1451 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1451 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <string.h>
 | |
| #include <float.h>
 | |
| #include <stdlib.h>
 | |
| #include <new>
 | |
| #include "DetourCrowd.h"
 | |
| #include "DetourNavMesh.h"
 | |
| #include "DetourNavMeshQuery.h"
 | |
| #include "DetourObstacleAvoidance.h"
 | |
| #include "DetourCommon.h"
 | |
| #include "DetourMath.h"
 | |
| #include "DetourAssert.h"
 | |
| #include "DetourAlloc.h"
 | |
| 
 | |
| 
 | |
| dtCrowd* dtAllocCrowd()
 | |
| {
 | |
| 	void* mem = dtAlloc(sizeof(dtCrowd), DT_ALLOC_PERM);
 | |
| 	if (!mem) return 0;
 | |
| 	return new(mem) dtCrowd;
 | |
| }
 | |
| 
 | |
| void dtFreeCrowd(dtCrowd* ptr)
 | |
| {
 | |
| 	if (!ptr) return;
 | |
| 	ptr->~dtCrowd();
 | |
| 	dtFree(ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static const int MAX_ITERS_PER_UPDATE = 100;
 | |
| 
 | |
| static const int MAX_PATHQUEUE_NODES = 4096;
 | |
| static const int MAX_COMMON_NODES = 512;
 | |
| 
 | |
| inline float tween(const float t, const float t0, const float t1)
 | |
| {
 | |
| 	return dtClamp((t-t0) / (t1-t0), 0.0f, 1.0f);
 | |
| }
 | |
| 
 | |
| static void integrate(dtCrowdAgent* ag, const float dt)
 | |
| {
 | |
| 	// Fake dynamic constraint.
 | |
| 	const float maxDelta = ag->params.maxAcceleration * dt;
 | |
| 	float dv[3];
 | |
| 	dtVsub(dv, ag->nvel, ag->vel);
 | |
| 	float ds = dtVlen(dv);
 | |
| 	if (ds > maxDelta)
 | |
| 		dtVscale(dv, dv, maxDelta/ds);
 | |
| 	dtVadd(ag->vel, ag->vel, dv);
 | |
| 	
 | |
| 	// Integrate
 | |
| 	if (dtVlen(ag->vel) > 0.0001f)
 | |
| 		dtVmad(ag->npos, ag->npos, ag->vel, dt);
 | |
| 	else
 | |
| 		dtVset(ag->vel,0,0,0);
 | |
| }
 | |
| 
 | |
| static bool overOffmeshConnection(const dtCrowdAgent* ag, const float radius)
 | |
| {
 | |
| 	if (!ag->ncorners)
 | |
| 		return false;
 | |
| 	
 | |
| 	const bool offMeshConnection = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false;
 | |
| 	if (offMeshConnection)
 | |
| 	{
 | |
| 		const float distSq = dtVdist2DSqr(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]);
 | |
| 		if (distSq < radius*radius)
 | |
| 			return true;
 | |
| 	}
 | |
| 	
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static float getDistanceToGoal(const dtCrowdAgent* ag, const float range)
 | |
| {
 | |
| 	if (!ag->ncorners)
 | |
| 		return range;
 | |
| 	
 | |
| 	const bool endOfPath = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_END) ? true : false;
 | |
| 	if (endOfPath)
 | |
| 		return dtMin(dtVdist2D(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]), range);
 | |
| 	
 | |
| 	return range;
 | |
| }
 | |
| 
 | |
| static void calcSmoothSteerDirection(const dtCrowdAgent* ag, float* dir)
 | |
| {
 | |
| 	if (!ag->ncorners)
 | |
| 	{
 | |
| 		dtVset(dir, 0,0,0);
 | |
| 		return;
 | |
| 	}
 | |
| 	
 | |
| 	const int ip0 = 0;
 | |
| 	const int ip1 = dtMin(1, ag->ncorners-1);
 | |
| 	const float* p0 = &ag->cornerVerts[ip0*3];
 | |
| 	const float* p1 = &ag->cornerVerts[ip1*3];
 | |
| 	
 | |
| 	float dir0[3], dir1[3];
 | |
| 	dtVsub(dir0, p0, ag->npos);
 | |
| 	dtVsub(dir1, p1, ag->npos);
 | |
| 	dir0[1] = 0;
 | |
| 	dir1[1] = 0;
 | |
| 	
 | |
| 	float len0 = dtVlen(dir0);
 | |
| 	float len1 = dtVlen(dir1);
 | |
| 	if (len1 > 0.001f)
 | |
| 		dtVscale(dir1,dir1,1.0f/len1);
 | |
| 	
 | |
| 	dir[0] = dir0[0] - dir1[0]*len0*0.5f;
 | |
| 	dir[1] = 0;
 | |
| 	dir[2] = dir0[2] - dir1[2]*len0*0.5f;
 | |
| 	
 | |
| 	dtVnormalize(dir);
 | |
| }
 | |
| 
 | |
| static void calcStraightSteerDirection(const dtCrowdAgent* ag, float* dir)
 | |
| {
 | |
| 	if (!ag->ncorners)
 | |
| 	{
 | |
| 		dtVset(dir, 0,0,0);
 | |
| 		return;
 | |
| 	}
 | |
| 	dtVsub(dir, &ag->cornerVerts[0], ag->npos);
 | |
| 	dir[1] = 0;
 | |
| 	dtVnormalize(dir);
 | |
| }
 | |
| 
 | |
| static int addNeighbour(const int idx, const float dist,
 | |
| 						dtCrowdNeighbour* neis, const int nneis, const int maxNeis)
 | |
| {
 | |
| 	// Insert neighbour based on the distance.
 | |
| 	dtCrowdNeighbour* nei = 0;
 | |
| 	if (!nneis)
 | |
| 	{
 | |
| 		nei = &neis[nneis];
 | |
| 	}
 | |
| 	else if (dist >= neis[nneis-1].dist)
 | |
| 	{
 | |
| 		if (nneis >= maxNeis)
 | |
| 			return nneis;
 | |
| 		nei = &neis[nneis];
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < nneis; ++i)
 | |
| 			if (dist <= neis[i].dist)
 | |
| 				break;
 | |
| 		
 | |
| 		const int tgt = i+1;
 | |
| 		const int n = dtMin(nneis-i, maxNeis-tgt);
 | |
| 		
 | |
| 		dtAssert(tgt+n <= maxNeis);
 | |
| 		
 | |
| 		if (n > 0)
 | |
| 			memmove(&neis[tgt], &neis[i], sizeof(dtCrowdNeighbour)*n);
 | |
| 		nei = &neis[i];
 | |
| 	}
 | |
| 	
 | |
| 	memset(nei, 0, sizeof(dtCrowdNeighbour));
 | |
| 	
 | |
| 	nei->idx = idx;
 | |
| 	nei->dist = dist;
 | |
| 	
 | |
| 	return dtMin(nneis+1, maxNeis);
 | |
| }
 | |
| 
 | |
| static int getNeighbours(const float* pos, const float height, const float range,
 | |
| 						 const dtCrowdAgent* skip, dtCrowdNeighbour* result, const int maxResult,
 | |
| 						 dtCrowdAgent** agents, const int /*nagents*/, dtProximityGrid* grid)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	static const int MAX_NEIS = 32;
 | |
| 	unsigned short ids[MAX_NEIS];
 | |
| 	int nids = grid->queryItems(pos[0]-range, pos[2]-range,
 | |
| 								pos[0]+range, pos[2]+range,
 | |
| 								ids, MAX_NEIS);
 | |
| 	
 | |
| 	for (int i = 0; i < nids; ++i)
 | |
| 	{
 | |
| 		const dtCrowdAgent* ag = agents[ids[i]];
 | |
| 		
 | |
| 		if (ag == skip) continue;
 | |
| 		
 | |
| 		// Check for overlap.
