839 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			839 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "btInternalEdgeUtility.h"
 | |
| 
 | |
| #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btTriangleShape.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
 | |
| #include "LinearMath/btIDebugDraw.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | |
| 
 | |
| //#define DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| #include <stdio.h>
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| static btIDebugDraw* gDebugDrawer = 0;
 | |
| 
 | |
| void	btSetDebugDrawer(btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	gDebugDrawer = debugDrawer;
 | |
| }
 | |
| 
 | |
| static void    btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color)
 | |
| {
 | |
| 	if (gDebugDrawer)
 | |
| 		gDebugDrawer->drawLine(from,to,color);
 | |
| }
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 
 | |
| static int	btGetHash(int partId, int triangleIndex)
 | |
| {
 | |
| 	int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
 | |
| 	return hash;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB)
 | |
| {
 | |
| 	const btVector3 refAxis0  = edgeA;
 | |
| 	const btVector3 refAxis1  = normalA;
 | |
| 	const btVector3 swingAxis = normalB;
 | |
| 	btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
 | |
| 	return  angle;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct btConnectivityProcessor : public btTriangleCallback
 | |
| {
 | |
| 	int				m_partIdA;
 | |
| 	int				m_triangleIndexA;
 | |
| 	btVector3*		m_triangleVerticesA;
 | |
| 	btTriangleInfoMap*	m_triangleInfoMap;
 | |
| 
 | |
| 
 | |
| 	virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
 | |
| 	{
 | |
| 		//skip self-collisions
 | |
| 		if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex))
 | |
| 			return;
 | |
| 
 | |
| 		//skip duplicates (disabled for now)
 | |
| 		//if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex))
 | |
| 		//	return;
 | |
| 
 | |
| 		//search for shared vertices and edges
 | |
| 		int numshared = 0;
 | |
| 		int sharedVertsA[3]={-1,-1,-1};
 | |
| 		int sharedVertsB[3]={-1,-1,-1};
 | |
| 
 | |
| 		///skip degenerate triangles
 | |
| 		btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2();
 | |
| 		if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold)
 | |
| 			return;
 | |
| 
 | |
| 
 | |
| 		btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2();
 | |
| 		///skip degenerate triangles
 | |
| 		if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold)
 | |
| 			return;
 | |
| 
 | |
| #if 0
 | |
| 		printf("triangle A[0]	=	(%f,%f,%f)\ntriangle A[1]	=	(%f,%f,%f)\ntriangle A[2]	=	(%f,%f,%f)\n",
 | |
| 			m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(),
 | |
| 			m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(),
 | |
| 			m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ());
 | |
| 
 | |
| 		printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex);
 | |
| 		printf("triangle B[0]	=	(%f,%f,%f)\ntriangle B[1]	=	(%f,%f,%f)\ntriangle B[2]	=	(%f,%f,%f)\n",
 | |
| 			triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(),
 | |
| 			triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(),
 | |
| 			triangle[2].getX(),triangle[2].getY(),triangle[2].getZ());
 | |
| #endif
 | |
| 
 | |
| 		for (int i=0;i<3;i++)
 | |
| 		{
 | |
| 			for (int j=0;j<3;j++)
