{
 | |
| 		m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
 | |
| 		m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int btGeneric6DofConstraint::get_limit_motor_info2(
 | |
| 	btRotationalLimitMotor * limot,
 | |
| 	const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
 | |
| 	btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed)
 | |
| {
 | |
|     int srow = row * info->rowskip;
 | |
|     bool powered = limot->m_enableMotor;
 | |
|     int limit = limot->m_currentLimit;
 | |
|     if (powered || limit)
 | |
|     {   // if the joint is powered, or has joint limits, add in the extra row
 | |
|         btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
 | |
|         btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
 | |
|         J1[srow+0] = ax1[0];
 | |
|         J1[srow+1] = ax1[1];
 | |
|         J1[srow+2] = ax1[2];
 | |
| 
 | |
|         J2[srow+0] = -ax1[0];
 | |
|         J2[srow+1] = -ax1[1];
 | |
|         J2[srow+2] = -ax1[2];
 | |
| 
 | |
| 		if((!rotational))
 | |
|         {
 | |
| 			if (m_useOffsetForConstraintFrame)
 | |
| 			{
 | |
| 				btVector3 tmpA, tmpB, relA, relB;
 | |
| 				// get vector from bodyB to frameB in WCS
 | |
| 				relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
 | |
| 				// get its projection to constraint axis
 | |
| 				btVector3 projB = ax1 * relB.dot(ax1);
 | |
| 				// get vector directed from bodyB to constraint axis (and orthogonal to it)
 | |
| 				btVector3 orthoB = relB - projB;
 | |
| 				// same for bodyA
 | |
| 				relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
 | |
| 				btVector3 projA = ax1 * relA.dot(ax1);
 | |
| 				btVector3 orthoA = relA - projA;
 | |
| 				// get desired offset between frames A and B along constraint axis
 | |
| 				btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
 | |
| 				// desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
 | |
| 				btVector3 totalDist = projA + ax1 * desiredOffs - projB;
 | |
| 				// get offset vectors relA and relB
 | |
| 				relA = orthoA + totalDist * m_factA;
 | |
| 				relB = orthoB - totalDist * m_factB;
 | |
| 				tmpA = relA.cross(ax1);
 | |
| 				tmpB = relB.cross(ax1);
 | |
| 				if(m_hasStaticBody && (!rotAllowed))
 | |
| 				{
 | |
| 					tmpA *= m_factA;
 | |
| 					tmpB *= m_factB;
 | |
| 				}
 | |
| 				int i;
 | |
| 				for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
 | |
| 				for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
 | |
| 			} else
 | |
| 			{
 | |
| 				btVector3 ltd;	// Linear Torque Decoupling vector
 | |
| 				btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
 | |
| 				ltd = c.cross(ax1);
 | |
| 				info->m_J1angularAxis[srow+0] = ltd[0];
 | |
| 				info->m_J1angularAxis[srow+1] = ltd[1];
 | |
| 				info->m_J1angularAxis[srow+2] = ltd[2];
 | |
| 
 | |
| 				c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
 | |
| 				ltd = -c.cross(ax1);
 | |
| 				info->m_J2angularAxis[srow+0] = ltd[0];
 | |
| 				info->m_J2angularAxis[srow+1] = ltd[1];
 | |
| 				info->m_J2angularAxis[srow+2] = ltd[2];
 | |
| 			}
 | |
|         }
 | |
|         // if we're limited low and high simultaneously, the joint motor is
 | |
|         // ineffective
 | |
|         if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
 | |
|         info->m_constraintError[srow] = btScalar(0.f);
 | |
|         if (powered)
 | |
|         {
 | |
| 			info->cfm[srow] = limot->m_normalCFM;
 | |
|             if(!limit)
 | |
|             {
 | |
| 				btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
 | |
| 
 | |
| 				btScalar mot_fact = getMotorFactor(	limot->m_currentPosition, 
 | |
| 													limot->m_loLimit,
 | |
| 													limot->m_hiLimit, 
 | |
| 													tag_vel, 
 | |
| 													info->fps * limot->m_stopERP);
 | |
| 				info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
 | |
|                 info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
 | |
|                 info->m_upperLimit[srow] = limot->m_maxMotorForce;
 | |
|             }
 | |
|         }
 | |
|         if(limit)
 | |
|         {
 | |
|             btScalar k = info->fps * limot->m_stopERP;
 | |
| 			if(!rotational)
 | |
| 			{
 | |
| 				info->m_constraintError[srow] += k * limot->m_currentLimitError;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				info->m_constraintError[srow] += -k * limot->m_currentLimitError;
 | |
| 			}
 | |
| 			info->cfm[srow] = limot->m_stopCFM;
 | |
|             if (limot->m_loLimit == limot->m_hiLimit)
 | |
|             {   // limited low and high simultaneously
 | |
|                 info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
|                 info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if (limit == 1)
 | |
|                 {
 | |
|                     info->m_lowerLimit[srow] = 0;
 | |
|                     info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
|                     info->m_upperLimit[srow] = 0;
 | |
|                 }
 | |
|                 // deal with bounce
 | |
|                 if (limot->m_bounce > 0)
 | |
|                 {
 | |
|                     // calculate joint velocity
 | |
|                     btScalar vel;
 | |
|                     if (rotational)
 | |
|                     {
 | |
|                         vel = angVelA.dot(ax1);
 | |
| //make sure that if no body -> angVelB == zero vec
 | |
| //                        if (body1)
 | |
|                             vel -= angVelB.dot(ax1);
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         vel = linVelA.dot(ax1);
 | |
| //make sure that if no body -> angVelB == zero vec
 | |
| //                        if (body1)
 | |
|                             vel -= linVelB.dot(ax1);
 | |
|                     }
 | |
|                     // only apply bounce if the velocity is incoming, and if the
 | |
|                     // resulting c[] exceeds what we already have.