 | |
| 		float diff[3];
 | |
| 		dtVsub(diff, pos, ag->npos);
 | |
| 		if (dtMathFabsf(diff[1]) >= (height+ag->params.height)/2.0f)
 | |
| 			continue;
 | |
| 		diff[1] = 0;
 | |
| 		const float distSqr = dtVlenSqr(diff);
 | |
| 		if (distSqr > dtSqr(range))
 | |
| 			continue;
 | |
| 		
 | |
| 		n = addNeighbour(ids[i], distSqr, result, n, maxResult);
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static int addToOptQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents)
 | |
| {
 | |
| 	// Insert neighbour based on greatest time.
 | |
| 	int slot = 0;
 | |
| 	if (!nagents)
 | |
| 	{
 | |
| 		slot = nagents;
 | |
| 	}
 | |
| 	else if (newag->topologyOptTime <= agents[nagents-1]->topologyOptTime)
 | |
| 	{
 | |
| 		if (nagents >= maxAgents)
 | |
| 			return nagents;
 | |
| 		slot = nagents;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < nagents; ++i)
 | |
| 			if (newag->topologyOptTime >= agents[i]->topologyOptTime)
 | |
| 				break;
 | |
| 		
 | |
| 		const int tgt = i+1;
 | |
| 		const int n = dtMin(nagents-i, maxAgents-tgt);
 | |
| 		
 | |
| 		dtAssert(tgt+n <= maxAgents);
 | |
| 		
 | |
| 		if (n > 0)
 | |
| 			memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n);
 | |
| 		slot = i;
 | |
| 	}
 | |
| 	
 | |
| 	agents[slot] = newag;
 | |
| 	
 | |
| 	return dtMin(nagents+1, maxAgents);
 | |
| }
 | |
| 
 | |
| static int addToPathQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents)
 | |
| {
 | |
| 	// Insert neighbour based on greatest time.
 | |
| 	int slot = 0;
 | |
| 	if (!nagents)
 | |
| 	{
 | |
| 		slot = nagents;
 | |
| 	}
 | |
| 	else if (newag->targetReplanTime <= agents[nagents-1]->targetReplanTime)
 | |
| 	{
 | |
| 		if (nagents >= maxAgents)
 | |
| 			return nagents;
 | |
| 		slot = nagents;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < nagents; ++i)
 | |
| 			if (newag->targetReplanTime >= agents[i]->targetReplanTime)
 | |
| 				break;
 | |
| 		
 | |
| 		const int tgt = i+1;
 | |
| 		const int n = dtMin(nagents-i, maxAgents-tgt);
 | |
| 		
 | |
| 		dtAssert(tgt+n <= maxAgents);
 | |
| 		
 | |
| 		if (n > 0)
 | |
| 			memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n);
 | |
| 		slot = i;
 | |
| 	}
 | |
| 	
 | |
| 	agents[slot] = newag;
 | |
| 	
 | |
| 	return dtMin(nagents+1, maxAgents);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
| @class dtCrowd
 | |
| @par
 | |
| 
 | |
| This is the core class of the @ref crowd module.  See the @ref crowd documentation for a summary
 | |
| of the crowd features.
 | |
| 
 | |
| A common method for setting up the crowd is as follows:
 | |
| 
 | |
| -# Allocate the crowd using #dtAllocCrowd.
 | |
| -# Initialize the crowd using #init().
 | |
| -# Set the avoidance configurations using #setObstacleAvoidanceParams().
 | |
| -# Add agents using #addAgent() and make an initial movement request using #requestMoveTarget().
 | |
| 
 | |
| A common process for managing the crowd is as follows:
 | |
| 
 | |
| -# Call #update() to allow the crowd to manage its agents.
 | |
| -# Retrieve agent information using #getActiveAgents().
 | |
| -# Make movement requests using #requestMoveTarget() when movement goal changes.
 | |
| -# Repeat every frame.
 | |
| 
 | |
| Some agent configuration settings can be updated using #updateAgentParameters().  But the crowd owns the
 | |
| agent position.  So it is not possible to update an active agent's position.  If agent position
 | |
| must be fed back into the crowd, the agent must be removed and re-added.
 | |
| 
 | |
| Notes: 
 | |
| 
 | |
| - Path related information is available for newly added agents only after an #update() has been
 | |
|   performed.
 | |
| - Agent objects are kept in a pool and re-used.  So it is important when using agent objects to check the value of
 | |
|   #dtCrowdAgent::active to determine if the agent is actually in use or not.
 | |
| - This class is meant to provide 'local' movement. There is a limit of 256 polygons in the path corridor.  
 | |
|   So it is not meant to provide automatic pathfinding services over long distances.
 | |
| 
 | |
| @see dtAllocCrowd(), dtFreeCrowd(), init(), dtCrowdAgent
 | |
| 
 | |
| */
 | |
| 
 | |
| dtCrowd::dtCrowd() :
 | |
| 	m_maxAgents(0),
 | |
| 	m_agents(0),
 | |
| 	m_activeAgents(0),
 | |
| 	m_agentAnims(0),
 | |
| 	m_obstacleQuery(0),
 | |
| 	m_grid(0),
 | |
| 	m_pathResult(0),
 | |
| 	m_maxPathResult(0),
 | |
| 	m_maxAgentRadius(0),
 | |
| 	m_velocitySampleCount(0),
 | |
| 	m_navquery(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| dtCrowd::~dtCrowd()
 | |
| {
 | |
| 	purge();
 | |
| }
 | |
| 
 | |
| void dtCrowd::purge()
 | |
| {
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 		m_agents[i].~dtCrowdAgent();
 | |
| 	dtFree(m_agents);
 | |
| 	m_agents = 0;
 | |
| 	m_maxAgents = 0;
 | |
| 	
 | |
| 	dtFree(m_activeAgents);
 | |
| 	m_activeAgents = 0;
 | |
| 
 | |
| 	dtFree(m_agentAnims);
 | |
| 	m_agentAnims = 0;
 | |
| 	
 | |
| 	dtFree(m_pathResult);
 | |
| 	m_pathResult = 0;
 | |
| 	
 | |
| 	dtFreeProximityGrid(m_grid);
 | |
| 	m_grid = 0;
 | |
| 
 | |
| 	dtFreeObstacleAvoidanceQuery(m_obstacleQuery);
 | |
| 	m_obstacleQuery = 0;
 | |
| 	
 | |
| 	dtFreeNavMeshQuery(m_navquery);
 | |
| 	m_navquery = 0;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// May be called more than once to purge and re-initialize the crowd.