 | |
| 			{
 | |
| 				if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold)
 | |
| 				{
 | |
| 					sharedVertsA[numshared] = i;
 | |
| 					sharedVertsB[numshared] = j;
 | |
| 					numshared++;
 | |
| 					///degenerate case
 | |
| 					if(numshared >= 3)
 | |
| 						return;
 | |
| 				}
 | |
| 			}
 | |
| 			///degenerate case
 | |
| 			if(numshared >= 3)
 | |
| 				return;
 | |
| 		}
 | |
| 		switch (numshared)
 | |
| 		{
 | |
| 		case 0:
 | |
| 			{
 | |
| 				break;
 | |
| 			}
 | |
| 		case 1:
 | |
| 			{
 | |
| 				//shared vertex
 | |
| 				break;
 | |
| 			}
 | |
| 		case 2:
 | |
| 			{
 | |
| 				//shared edge
 | |
| 				//we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct
 | |
| 				if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2)
 | |
| 				{
 | |
| 					sharedVertsA[0] = 2;
 | |
| 					sharedVertsA[1] = 0;
 | |
| 					int tmp = sharedVertsB[1];
 | |
| 					sharedVertsB[1] = sharedVertsB[0];
 | |
| 					sharedVertsB[0] = tmp;
 | |
| 				}
 | |
| 
 | |
| 				int hash = btGetHash(m_partIdA,m_triangleIndexA);
 | |
| 
 | |
| 				btTriangleInfo* info = m_triangleInfoMap->find(hash);
 | |
| 				if (!info)
 | |
| 				{
 | |
| 					btTriangleInfo tmp;
 | |
| 					m_triangleInfoMap->insert(hash,tmp);
 | |
| 					info = m_triangleInfoMap->find(hash);
 | |
| 				}
 | |
| 
 | |
| 				int sumvertsA = sharedVertsA[0]+sharedVertsA[1];
 | |
| 				int otherIndexA = 3-sumvertsA;
 | |
| 
 | |
| 				
 | |
| 				btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]);
 | |
| 
 | |
| 				btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]);
 | |
| 				int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]);
 | |
| 
 | |
| 				btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]);
 | |
| 				//btTriangleShape tB(triangle[0],triangle[1],triangle[2]);
 | |
| 
 | |
| 				btVector3 normalA;
 | |
| 				btVector3 normalB;
 | |
| 				tA.calcNormal(normalA);
 | |
| 				tB.calcNormal(normalB);
 | |
| 				edge.normalize();
 | |
| 				btVector3 edgeCrossA = edge.cross(normalA).normalize();
 | |
| 
 | |
| 				{
 | |
| 					btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]];
 | |
| 					if (edgeCrossA.dot(tmp) < 0)
 | |
| 					{
 | |
| 						edgeCrossA*=-1;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				btVector3 edgeCrossB = edge.cross(normalB).normalize();
 | |
| 
 | |
| 				{
 | |
| 					btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]];
 | |
| 					if (edgeCrossB.dot(tmp) < 0)
 | |
| 					{
 | |
| 						edgeCrossB*=-1;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				btScalar	angle2 = 0;
 | |
| 				btScalar	ang4 = 0.f;
 | |
| 
 | |
| 
 | |
| 				btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB);
 | |
| 				btScalar len2 = calculatedEdge.length2();
 | |
| 
 | |
| 				btScalar correctedAngle(0);
 | |
| 				//btVector3 calculatedNormalB = normalA;
 | |
| 				bool isConvex = false;
 | |
| 
 | |
| 				if (len2<m_triangleInfoMap->m_planarEpsilon)
 | |
| 				{
 | |
| 					angle2 = 0.f;
 | |
| 					ang4 = 0.f;
 | |
| 				} else
 | |
| 				{
 | |
| 
 | |
| 					calculatedEdge.normalize();
 | |
| 					btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
 | |
| 					calculatedNormalA.normalize();
 | |
| 					angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB);
 | |
| 					ang4 = SIMD_PI-angle2;
 | |
| 					btScalar dotA = normalA.dot(edgeCrossB);