 | |
|                     if (limit == 1)
 | |
|                     {
 | |
|                         if (vel < 0)
 | |
|                         {
 | |
|                             btScalar newc = -limot->m_bounce* vel;
 | |
|                             if (newc > info->m_constraintError[srow]) 
 | |
| 								info->m_constraintError[srow] = newc;
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if (vel > 0)
 | |
|                         {
 | |
|                             btScalar newc = -limot->m_bounce * vel;
 | |
|                             if (newc < info->m_constraintError[srow]) 
 | |
| 								info->m_constraintError[srow] = newc;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     else return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | |
| 	///If no axis is provided, it uses the default axis for this constraint.
 | |
| void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
 | |
| {
 | |
| 	if((axis >= 0) && (axis < 3))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{
 | |
| 			case BT_CONSTRAINT_STOP_ERP : 
 | |
| 				m_linearLimits.m_stopERP[axis] = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM : 
 | |
| 				m_linearLimits.m_stopCFM[axis] = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM : 
 | |
| 				m_linearLimits.m_normalCFM[axis] = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else if((axis >=3) && (axis < 6))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{
 | |
| 			case BT_CONSTRAINT_STOP_ERP : 
 | |
| 				m_angularLimits[axis - 3].m_stopERP = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM : 
 | |
| 				m_angularLimits[axis - 3].m_stopCFM = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM : 
 | |
| 				m_angularLimits[axis - 3].m_normalCFM = value;
 | |
| 				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		btAssertConstrParams(0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 	///return the local value of parameter
 | |
| btScalar btGeneric6DofConstraint::getParam(int num, int axis) const 
 | |
| {
 | |
| 	btScalar retVal = 0;
 | |
| 	if((axis >= 0) && (axis < 3))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{
 | |
| 			case BT_CONSTRAINT_STOP_ERP : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_linearLimits.m_stopERP[axis];
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_linearLimits.m_stopCFM[axis];
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_linearLimits.m_normalCFM[axis];
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else if((axis >=3) && (axis < 6))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{
 | |
| 			case BT_CONSTRAINT_STOP_ERP : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_angularLimits[axis - 3].m_stopERP;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_angularLimits[axis - 3].m_stopCFM;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM : 
 | |
| 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
 | |
| 				retVal = m_angularLimits[axis - 3].m_normalCFM;
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		btAssertConstrParams(0);
 | |
| 	}
 | |
| 	return retVal;
 | |
| }
 | |
| 
 | |
|  
 | |
| 
 | |
| void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
 | |
| {
 | |
| 	btVector3 zAxis = axis1.normalized();
 | |
| 	btVector3 yAxis = axis2.normalized();
 | |
| 	btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
 | |
| 	
 | |
| 	btTransform frameInW;
 | |
| 	frameInW.setIdentity();
 | |
| 	frameInW.getBasis().setValue(	xAxis[0], yAxis[0], zAxis[0],	
 | |
| 	                                xAxis[1], yAxis[1], zAxis[1],
 | |
| 	                               xAxis[2], yAxis[2], zAxis[2]);
 | |
| 	
 | |
| 	// now get constraint frame in local coordinate systems
 | |
| 	m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
 | |
| 	m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
 | |
| 	
 | |
| 	calculateTransforms();
 | |
| }
 |