 | |
| bool dtCrowd::init(const int maxAgents, const float maxAgentRadius, dtNavMesh* nav)
 | |
| {
 | |
| 	purge();
 | |
| 	
 | |
| 	m_maxAgents = maxAgents;
 | |
| 	m_maxAgentRadius = maxAgentRadius;
 | |
| 
 | |
| 	// Larger than agent radius because it is also used for agent recovery.
 | |
| 	dtVset(m_agentPlacementHalfExtents, m_maxAgentRadius*2.0f, m_maxAgentRadius*1.5f, m_maxAgentRadius*2.0f);
 | |
| 	
 | |
| 	m_grid = dtAllocProximityGrid();
 | |
| 	if (!m_grid)
 | |
| 		return false;
 | |
| 	if (!m_grid->init(m_maxAgents*4, maxAgentRadius*3))
 | |
| 		return false;
 | |
| 	
 | |
| 	m_obstacleQuery = dtAllocObstacleAvoidanceQuery();
 | |
| 	if (!m_obstacleQuery)
 | |
| 		return false;
 | |
| 	if (!m_obstacleQuery->init(6, 8))
 | |
| 		return false;
 | |
| 
 | |
| 	// Init obstacle query params.
 | |
| 	memset(m_obstacleQueryParams, 0, sizeof(m_obstacleQueryParams));
 | |
| 	for (int i = 0; i < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS; ++i)
 | |
| 	{
 | |
| 		dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[i];
 | |
| 		params->velBias = 0.4f;
 | |
| 		params->weightDesVel = 2.0f;
 | |
| 		params->weightCurVel = 0.75f;
 | |
| 		params->weightSide = 0.75f;
 | |
| 		params->weightToi = 2.5f;
 | |
| 		params->horizTime = 2.5f;
 | |
| 		params->gridSize = 33;
 | |
| 		params->adaptiveDivs = 7;
 | |
| 		params->adaptiveRings = 2;
 | |
| 		params->adaptiveDepth = 5;
 | |
| 	}
 | |
| 	
 | |
| 	// Allocate temp buffer for merging paths.
 | |
| 	m_maxPathResult = 256;
 | |
| 	m_pathResult = (dtPolyRef*)dtAlloc(sizeof(dtPolyRef)*m_maxPathResult, DT_ALLOC_PERM);
 | |
| 	if (!m_pathResult)
 | |
| 		return false;
 | |
| 	
 | |
| 	if (!m_pathq.init(m_maxPathResult, MAX_PATHQUEUE_NODES, nav))
 | |
| 		return false;
 | |
| 	
 | |
| 	m_agents = (dtCrowdAgent*)dtAlloc(sizeof(dtCrowdAgent)*m_maxAgents, DT_ALLOC_PERM);
 | |
| 	if (!m_agents)
 | |
| 		return false;
 | |
| 	
 | |
| 	m_activeAgents = (dtCrowdAgent**)dtAlloc(sizeof(dtCrowdAgent*)*m_maxAgents, DT_ALLOC_PERM);
 | |
| 	if (!m_activeAgents)
 | |
| 		return false;
 | |
| 
 | |
| 	m_agentAnims = (dtCrowdAgentAnimation*)dtAlloc(sizeof(dtCrowdAgentAnimation)*m_maxAgents, DT_ALLOC_PERM);
 | |
| 	if (!m_agentAnims)
 | |
| 		return false;
 | |
| 	
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		new(&m_agents[i]) dtCrowdAgent();
 | |
| 		m_agents[i].active = false;
 | |
| 		if (!m_agents[i].corridor.init(m_maxPathResult))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		m_agentAnims[i].active = false;
 | |
| 	}
 | |
| 
 | |
| 	// The navquery is mostly used for local searches, no need for large node pool.
 | |
| 	m_navquery = dtAllocNavMeshQuery();
 | |
| 	if (!m_navquery)
 | |
| 		return false;
 | |
| 	if (dtStatusFailed(m_navquery->init(nav, MAX_COMMON_NODES)))
 | |
| 		return false;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void dtCrowd::setObstacleAvoidanceParams(const int idx, const dtObstacleAvoidanceParams* params)
 | |
| {
 | |
| 	if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS)
 | |
| 		memcpy(&m_obstacleQueryParams[idx], params, sizeof(dtObstacleAvoidanceParams));
 | |
| }
 | |
| 
 | |
| const dtObstacleAvoidanceParams* dtCrowd::getObstacleAvoidanceParams(const int idx) const
 | |
| {
 | |
| 	if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS)
 | |
| 		return &m_obstacleQueryParams[idx];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dtCrowd::getAgentCount() const
 | |
| {
 | |
| 	return m_maxAgents;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// Agents in the pool may not be in use.  Check #dtCrowdAgent.active before using the returned object.
 | |
| const dtCrowdAgent* dtCrowd::getAgent(const int idx)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return 0;
 | |
| 	return &m_agents[idx];
 | |
| }
 | |
| 
 | |
| /// 
 | |
| /// Agents in the pool may not be in use.  Check #dtCrowdAgent.active before using the returned object.
 | |
| dtCrowdAgent* dtCrowd::getEditableAgent(const int idx)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return 0;
 | |
| 	return &m_agents[idx];
 | |
| }
 | |
| 
 | |
| void dtCrowd::updateAgentParameters(const int idx, const dtCrowdAgentParams* params)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return;
 | |
| 	memcpy(&m_agents[idx].params, params, sizeof(dtCrowdAgentParams));
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The agent's position will be constrained to the surface of the navigation mesh.
 | |
| int dtCrowd::addAgent(const float* pos, const dtCrowdAgentParams* params)
 | |
| {
 | |
| 	// Find empty slot.
 | |
| 	int idx = -1;
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		if (!m_agents[i].active)
 | |
| 		{
 | |
| 			idx = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (idx == -1)
 | |
| 		return -1;
 | |
| 	
 | |
| 	dtCrowdAgent* ag = &m_agents[idx];		
 | |
| 
 | |
| 	updateAgentParameters(idx, params);
 | |
| 	
 | |
| 	// Find nearest position on navmesh and place the agent there.