 | |
| 					///@todo: check if we need some epsilon, due to floating point imprecision
 | |
| 					isConvex = (dotA<0.);
 | |
| 
 | |
| 					correctedAngle = isConvex ? ang4 : -ang4;
 | |
| 				}
 | |
| 
 | |
| 				
 | |
| 
 | |
| 				
 | |
| 							
 | |
| 				//alternatively use 
 | |
| 				//btVector3 calculatedNormalB2 = quatRotate(orn,normalA);
 | |
| 
 | |
| 
 | |
| 				switch (sumvertsA)
 | |
| 				{
 | |
| 				case 1:
 | |
| 					{
 | |
| 						btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1];
 | |
| 						btQuaternion orn(edge,-correctedAngle);
 | |
| 						btVector3 computedNormalB = quatRotate(orn,normalA);
 | |
| 						btScalar bla = computedNormalB.dot(normalB);
 | |
| 						if (bla<0)
 | |
| 						{
 | |
| 							computedNormalB*=-1;
 | |
| 							info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB;
 | |
| 						}
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 						if ((computedNormalB-normalB).length()>0.0001)
 | |
| 						{
 | |
| 							printf("warning: normals not identical\n");
 | |
| 						}
 | |
| #endif//DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 						info->m_edgeV0V1Angle = -correctedAngle;
 | |
| 
 | |
| 						if (isConvex)
 | |
| 							info->m_flags |= TRI_INFO_V0V1_CONVEX;
 | |
| 						break;
 | |
| 					}
 | |
| 				case 2:
 | |
| 					{
 | |
| 						btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0];
 | |
| 						btQuaternion orn(edge,-correctedAngle);
 | |
| 						btVector3 computedNormalB = quatRotate(orn,normalA);
 | |
| 						if (computedNormalB.dot(normalB)<0)
 | |
| 						{
 | |
| 							computedNormalB*=-1;
 | |
| 							info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB;
 | |
| 						}
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 						if ((computedNormalB-normalB).length()>0.0001)
 | |
| 						{
 | |
| 							printf("warning: normals not identical\n");
 | |
| 						}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 						info->m_edgeV2V0Angle = -correctedAngle;
 | |
| 						if (isConvex)
 | |
| 							info->m_flags |= TRI_INFO_V2V0_CONVEX;
 | |
| 						break;	
 | |
| 					}
 | |
| 				case 3:
 | |
| 					{
 | |
| 						btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2];
 | |
| 						btQuaternion orn(edge,-correctedAngle);
 | |
| 						btVector3 computedNormalB = quatRotate(orn,normalA);
 | |
| 						if (computedNormalB.dot(normalB)<0)
 | |
| 						{
 | |
| 							info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB;
 | |
| 							computedNormalB*=-1;
 | |
| 						}
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 						if ((computedNormalB-normalB).length()>0.0001)
 | |
| 						{
 | |
| 							printf("warning: normals not identical\n");
 | |
| 						}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 						info->m_edgeV1V2Angle = -correctedAngle;
 | |
| 
 | |
| 						if (isConvex)
 | |
| 							info->m_flags |= TRI_INFO_V1V2_CONVEX;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 		default:
 | |
| 			{
 | |
| 				//				printf("warning: duplicate triangle\n");
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| /////////////////////////////////////////////////////////
 | |
| /////////////////////////////////////////////////////////
 | |
| 
 | |
| void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap)
 | |
| {
 | |
| 	//the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there!
