156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #ifndef BT_JACOBIAN_ENTRY_H
 | |
| #define BT_JACOBIAN_ENTRY_H
 | |
| 
 | |
| #include "LinearMath/btMatrix3x3.h"
 | |
| 
 | |
| 
 | |
| //notes:
 | |
| // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
 | |
| // which makes the btJacobianEntry memory layout 16 bytes
 | |
| // if you only are interested in angular part, just feed massInvA and massInvB zero
 | |
| 
 | |
| /// Jacobian entry is an abstraction that allows to describe constraints
 | |
| /// it can be used in combination with a constraint solver
 | |
| /// Can be used to relate the effect of an impulse to the constraint error
 | |
| ATTRIBUTE_ALIGNED16(class) btJacobianEntry
 | |
| {
 | |
| public:
 | |
| 	btJacobianEntry() {};
 | |
| 	//constraint between two different rigidbodies
 | |
| 	btJacobianEntry(
 | |
| 		const btMatrix3x3& world2A,
 | |
| 		const btMatrix3x3& world2B,
 | |
| 		const btVector3& rel_pos1,const btVector3& rel_pos2,
 | |
| 		const btVector3& jointAxis,
 | |
| 		const btVector3& inertiaInvA, 
 | |
| 		const btScalar massInvA,
 | |
| 		const btVector3& inertiaInvB,
 | |
| 		const btScalar massInvB)
 | |
| 		:m_linearJointAxis(jointAxis)
 | |
| 	{
 | |
| 		m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
 | |
| 		m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
 | |
| 		m_0MinvJt	= inertiaInvA * m_aJ;
 | |
| 		m_1MinvJt = inertiaInvB * m_bJ;
 | |
| 		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
 | |
| 
 | |
| 		btAssert(m_Adiag > btScalar(0.0));
 | |
| 	}
 | |
| 
 | |
| 	//angular constraint between two different rigidbodies
 | |
| 	btJacobianEntry(const btVector3& jointAxis,
 | |
| 		const btMatrix3x3& world2A,
 | |
| 		const btMatrix3x3& world2B,
 | |
| 		const btVector3& inertiaInvA,
 | |
| 		const btVector3& inertiaInvB)
 | |
| 		:m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
 | |
| 	{
 | |
| 		m_aJ= world2A*jointAxis;
 | |
| 		m_bJ = world2B*-jointAxis;
 | |
| 		m_0MinvJt	= inertiaInvA * m_aJ;
 | |
| 		m_1MinvJt = inertiaInvB * m_bJ;
 | |
| 		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
 | |
| 
 | |
| 		btAssert(m_Adiag > btScalar(0.0));
 | |
| 	}
 | |
| 
 | |
| 	//angular constraint between two different rigidbodies
 | |
| 	btJacobianEntry(const btVector3& axisInA,
 | |
| 		const btVector3& axisInB,
 | |
| 		const btVector3& inertiaInvA,
 | |
| 		const btVector3& inertiaInvB)
 | |
| 		: m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
 | |
| 		, m_aJ(axisInA)
 | |
| 		, m_bJ(-axisInB)
 | |
| 	{
 | |
| 		m_0MinvJt	= inertiaInvA * m_aJ;
 | |
| 		m_1MinvJt = inertiaInvB * m_bJ;
 | |
| 		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
 | |
| 
 | |
| 		btAssert(m_Adiag > btScalar(0.0));
 | |
| 	}
 | |
| 
 | |
| 	//constraint on one rigidbody
 | |
| 	btJacobianEntry(
 | |
| 		const btMatrix3x3& world2A,
 | |
| 		const btVector3& rel_pos1,const btVector3& rel_pos2,
 | |
| 		const btVector3& jointAxis,
 | |
| 		const btVector3& inertiaInvA, 
 | |
| 		const btScalar massInvA)
 | |
| 		:m_linearJointAxis(jointAxis)
 | |
| 	{
 | |
| 		m_aJ= world2A*(rel_pos1.cross(jointAxis));
 | |
| 		m_bJ = world2A*(rel_pos2.cross(-jointAxis));
 | |
| 		m_0MinvJt	= inertiaInvA * m_aJ;
 | |
| 		m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
 | |
| 
 | |
| 		btAssert(m_Adiag > btScalar(0.0));
 | |
| 	}
 | |
| 
 | |
| 	btScalar	getDiagonal() const { return m_Adiag; }
 | |
| 
 | |
| 	// for two constraints on the same rigidbody (for example vehicle friction)
 | |
| 	btScalar	getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
 | |
| 	{
 | |
| 		const btJacobianEntry& jacA = *this;
 | |
| 		btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
 | |
| 		btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
 | |
| 		return lin + ang;
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
 | |
| 	btScalar	getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
 | |
| 	{
 | |
| 		const btJacobianEntry& jacA = *this;
 | |
| 		btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
 | |
| 		btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
 | |
| 		btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
 | |
| 		btVector3 lin0 = massInvA * lin ;
 | |
| 		btVector3 lin1 = massInvB * lin;
 | |
| 		btVector3 sum = ang0+ang1+lin0+lin1;
 | |
| 		return sum[0]+sum[1]+sum[2];
 | |
| 	}
 | |
| 
 | |
| 	btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
 | |
| 	{
 | |
| 		btVector3 linrel = linvelA - linvelB;
 | |
| 		btVector3 angvela  = angvelA * m_aJ;
 | |
| 		btVector3 angvelb  = angvelB * m_bJ;
 | |
| 		linrel *= m_linearJointAxis;
 | |
| 		angvela += angvelb;
 | |
| 		angvela += linrel;
 | |
| 		btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
 | |
| 		return rel_vel2 + SIMD_EPSILON;
 | |
| 	}
 | |
| //private:
 | |
| 
 | |
| 	btVector3	m_linearJointAxis;
 | |
| 	btVector3	m_aJ;
 | |
| 	btVector3	m_bJ;
 | |
| 	btVector3	m_0MinvJt;
 | |
| 	btVector3	m_1MinvJt;
 | |
| 	//Optimization: can be stored in the w/last component of one of the vectors
 | |
| 	btScalar	m_Adiag;
 | |
| 
 | |
| };
 | |
| 
 | |
| #endif //BT_JACOBIAN_ENTRY_H
 |