 | |
| 	float nearest[3];
 | |
| 	dtPolyRef ref = 0;
 | |
| 	dtVcopy(nearest, pos);
 | |
| 	dtStatus status = m_navquery->findNearestPoly(pos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ref, nearest);
 | |
| 	if (dtStatusFailed(status))
 | |
| 	{
 | |
| 		dtVcopy(nearest, pos);
 | |
| 		ref = 0;
 | |
| 	}
 | |
| 	
 | |
| 	ag->corridor.reset(ref, nearest);
 | |
| 	ag->boundary.reset();
 | |
| 	ag->partial = false;
 | |
| 
 | |
| 	ag->topologyOptTime = 0;
 | |
| 	ag->targetReplanTime = 0;
 | |
| 	ag->nneis = 0;
 | |
| 	
 | |
| 	dtVset(ag->dvel, 0,0,0);
 | |
| 	dtVset(ag->nvel, 0,0,0);
 | |
| 	dtVset(ag->vel, 0,0,0);
 | |
| 	dtVcopy(ag->npos, nearest);
 | |
| 	
 | |
| 	ag->desiredSpeed = 0;
 | |
| 
 | |
| 	if (ref)
 | |
| 		ag->state = DT_CROWDAGENT_STATE_WALKING;
 | |
| 	else
 | |
| 		ag->state = DT_CROWDAGENT_STATE_INVALID;
 | |
| 	
 | |
| 	ag->targetState = DT_CROWDAGENT_TARGET_NONE;
 | |
| 	
 | |
| 	ag->active = true;
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The agent is deactivated and will no longer be processed.  Its #dtCrowdAgent object
 | |
| /// is not removed from the pool.  It is marked as inactive so that it is available for reuse.
 | |
| void dtCrowd::removeAgent(const int idx)
 | |
| {
 | |
| 	if (idx >= 0 && idx < m_maxAgents)
 | |
| 	{
 | |
| 		m_agents[idx].active = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool dtCrowd::requestMoveTargetReplan(const int idx, dtPolyRef ref, const float* pos)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return false;
 | |
| 	
 | |
| 	dtCrowdAgent* ag = &m_agents[idx];
 | |
| 	
 | |
| 	// Initialize request.
 | |
| 	ag->targetRef = ref;
 | |
| 	dtVcopy(ag->targetPos, pos);
 | |
| 	ag->targetPathqRef = DT_PATHQ_INVALID;
 | |
| 	ag->targetReplan = true;
 | |
| 	if (ag->targetRef)
 | |
| 		ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
 | |
| 	else
 | |
| 		ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// This method is used when a new target is set.
 | |
| /// 
 | |
| /// The position will be constrained to the surface of the navigation mesh.
 | |
| ///
 | |
| /// The request will be processed during the next #update().
 | |
| bool dtCrowd::requestMoveTarget(const int idx, dtPolyRef ref, const float* pos)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return false;
 | |
| 	if (!ref)
 | |
| 		return false;
 | |
| 
 | |
| 	dtCrowdAgent* ag = &m_agents[idx];
 | |
| 	
 | |
| 	// Initialize request.
 | |
| 	ag->targetRef = ref;
 | |
| 	dtVcopy(ag->targetPos, pos);
 | |
| 	ag->targetPathqRef = DT_PATHQ_INVALID;
 | |
| 	ag->targetReplan = false;
 | |
| 	if (ag->targetRef)
 | |
| 		ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
 | |
| 	else
 | |
| 		ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool dtCrowd::requestMoveVelocity(const int idx, const float* vel)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return false;
 | |
| 	
 | |
| 	dtCrowdAgent* ag = &m_agents[idx];
 | |
| 	
 | |
| 	// Initialize request.
 | |
| 	ag->targetRef = 0;
 | |
| 	dtVcopy(ag->targetPos, vel);
 | |
| 	ag->targetPathqRef = DT_PATHQ_INVALID;
 | |
| 	ag->targetReplan = false;
 | |
| 	ag->targetState = DT_CROWDAGENT_TARGET_VELOCITY;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool dtCrowd::resetMoveTarget(const int idx)
 | |
| {
 | |
| 	if (idx < 0 || idx >= m_maxAgents)
 | |
| 		return false;
 | |
| 	
 | |
| 	dtCrowdAgent* ag = &m_agents[idx];
 | |
| 	
 | |
| 	// Initialize request.
 | |
| 	ag->targetRef = 0;
 | |
| 	dtVset(ag->targetPos, 0,0,0);
 | |
| 	dtVset(ag->dvel, 0,0,0);
 | |
| 	ag->targetPathqRef = DT_PATHQ_INVALID;
 | |
| 	ag->targetReplan = false;
 | |
| 	ag->targetState = DT_CROWDAGENT_TARGET_NONE;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int dtCrowd::getActiveAgents(dtCrowdAgent** agents, const int maxAgents)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		if (!m_agents[i].active) continue;
 | |
| 		if (n < maxAgents)
 | |
| 			agents[n++] = &m_agents[i];
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| void dtCrowd::updateMoveRequest(const float /*dt*/)
 | |
| {
 | |
| 	const int PATH_MAX_AGENTS = 8;
 | |
| 	dtCrowdAgent* queue[PATH_MAX_AGENTS];
 | |
| 	int nqueue = 0;
 | |
| 	
 | |
| 	// Fire off new requests.
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = &m_agents[i];
 | |
| 		if (!ag->active)
 | |
| 			continue;
 | |
| 		if (ag->state == DT_CROWDAGENT_STATE_INVALID)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING)
 | |
| 		{
 | |
| 			const dtPolyRef* path = ag->corridor.getPath();
 | |
| 			const int npath = ag->corridor.getPathCount();
 | |
| 			dtAssert(npath);
 | |
| 
 | |
| 			static const int MAX_RES = 32;
 | |
| 			float reqPos[3];
 | |
| 			dtPolyRef reqPath[MAX_RES];	// The path to the request location
 | |
| 			int reqPathCount = 0;
 | |
| 
 | |
| 			// Quick search towards the goal.
 | |
| 			static const int MAX_ITER = 20;
 | |
| 			m_navquery->initSlicedFindPath(path[0], ag->targetRef, ag->npos, ag->targetPos, &m_filters[ag->params.queryFilterType]);
 | |
| 			m_navquery->updateSlicedFindPath(MAX_ITER, 0);
 | |
| 			dtStatus status = 0;
 | |
| 			if (ag->targetReplan) // && npath > 10)
 | |
| 			{
 | |
| 				// Try to use existing steady path during replan if possible.
 | |
| 				status = m_navquery->finalizeSlicedFindPathPartial(path, npath, reqPath, &reqPathCount, MAX_RES);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Try to move towards target when goal changes.
 | |
| 				status = m_navquery->finalizeSlicedFindPath(reqPath, &reqPathCount, MAX_RES);
 | |
| 			}
 | |
| 
 | |
| 			if (!dtStatusFailed(status) && reqPathCount > 0)
 | |
| 			{
 | |
| 				// In progress or succeed.
 | |
| 				if (reqPath[reqPathCount-1] != ag->targetRef)
 | |
| 				{
 | |
| 					// Partial path, constrain target position inside the last polygon.