 | |
| 	if (trimeshShape->getTriangleInfoMap())
 | |
| 		return;
 | |
| 
 | |
| 	trimeshShape->setTriangleInfoMap(triangleInfoMap);
 | |
| 
 | |
| 	btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface();
 | |
| 	const btVector3& meshScaling = meshInterface->getScaling();
 | |
| 
 | |
| 	for (int partId = 0; partId< meshInterface->getNumSubParts();partId++)
 | |
| 	{
 | |
| 		const unsigned char *vertexbase = 0;
 | |
| 		int numverts = 0;
 | |
| 		PHY_ScalarType type = PHY_INTEGER;
 | |
| 		int stride = 0;
 | |
| 		const unsigned char *indexbase = 0;
 | |
| 		int indexstride = 0;
 | |
| 		int numfaces = 0;
 | |
| 		PHY_ScalarType indicestype = PHY_INTEGER;
 | |
| 		//PHY_ScalarType indexType=0;
 | |
| 
 | |
| 		btVector3 triangleVerts[3];
 | |
| 		meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,	type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
 | |
| 		btVector3 aabbMin,aabbMax;
 | |
| 
 | |
| 		for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
 | |
| 		{
 | |
| 			unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
 | |
| 
 | |
| 			for (int j=2;j>=0;j--)
 | |
| 			{
 | |
| 
 | |
| 				int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
 | |
| 				if (type == PHY_FLOAT)
 | |
| 				{
 | |
| 					float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
 | |
| 					triangleVerts[j] = btVector3(
 | |
| 						graphicsbase[0]*meshScaling.getX(),
 | |
| 						graphicsbase[1]*meshScaling.getY(),
 | |
| 						graphicsbase[2]*meshScaling.getZ());
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
 | |
| 					triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
 | |
| 				}
 | |
| 			}
 | |
| 			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | |
| 			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
 | |
| 			aabbMin.setMin(triangleVerts[0]);
 | |
| 			aabbMax.setMax(triangleVerts[0]);
 | |
| 			aabbMin.setMin(triangleVerts[1]);
 | |
| 			aabbMax.setMax(triangleVerts[1]);
 | |
| 			aabbMin.setMin(triangleVerts[2]);
 | |
| 			aabbMax.setMax(triangleVerts[2]);
 | |
| 
 | |
| 			btConnectivityProcessor connectivityProcessor;
 | |
| 			connectivityProcessor.m_partIdA = partId;
 | |
| 			connectivityProcessor.m_triangleIndexA = triangleIndex;
 | |
| 			connectivityProcessor.m_triangleVerticesA = &triangleVerts[0];
 | |
| 			connectivityProcessor.m_triangleInfoMap  = triangleInfoMap;
 | |
| 
 | |
| 			trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| // Given a point and a line segment (defined by two points), compute the closest point
 | |
| // in the line.  Cap the point at the endpoints of the line segment.
 | |
| void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint)
 | |
| {
 | |
| 	btVector3 lineDelta     = line1 - line0;
 | |
| 
 | |
| 	// Handle degenerate lines
 | |
| 	if ( lineDelta.fuzzyZero())
 | |
| 	{
 | |
| 		nearestPoint = line0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta);
 | |
| 
 | |
| 		// Clamp the point to conform to the segment's endpoints
 | |
| 		if ( delta < 0 )
 | |
| 			delta = 0;
 | |
| 		else if ( delta > 1 )
 | |
| 			delta = 1;
 | |
| 
 | |
| 		nearestPoint = line0 + lineDelta*delta;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| bool	btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal)
 | |
| {
 | |
| 	btVector3 tri_normal = tri_normal_org;
 | |
| 	//we only have a local triangle normal, not a local contact normal -> only normal in world space...
 | |
| 	//either compute the current angle all in local space, or all in world space
 | |
| 
 | |
| 	btVector3 edgeCross = edge.cross(tri_normal).normalize();
 | |
| 	btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB);
 | |
| 
 | |
| 	if (correctedEdgeAngle<0)
 | |
| 	{
 | |
| 		if (curAngle < correctedEdgeAngle)
 | |
| 		{
 | |
| 			btScalar diffAngle = correctedEdgeAngle-curAngle;
 | |
| 			btQuaternion rotation(edge,diffAngle );
 | |
| 			clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (correctedEdgeAngle>=0)
 | |
| 	{
 | |
| 		if (curAngle > correctedEdgeAngle)
 | |
| 		{
 | |
| 			btScalar diffAngle = correctedEdgeAngle-curAngle;
 | |
| 			btQuaternion rotation(edge,diffAngle );
 | |
| 			clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// Changes a btManifoldPoint collision normal to the normal from the mesh.
 | |
| void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,const btCollisionObjectWrapper* colObj1Wrap, int partId0, int index0, int normalAdjustFlags)
 | |
| {
 | |
| 	//btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
 | |
| 	if (colObj0Wrap->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE)
 | |
| 		return;
 | |
| 
 | |
| 	btBvhTriangleMeshShape* trimesh = 0;
 | |
| 	
 | |
| 	if( colObj0Wrap->getCollisionObject()->getCollisionShape()->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE )
 | |
| 	   trimesh = ((btScaledBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape())->getChildShape();
 | |
|    else	   
 | |
| 	   trimesh = (btBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape();
 | |
| 	   
 | |
|    	btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap();
 | |
| 	if (!triangleInfoMapPtr)
 | |
| 		return;
 | |
| 
 | |
| 	int hash = btGetHash(partId0,index0);
 | |
| 
 | |
| 
 | |
| 	btTriangleInfo* info = triangleInfoMapPtr->find(hash);
 | |
| 	if (!info)
 | |
| 		return;
 | |
| 
 | |
| 	btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f;
 | |
| 	
 | |
| 	const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0Wrap->getCollisionShape());
 | |
| 	btVector3 v0,v1,v2;
 | |
| 	tri_shape->getVertex(0,v0);
 | |
| 	tri_shape->getVertex(1,v1);
 | |
| 	tri_shape->getVertex(2,v2);
 | |
| 
 | |
| 	//btVector3 center = (v0+v1+v2)*btScalar(1./3.);
 | |
| 
 | |
| 	btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0);
 | |
| 	btVector3 tri_normal;
 | |
| 	tri_shape->calcNormal(tri_normal);
 | |
| 
 | |
| 	//btScalar dot = tri_normal.dot(cp.m_normalWorldOnB);
 | |
| 	btVector3 nearest;
 | |
| 	btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest);
 | |
| 
 | |
| 	btVector3 contact = cp.m_localPointB;
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 	const btTransform& tr = colObj0->getWorldTransform();
 | |
| 	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 
 | |
| 
 | |
| 	bool isNearEdge = false;
 | |
| 
 | |
| 	int numConcaveEdgeHits = 0;
 | |
| 	int numConvexEdgeHits = 0;
 | |
| 
 | |
| 	btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
 | |
| 	localContactNormalOnB.normalize();//is this necessary?
 | |
| 	
 | |
| 	// Get closest edge
 | |
| 	int      bestedge=-1;
 | |
| 	btScalar    disttobestedge=BT_LARGE_FLOAT;
 | |
| 	//
 | |
| 	// Edge 0 -> 1
 | |
| 	if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{	
 | |
| 	   btVector3 nearest;
 | |
| 	   btNearestPointInLineSegment( cp.m_localPointB, v0, v1, nearest );
 | |
| 	   btScalar     len=(contact-nearest).length();
 | |
| 	   //
 | |
| 	   if( len < disttobestedge )
 | |
| 	   {
 | |
| 	      bestedge=0;
 | |
| 	      disttobestedge=len;
 | |
|       }	      
 | |
|    }	   
 | |
| 	// Edge 1 -> 2
 | |
| 	if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{	
 | |
| 	   btVector3 nearest;
 | |
| 	   btNearestPointInLineSegment( cp.m_localPointB, v1, v2, nearest );
 | |
| 	   btScalar     len=(contact-nearest).length();
 | |
| 	   //
 | |
| 	   if( len < disttobestedge )
 | |
| 	   {
 | |
| 	      bestedge=1;
 | |
| 	      disttobestedge=len;
 | |
|       }	      
 | |
|    }	   
 | |
| 	// Edge 2 -> 0
 | |
| 	if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{	
 | |
| 	   btVector3 nearest;
 | |
| 	   btNearestPointInLineSegment( cp.m_localPointB, v2, v0, nearest );
 | |
| 	   btScalar     len=(contact-nearest).length();
 | |
| 	   //
 | |
| 	   if( len < disttobestedge )
 | |
| 	   {
 | |
| 	      bestedge=2;
 | |
| 	      disttobestedge=len;
 | |
|       }	      
 | |
|    }   	      	
 | |
| 	
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
|    btVector3 upfix=tri_normal * btVector3(0.1f,0.1f,0.1f);
 | |
|    btDebugDrawLine(tr * v0 + upfix, tr * v1 + upfix, red );
 | |
| #endif   
 | |
| 	if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
 | |
| #endif
 | |
| 		btScalar len = (contact-nearest).length();
 | |
| 		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
 | |
| 		if( bestedge==0 )
 | |
| 		{
 | |
| 			btVector3 edge(v0-v1);
 | |
| 			isNearEdge = true;
 | |
| 
 | |
| 			if (info->m_edgeV0V1Angle==btScalar(0))
 | |
| 			{
 | |
| 				numConcaveEdgeHits++;
 | |
| 			} else
 | |
| 			{
 | |
| 
 | |