 | |
| 					status = m_navquery->closestPointOnPoly(reqPath[reqPathCount-1], ag->targetPos, reqPos, 0);
 | |
| 					if (dtStatusFailed(status))
 | |
| 						reqPathCount = 0;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					dtVcopy(reqPos, ag->targetPos);
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				reqPathCount = 0;
 | |
| 			}
 | |
| 				
 | |
| 			if (!reqPathCount)
 | |
| 			{
 | |
| 				// Could not find path, start the request from current location.
 | |
| 				dtVcopy(reqPos, ag->npos);
 | |
| 				reqPath[0] = path[0];
 | |
| 				reqPathCount = 1;
 | |
| 			}
 | |
| 
 | |
| 			ag->corridor.setCorridor(reqPos, reqPath, reqPathCount);
 | |
| 			ag->boundary.reset();
 | |
| 			ag->partial = false;
 | |
| 
 | |
| 			if (reqPath[reqPathCount-1] == ag->targetRef)
 | |
| 			{
 | |
| 				ag->targetState = DT_CROWDAGENT_TARGET_VALID;
 | |
| 				ag->targetReplanTime = 0.0;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// The path is longer or potentially unreachable, full plan.
 | |
| 				ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE)
 | |
| 		{
 | |
| 			nqueue = addToPathQueue(ag, queue, nqueue, PATH_MAX_AGENTS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < nqueue; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = queue[i];
 | |
| 		ag->targetPathqRef = m_pathq.request(ag->corridor.getLastPoly(), ag->targetRef,
 | |
| 											 ag->corridor.getTarget(), ag->targetPos, &m_filters[ag->params.queryFilterType]);
 | |
| 		if (ag->targetPathqRef != DT_PATHQ_INVALID)
 | |
| 			ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_PATH;
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	// Update requests.
 | |
| 	m_pathq.update(MAX_ITERS_PER_UPDATE);
 | |
| 
 | |
| 	dtStatus status;
 | |
| 
 | |
| 	// Process path results.
 | |
| 	for (int i = 0; i < m_maxAgents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = &m_agents[i];
 | |
| 		if (!ag->active)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 		
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH)
 | |
| 		{
 | |
| 			// Poll path queue.
 | |
| 			status = m_pathq.getRequestStatus(ag->targetPathqRef);
 | |
| 			if (dtStatusFailed(status))
 | |
| 			{
 | |
| 				// Path find failed, retry if the target location is still valid.
 | |
| 				ag->targetPathqRef = DT_PATHQ_INVALID;
 | |
| 				if (ag->targetRef)
 | |
| 					ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
 | |
| 				else
 | |
| 					ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
 | |
| 				ag->targetReplanTime = 0.0;
 | |
| 			}
 | |
| 			else if (dtStatusSucceed(status))
 | |
| 			{
 | |
| 				const dtPolyRef* path = ag->corridor.getPath();
 | |
| 				const int npath = ag->corridor.getPathCount();
 | |
| 				dtAssert(npath);
 | |
| 				
 | |
| 				// Apply results.
 | |
| 				float targetPos[3];
 | |
| 				dtVcopy(targetPos, ag->targetPos);
 | |
| 				
 | |
| 				dtPolyRef* res = m_pathResult;
 | |
| 				bool valid = true;
 | |
| 				int nres = 0;
 | |
| 				status = m_pathq.getPathResult(ag->targetPathqRef, res, &nres, m_maxPathResult);
 | |
| 				if (dtStatusFailed(status) || !nres)
 | |
| 					valid = false;
 | |
| 
 | |
| 				if (dtStatusDetail(status, DT_PARTIAL_RESULT))
 | |
| 					ag->partial = true;
 | |
| 				else
 | |
| 					ag->partial = false;
 | |
| 
 | |
| 				// Merge result and existing path.
 | |
| 				// The agent might have moved whilst the request is
 | |
| 				// being processed, so the path may have changed.
 | |
| 				// We assume that the end of the path is at the same location
 | |
| 				// where the request was issued.
 | |
| 				
 | |
| 				// The last ref in the old path should be the same as
 | |
| 				// the location where the request was issued..
 | |
| 				if (valid && path[npath-1] != res[0])
 | |
| 					valid = false;
 | |
| 				
 | |
| 				if (valid)
 | |
| 				{
 | |
| 					// Put the old path infront of the old path.
 | |
| 					if (npath > 1)
 | |
| 					{
 | |
| 						// Make space for the old path.
 | |
| 						if ((npath-1)+nres > m_maxPathResult)
 | |
| 							nres = m_maxPathResult - (npath-1);
 | |
| 						
 | |
| 						memmove(res+npath-1, res, sizeof(dtPolyRef)*nres);
 | |
| 						// Copy old path in the beginning.
 | |
| 						memcpy(res, path, sizeof(dtPolyRef)*(npath-1));
 | |
| 						nres += npath-1;
 | |
| 						
 | |
| 						// Remove trackbacks
 | |
| 						for (int j = 0; j < nres; ++j)
 | |
| 						{
 | |
| 							if (j-1 >= 0 && j+1 < nres)
 | |
| 							{
 | |
| 								if (res[j-1] == res[j+1])
 | |
| 								{
 | |
| 									memmove(res+(j-1), res+(j+1), sizeof(dtPolyRef)*(nres-(j+1)));
 | |
| 									nres -= 2;
 | |
| 									j -= 2;
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						
 | |
| 					}
 | |
| 					
 | |
| 					// Check for partial path.
 | |
| 					if (res[nres-1] != ag->targetRef)
 | |
| 					{
 | |
| 						// Partial path, constrain target position inside the last polygon.
 | |
| 						float nearest[3];
 | |
| 						status = m_navquery->closestPointOnPoly(res[nres-1], targetPos, nearest, 0);
 | |
| 						if (dtStatusSucceed(status))
 | |
| 							dtVcopy(targetPos, nearest);
 | |
| 						else
 | |
| 							valid = false;
 | |
| 					}
 | |
| 				}
 | |
| 				
 | |
| 				if (valid)
 | |
| 				{
 | |
| 					// Set current corridor.
 | |
| 					ag->corridor.setCorridor(targetPos, res, nres);
 | |
| 					// Force to update boundary.
 | |
| 					ag->boundary.reset();
 | |
| 					ag->targetState = DT_CROWDAGENT_TARGET_VALID;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					// Something went wrong.