| 				bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX);
 | |
| 				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
 | |
| 	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
 | |
| 	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 				btVector3 nA = swapFactor * tri_normal;
 | |
| 
 | |
| 				btQuaternion orn(edge,info->m_edgeV0V1Angle);
 | |
| 				btVector3 computedNormalB = quatRotate(orn,tri_normal);
 | |
| 				if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB)
 | |
| 					computedNormalB*=-1;
 | |
| 				btVector3 nB = swapFactor*computedNormalB;
 | |
| 
 | |
| 				btScalar	NdotA = localContactNormalOnB.dot(nA);
 | |
| 				btScalar	NdotB = localContactNormalOnB.dot(nB);
 | |
| 				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 				{
 | |
| 					
 | |
| 					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
 | |
| 				}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 
 | |
| 				if (backFacingNormal)
 | |
| 				{
 | |
| 					numConcaveEdgeHits++;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					numConvexEdgeHits++;
 | |
| 					btVector3 clampedLocalNormal;
 | |
| 					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal);
 | |
| 					if (isClamped)
 | |
| 					{
 | |
| 						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
 | |
| 						{
 | |
| 							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
 | |
| 							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
 | |
| 							cp.m_normalWorldOnB = newNormal;
 | |
| 							// Reproject collision point along normal. (what about cp.m_distance1?)
 | |
| 							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
 | |
| 							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
 | |
| 							
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btNearestPointInLineSegment(contact,v1,v2,nearest);
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
|    btDebugDrawLine(tr * v1 + upfix, tr * v2 + upfix , green );
 | |
| #endif   
 | |
| 
 | |
| 	if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 
 | |
| 
 | |
| 		btScalar len = (contact-nearest).length();
 | |
| 		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
 | |
| 		if( bestedge==1 )
 | |
| 		{
 | |
| 			isNearEdge = true;
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 			btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 			btVector3 edge(v1-v2);
 | |
| 
 | |
| 			isNearEdge = true;
 | |
| 
 | |
| 			if (info->m_edgeV1V2Angle == btScalar(0))
 | |
| 			{
 | |
| 				numConcaveEdgeHits++;
 | |
| 			} else
 | |
| 			{
 | |
| 				bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0;
 | |
| 				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
 | |
| 	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
 | |
| 	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 				btVector3 nA = swapFactor * tri_normal;
 | |
| 				
 | |
| 				btQuaternion orn(edge,info->m_edgeV1V2Angle);
 | |
| 				btVector3 computedNormalB = quatRotate(orn,tri_normal);
 | |
| 				if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB)
 | |
| 					computedNormalB*=-1;
 | |
| 				btVector3 nB = swapFactor*computedNormalB;
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 				{
 | |
| 					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
 | |
| 				}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 
 | |
| 				btScalar	NdotA = localContactNormalOnB.dot(nA);
 | |
| 				btScalar	NdotB = localContactNormalOnB.dot(nB);
 | |
| 				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
 | |
| 
 | |
| 				if (backFacingNormal)
 | |
| 				{
 | |
| 					numConcaveEdgeHits++;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					numConvexEdgeHits++;
 | |
| 					btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
 | |
| 					btVector3 clampedLocalNormal;
 | |
| 					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal);
 | |
| 					if (isClamped)
 | |
| 					{
 | |
| 						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
 | |
| 						{
 | |
| 							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
 | |
| 							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
 | |
| 							cp.m_normalWorldOnB = newNormal;
 | |
| 							// Reproject collision point along normal.