 | |
| 					ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
 | |
| 				}
 | |
| 
 | |
| 				ag->targetReplanTime = 0.0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| }
 | |
| 
 | |
| 
 | |
| void dtCrowd::updateTopologyOptimization(dtCrowdAgent** agents, const int nagents, const float dt)
 | |
| {
 | |
| 	if (!nagents)
 | |
| 		return;
 | |
| 	
 | |
| 	const float OPT_TIME_THR = 0.5f; // seconds
 | |
| 	const int OPT_MAX_AGENTS = 1;
 | |
| 	dtCrowdAgent* queue[OPT_MAX_AGENTS];
 | |
| 	int nqueue = 0;
 | |
| 	
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 		if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_TOPO) == 0)
 | |
| 			continue;
 | |
| 		ag->topologyOptTime += dt;
 | |
| 		if (ag->topologyOptTime >= OPT_TIME_THR)
 | |
| 			nqueue = addToOptQueue(ag, queue, nqueue, OPT_MAX_AGENTS);
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < nqueue; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = queue[i];
 | |
| 		ag->corridor.optimizePathTopology(m_navquery, &m_filters[ag->params.queryFilterType]);
 | |
| 		ag->topologyOptTime = 0;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void dtCrowd::checkPathValidity(dtCrowdAgent** agents, const int nagents, const float dt)
 | |
| {
 | |
| 	static const int CHECK_LOOKAHEAD = 10;
 | |
| 	static const float TARGET_REPLAN_DELAY = 1.0; // seconds
 | |
| 	
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 			
 | |
| 		ag->targetReplanTime += dt;
 | |
| 
 | |
| 		bool replan = false;
 | |
| 
 | |
| 		// First check that the current location is valid.
 | |
| 		const int idx = getAgentIndex(ag);
 | |
| 		float agentPos[3];
 | |
| 		dtPolyRef agentRef = ag->corridor.getFirstPoly();
 | |
| 		dtVcopy(agentPos, ag->npos);
 | |
| 		if (!m_navquery->isValidPolyRef(agentRef, &m_filters[ag->params.queryFilterType]))
 | |
| 		{
 | |
| 			// Current location is not valid, try to reposition.
 | |
| 			// TODO: this can snap agents, how to handle that?
 | |
| 			float nearest[3];
 | |
| 			dtVcopy(nearest, agentPos);
 | |
| 			agentRef = 0;
 | |
| 			m_navquery->findNearestPoly(ag->npos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &agentRef, nearest);
 | |
| 			dtVcopy(agentPos, nearest);
 | |
| 
 | |
| 			if (!agentRef)
 | |
| 			{
 | |
| 				// Could not find location in navmesh, set state to invalid.
 | |
| 				ag->corridor.reset(0, agentPos);
 | |
| 				ag->partial = false;
 | |
| 				ag->boundary.reset();
 | |
| 				ag->state = DT_CROWDAGENT_STATE_INVALID;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			// Make sure the first polygon is valid, but leave other valid
 | |
| 			// polygons in the path so that replanner can adjust the path better.
 | |
| 			ag->corridor.fixPathStart(agentRef, agentPos);
 | |
| //			ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
 | |
| 			ag->boundary.reset();
 | |
| 			dtVcopy(ag->npos, agentPos);
 | |
| 
 | |
| 			replan = true;
 | |
| 		}
 | |
| 
 | |
| 		// If the agent does not have move target or is controlled by velocity, no need to recover the target nor replan.
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 
 | |
| 		// Try to recover move request position.
 | |
| 		if (ag->targetState != DT_CROWDAGENT_TARGET_NONE && ag->targetState != DT_CROWDAGENT_TARGET_FAILED)
 | |
| 		{
 | |
| 			if (!m_navquery->isValidPolyRef(ag->targetRef, &m_filters[ag->params.queryFilterType]))
 | |
| 			{
 | |
| 				// Current target is not valid, try to reposition.
 | |
| 				float nearest[3];
 | |
| 				dtVcopy(nearest, ag->targetPos);
 | |
| 				ag->targetRef = 0;
 | |
| 				m_navquery->findNearestPoly(ag->targetPos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ag->targetRef, nearest);
 | |
| 				dtVcopy(ag->targetPos, nearest);
 | |
| 				replan = true;
 | |
| 			}
 | |
| 			if (!ag->targetRef)
 | |
| 			{
 | |
| 				// Failed to reposition target, fail moverequest.
 | |
| 				ag->corridor.reset(agentRef, agentPos);
 | |
| 				ag->partial = false;
 | |
| 				ag->targetState = DT_CROWDAGENT_TARGET_NONE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If nearby corridor is not valid, replan.
 | |
| 		if (!ag->corridor.isValid(CHECK_LOOKAHEAD, m_navquery, &m_filters[ag->params.queryFilterType]))
 | |
| 		{
 | |
| 			// Fix current path.
 | |
| //			ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
 | |
| //			ag->boundary.reset();
 | |
| 			replan = true;
 | |
| 		}
 | |
| 		
 | |
| 		// If the end of the path is near and it is not the requested location, replan.
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_VALID)
 | |
| 		{
 | |
| 			if (ag->targetReplanTime > TARGET_REPLAN_DELAY &&
 | |
| 				ag->corridor.getPathCount() < CHECK_LOOKAHEAD &&
 | |
| 				ag->corridor.getLastPoly() != ag->targetRef)
 | |
| 				replan = true;
 | |
| 		}
 | |
| 
 | |
| 		// Try to replan path to goal.
 | |
| 		if (replan)
 | |
| 		{
 | |
| 			if (ag->targetState != DT_CROWDAGENT_TARGET_NONE)
 | |
| 			{
 | |
| 				requestMoveTargetReplan(idx, ag->targetRef, ag->targetPos);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 	
 | |
| void dtCrowd::update(const float dt, dtCrowdAgentDebugInfo* debug)
 | |
| {
 | |
| 	m_velocitySampleCount = 0;
 | |
| 	
 | |
| 	const int debugIdx = debug ? debug->idx : -1;
 | |
| 	
 | |
| 	dtCrowdAgent** agents = m_activeAgents;
 | |
| 	int nagents = getActiveAgents(agents, m_maxAgents);
 | |
| 
 | |
| 	// Check that all agents still have valid paths.
 | |
| 	checkPathValidity(agents, nagents, dt);
 | |
| 	
 | |
| 	// Update async move request and path finder.
 | |
| 	updateMoveRequest(dt);
 | |
| 
 | |
| 	// Optimize path topology.
 | |
| 	updateTopologyOptimization(agents, nagents, dt);
 | |
| 	
 | |
| 	// Register agents to proximity grid.
 | |
| 	m_grid->clear();
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		const float* p = ag->npos;
 | |
| 		const float r = ag->params.radius;
 | |
| 		m_grid->addItem((unsigned short)i, p[0]-r, p[2]-r, p[0]+r, p[2]+r);
 | |
| 	}
 | |
| 	
 | |
| 	// Get nearby navmesh segments and agents to collide with.