 | |
| 							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
 | |
| 							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btNearestPointInLineSegment(contact,v2,v0,nearest);
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
|    btDebugDrawLine(tr * v2 + upfix, tr * v0 + upfix , blue );
 | |
| #endif   
 | |
| 
 | |
| 	if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
 | |
| 	{
 | |
| 
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 		btScalar len = (contact-nearest).length();
 | |
| 		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
 | |
| 		if( bestedge==2 )
 | |
| 		{
 | |
| 			isNearEdge = true;
 | |
| #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 			btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
 | |
| #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 			btVector3 edge(v2-v0);
 | |
| 
 | |
| 			if (info->m_edgeV2V0Angle==btScalar(0))
 | |
| 			{
 | |
| 				numConcaveEdgeHits++;
 | |
| 			} else
 | |
| 			{
 | |
| 
 | |
| 				bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0;
 | |
| 				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
 | |
| 	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
 | |
| 	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
 | |
| 
 | |
| 				btVector3 nA = swapFactor * tri_normal;
 | |
| 				btQuaternion orn(edge,info->m_edgeV2V0Angle);
 | |
| 				btVector3 computedNormalB = quatRotate(orn,tri_normal);
 | |
| 				if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB)
 | |
| 					computedNormalB*=-1;
 | |
| 				btVector3 nB = swapFactor*computedNormalB;
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 				{
 | |
| 					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
 | |
| 				}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 				btScalar	NdotA = localContactNormalOnB.dot(nA);
 | |
| 				btScalar	NdotB = localContactNormalOnB.dot(nB);
 | |
| 				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
 | |
| 
 | |
| 				if (backFacingNormal)
 | |
| 				{
 | |
| 					numConcaveEdgeHits++;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					numConvexEdgeHits++;
 | |
| 					//				printf("hitting convex edge\n");
 | |
| 
 | |
| 
 | |
| 					btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
 | |
| 					btVector3 clampedLocalNormal;
 | |
| 					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal);
 | |
| 					if (isClamped)
 | |
| 					{
 | |
| 						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
 | |
| 						{
 | |
| 							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
 | |
| 							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
 | |
| 							cp.m_normalWorldOnB = newNormal;
 | |
| 							// Reproject collision point along normal.
 | |
| 							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
 | |
| 							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
 | |
| 						}
 | |
| 					}
 | |
| 				} 
 | |
| 			}
 | |
| 			
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_INTERNAL_EDGE
 | |
| 	{
 | |
| 		btVector3 color(0,1,1);
 | |
| 		btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color);
 | |
| 	}
 | |
| #endif //DEBUG_INTERNAL_EDGE
 | |
| 
 | |
| 	if (isNearEdge)
 | |
| 	{
 | |
| 
 | |
| 		if (numConcaveEdgeHits>0)
 | |
| 		{
 | |
| 			if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0)
 | |
| 			{
 | |
| 				//fix tri_normal so it pointing the same direction as the current local contact normal
 | |
| 				if (tri_normal.dot(localContactNormalOnB) < 0)
 | |
| 				{
 | |
| 					tri_normal *= -1;
 | |
| 				}
 | |
| 				cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis()*tri_normal;
 | |
| 			} else
 | |
| 			{
 | |
| 				btVector3 newNormal = tri_normal *frontFacing;
 | |
| 				//if the tri_normal is pointing opposite direction as the current local contact normal, skip it
 | |
| 				btScalar d = newNormal.dot(localContactNormalOnB) ;
 | |
| 				if (d< 0)
 | |
| 				{
 | |
| 					return;
 | |
| 				}
 | |
| 				//modify the normal to be the triangle normal (or backfacing normal)
 | |
| 				cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis() *newNormal;
 | |
| 			}
 | |
| 						
 | |
| 			// Reproject collision point along normal.
 | |
| 			cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
 | |
| 			cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
 | |
| 		}
 | |
| 	}
 | |
| }
 |