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 
 | |
| 		// Update the collision boundary after certain distance has been passed or
 | |
| 		// if it has become invalid.
 | |
| 		const float updateThr = ag->params.collisionQueryRange*0.25f;
 | |
| 		if (dtVdist2DSqr(ag->npos, ag->boundary.getCenter()) > dtSqr(updateThr) ||
 | |
| 			!ag->boundary.isValid(m_navquery, &m_filters[ag->params.queryFilterType]))
 | |
| 		{
 | |
| 			ag->boundary.update(ag->corridor.getFirstPoly(), ag->npos, ag->params.collisionQueryRange,
 | |
| 								m_navquery, &m_filters[ag->params.queryFilterType]);
 | |
| 		}
 | |
| 		// Query neighbour agents
 | |
| 		ag->nneis = getNeighbours(ag->npos, ag->params.height, ag->params.collisionQueryRange,
 | |
| 								  ag, ag->neis, DT_CROWDAGENT_MAX_NEIGHBOURS,
 | |
| 								  agents, nagents, m_grid);
 | |
| 		for (int j = 0; j < ag->nneis; j++)
 | |
| 			ag->neis[j].idx = getAgentIndex(agents[ag->neis[j].idx]);
 | |
| 	}
 | |
| 	
 | |
| 	// Find next corner to steer to.
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 		
 | |
| 		// Find corners for steering
 | |
| 		ag->ncorners = ag->corridor.findCorners(ag->cornerVerts, ag->cornerFlags, ag->cornerPolys,
 | |
| 												DT_CROWDAGENT_MAX_CORNERS, m_navquery, &m_filters[ag->params.queryFilterType]);
 | |
| 		
 | |
| 		// Check to see if the corner after the next corner is directly visible,
 | |
| 		// and short cut to there.
 | |
| 		if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_VIS) && ag->ncorners > 0)
 | |
| 		{
 | |
| 			const float* target = &ag->cornerVerts[dtMin(1,ag->ncorners-1)*3];
 | |
| 			ag->corridor.optimizePathVisibility(target, ag->params.pathOptimizationRange, m_navquery, &m_filters[ag->params.queryFilterType]);
 | |
| 			
 | |
| 			// Copy data for debug purposes.
 | |
| 			if (debugIdx == i)
 | |
| 			{
 | |
| 				dtVcopy(debug->optStart, ag->corridor.getPos());
 | |
| 				dtVcopy(debug->optEnd, target);
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Copy data for debug purposes.
 | |
| 			if (debugIdx == i)
 | |
| 			{
 | |
| 				dtVset(debug->optStart, 0,0,0);
 | |
| 				dtVset(debug->optEnd, 0,0,0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Trigger off-mesh connections (depends on corners).
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 			continue;
 | |
| 		
 | |
| 		// Check 
 | |
| 		const float triggerRadius = ag->params.radius*2.25f;
 | |
| 		if (overOffmeshConnection(ag, triggerRadius))
 | |
| 		{
 | |
| 			// Prepare to off-mesh connection.
 | |
| 			const int idx = (int)(ag - m_agents);
 | |
| 			dtCrowdAgentAnimation* anim = &m_agentAnims[idx];
 | |
| 			
 | |
| 			// Adjust the path over the off-mesh connection.
 | |
| 			dtPolyRef refs[2];
 | |
| 			if (ag->corridor.moveOverOffmeshConnection(ag->cornerPolys[ag->ncorners-1], refs,
 | |
| 													   anim->startPos, anim->endPos, m_navquery))
 | |
| 			{
 | |
| 				dtVcopy(anim->initPos, ag->npos);
 | |
| 				anim->polyRef = refs[1];
 | |
| 				anim->active = true;
 | |
| 				anim->t = 0.0f;
 | |
| 				anim->tmax = (dtVdist2D(anim->startPos, anim->endPos) / ag->params.maxSpeed) * 0.5f;
 | |
| 				
 | |
| 				ag->state = DT_CROWDAGENT_STATE_OFFMESH;
 | |
| 				ag->ncorners = 0;
 | |
| 				ag->nneis = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Path validity check will ensure that bad/blocked connections will be replanned.
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 		
 | |
| 	// Calculate steering.
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE)
 | |
| 			continue;
 | |
| 		
 | |
| 		float dvel[3] = {0,0,0};
 | |
| 
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 		{
 | |
| 			dtVcopy(dvel, ag->targetPos);
 | |
| 			ag->desiredSpeed = dtVlen(ag->targetPos);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Calculate steering direction.
 | |
| 			if (ag->params.updateFlags & DT_CROWD_ANTICIPATE_TURNS)
 | |
| 				calcSmoothSteerDirection(ag, dvel);
 | |
| 			else
 | |
| 				calcStraightSteerDirection(ag, dvel);
 | |
| 			
 | |
| 			// Calculate speed scale, which tells the agent to slowdown at the end of the path.
 | |
| 			const float slowDownRadius = ag->params.radius*2;	// TODO: make less hacky.
 | |
| 			const float speedScale = getDistanceToGoal(ag, slowDownRadius) / slowDownRadius;
 | |
| 				
 | |
| 			ag->desiredSpeed = ag->params.maxSpeed;
 | |
| 			dtVscale(dvel, dvel, ag->desiredSpeed * speedScale);
 | |
| 		}
 | |
| 
 | |
| 		// Separation
 | |
| 		if (ag->params.updateFlags & DT_CROWD_SEPARATION)
 | |
| 		{
 | |
| 			const float separationDist = ag->params.collisionQueryRange; 
 | |
| 			const float invSeparationDist = 1.0f / separationDist; 
 | |
| 			const float separationWeight = ag->params.separationWeight;
 | |
| 			
 | |
| 			float w = 0;
 | |
| 			float disp[3] = {0,0,0};
 | |
| 			
 | |
| 			for (int j = 0; j < ag->nneis; ++j)
 | |
| 			{
 | |
| 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
 | |
| 				
 | |
| 				float diff[3];
 | |
| 				dtVsub(diff, ag->npos, nei->npos);
 | |
| 				diff[1] = 0;
 | |
| 				
 | |
| 				const float distSqr = dtVlenSqr(diff);
 | |
| 				if (distSqr < 0.00001f)
 | |
| 					continue;
 | |
| 				if (distSqr > dtSqr(separationDist))
 | |
| 					continue;
 | |
| 				const float dist = dtMathSqrtf(distSqr);
 | |
| 				const float weight = separationWeight * (1.0f - dtSqr(dist*invSeparationDist));
 | |
| 				
 | |
| 				dtVmad(disp, disp, diff, weight/dist);
 | |
| 				w += 1.0f;
 | |
| 			}
 | |
| 			
 | |
| 			if (w > 0.0001f)
 | |
| 			{
 | |
| 				// Adjust desired velocity.
 | |
| 				dtVmad(dvel, dvel, disp, 1.0f/w);
 | |
| 				// Clamp desired velocity to desired speed.
 | |
| 				const float speedSqr = dtVlenSqr(dvel);
 | |
| 				const float desiredSqr = dtSqr(ag->desiredSpeed);
 | |
| 				if (speedSqr > desiredSqr)
 | |
| 					dtVscale(dvel, dvel, desiredSqr/speedSqr);
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Set the desired velocity.
 | |
| 		dtVcopy(ag->dvel, dvel);
 | |
| 	}
 | |
| 	
 | |
| 	// Velocity planning.	
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		
 | |
| 		if (ag->params.updateFlags & DT_CROWD_OBSTACLE_AVOIDANCE)
 | |
| 		{
 | |
| 			m_obstacleQuery->reset();
 | |
| 			
 | |
| 			// Add neighbours as obstacles.
 | |
| 			for (int j = 0; j < ag->nneis; ++j)
 | |
| 			{
 | |
| 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
 | |
| 				m_obstacleQuery->addCircle(nei->npos, nei->params.radius, nei->vel, nei->dvel);
 | |
| 			}
 | |
| 
 | |
| 			// Append neighbour segments as obstacles.
 | |
| 			for (int j = 0; j < ag->boundary.getSegmentCount(); ++j)
 | |
| 			{
 | |
| 				const float* s = ag->boundary.getSegment(j);
 | |
| 				if (dtTriArea2D(ag->npos, s, s+3) < 0.0f)
 | |
| 					continue;
 | |
| 				m_obstacleQuery->addSegment(s, s+3);
 | |
| 			}
 | |
| 
 | |
| 			dtObstacleAvoidanceDebugData* vod = 0;
 | |
| 			if (debugIdx == i) 
 | |
| 				vod = debug->vod;
 | |
| 			
 | |
| 			// Sample new safe velocity.
 | |
| 			bool adaptive = true;
 | |
| 			int ns = 0;
 | |
| 
 | |
| 			const dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[ag->params.obstacleAvoidanceType];
 | |
| 				
 | |
| 			if (adaptive)
 | |
| 			{
 | |
| 				ns = m_obstacleQuery->sampleVelocityAdaptive(ag->npos, ag->params.radius, ag->desiredSpeed,
 | |
| 															 ag->vel, ag->dvel, ag->nvel, params, vod);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				ns = m_obstacleQuery->sampleVelocityGrid(ag->npos, ag->params.radius, ag->desiredSpeed,
 | |
| 														 ag->vel, ag->dvel, ag->nvel, params, vod);
 | |
| 			}
 | |
| 			m_velocitySampleCount += ns;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// If not using velocity planning, new velocity is directly the desired velocity.
 | |
| 			dtVcopy(ag->nvel, ag->dvel);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Integrate.
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		integrate(ag, dt);
 | |
| 	}
 | |
| 	
 | |
| 	// Handle collisions.
 | |
| 	static const float COLLISION_RESOLVE_FACTOR = 0.7f;
 | |
| 	
 | |
| 	for (int iter = 0; iter < 4; ++iter)
 | |
| 	{
 | |
| 		for (int i = 0; i < nagents; ++i)
 | |
| 		{
 | |
| 			dtCrowdAgent* ag = agents[i];
 | |
| 			const int idx0 = getAgentIndex(ag);
 | |
| 			
 | |
| 			if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 				continue;
 | |
| 
 | |
| 			dtVset(ag->disp, 0,0,0);
 | |
| 			
 | |
| 			float w = 0;
 | |
| 
 | |
| 			for (int j = 0; j < ag->nneis; ++j)
 | |
| 			{
 | |
| 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
 | |
| 				const int idx1 = getAgentIndex(nei);
 | |
| 
 | |
| 				float diff[3];
 | |
| 				dtVsub(diff, ag->npos, nei->npos);
 | |
| 				diff[1] = 0;
 | |
| 				
 | |
| 				float dist = dtVlenSqr(diff);
 | |
| 				if (dist > dtSqr(ag->params.radius + nei->params.radius))
 | |
| 					continue;
 | |
| 				dist = dtMathSqrtf(dist);
 | |
| 				float pen = (ag->params.radius + nei->params.radius) - dist;
 | |
| 				if (dist < 0.0001f)
 | |
| 				{
 | |
| 					// Agents on top of each other, try to choose diverging separation directions.
 | |
| 					if (idx0 > idx1)
 | |
| 						dtVset(diff, -ag->dvel[2],0,ag->dvel[0]);
 | |
| 					else
 | |
| 						dtVset(diff, ag->dvel[2],0,-ag->dvel[0]);
 | |
| 					pen = 0.01f;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					pen = (1.0f/dist) * (pen*0.5f) * COLLISION_RESOLVE_FACTOR;
 | |
| 				}
 | |
| 				
 | |
| 				dtVmad(ag->disp, ag->disp, diff, pen);			
 | |
| 				
 | |
| 				w += 1.0f;
 | |
| 			}
 | |
| 			
 | |
| 			if (w > 0.0001f)
 | |
| 			{
 | |
| 				const float iw = 1.0f / w;
 | |
| 				dtVscale(ag->disp, ag->disp, iw);
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		for (int i = 0; i < nagents; ++i)
 | |
| 		{
 | |
| 			dtCrowdAgent* ag = agents[i];
 | |
| 			if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 				continue;
 | |
| 			
 | |
| 			dtVadd(ag->npos, ag->npos, ag->disp);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
 | |
| 			continue;
 | |
| 		
 | |
| 		// Move along navmesh.
 | |
| 		ag->corridor.movePosition(ag->npos, m_navquery, &m_filters[ag->params.queryFilterType]);
 | |
| 		// Get valid constrained position back.
 | |
| 		dtVcopy(ag->npos, ag->corridor.getPos());
 | |
| 
 | |
| 		// If not using path, truncate the corridor to just one poly.
 | |
| 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
 | |
| 		{
 | |
| 			ag->corridor.reset(ag->corridor.getFirstPoly(), ag->npos);
 | |
| 			ag->partial = false;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	
 | |
| 	// Update agents using off-mesh connection.
 | |
| 	for (int i = 0; i < nagents; ++i)
 | |
| 	{
 | |
| 		dtCrowdAgent* ag = agents[i];
 | |
| 		const int idx = (int)(ag - m_agents);
 | |
| 		dtCrowdAgentAnimation* anim = &m_agentAnims[idx];
 | |
| 		if (!anim->active)
 | |
| 			continue;
 | |
| 		
 | |
| 
 | |
| 		anim->t += dt;
 | |
| 		if (anim->t > anim->tmax)
 | |
| 		{
 | |
| 			// Reset animation
 | |
| 			anim->active = false;
 | |
| 			// Prepare agent for walking.
 | |
| 			ag->state = DT_CROWDAGENT_STATE_WALKING;
 | |
| 			continue;
 | |
| 		}
 | |
| 		
 | |
| 		// Update position
 | |
| 		const float ta = anim->tmax*0.15f;
 | |
| 		const float tb = anim->tmax;
 | |
| 		if (anim->t < ta)
 | |
| 		{
 | |
| 			const float u = tween(anim->t, 0.0, ta);
 | |
| 			dtVlerp(ag->npos, anim->initPos, anim->startPos, u);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			const float u = tween(anim->t, ta, tb);
 | |
| 			dtVlerp(ag->npos, anim->startPos, anim->endPos, u);
 | |
| 		}
 | |
| 			
 | |
| 		// Update velocity.
 | |
| 		dtVset(ag->vel, 0,0,0);
 | |
| 		dtVset(ag->dvel, 0,0,0);
 | |
| 	}
 | |
| 	
 | |
| }
 |