613 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| 	
 | |
| 	Elsevier CDROM license agreements grants nonexclusive license to use the software
 | |
| 	for any purpose, commercial or non-commercial as long as the following credit is included
 | |
| 	identifying the original source of the software:
 | |
| 
 | |
| 	Parts of the source are "from the book Real-Time Collision Detection by
 | |
| 	Christer Ericson, published by Morgan Kaufmann Publishers,
 | |
| 	(c) 2005 Elsevier Inc."
 | |
| 		
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "btVoronoiSimplexSolver.h"
 | |
| 
 | |
| #define VERTA  0
 | |
| #define VERTB  1
 | |
| #define VERTC  2
 | |
| #define VERTD  3
 | |
| 
 | |
| #define CATCH_DEGENERATE_TETRAHEDRON 1
 | |
| void	btVoronoiSimplexSolver::removeVertex(int index)
 | |
| {
 | |
| 	
 | |
| 	btAssert(m_numVertices>0);
 | |
| 	m_numVertices--;
 | |
| 	m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
 | |
| 	m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
 | |
| 	m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
 | |
| }
 | |
| 
 | |
| void	btVoronoiSimplexSolver::reduceVertices (const btUsageBitfield& usedVerts)
 | |
| {
 | |
| 	if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
 | |
| 		removeVertex(3);
 | |
| 
 | |
| 	if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
 | |
| 		removeVertex(2);
 | |
| 
 | |
| 	if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
 | |
| 		removeVertex(1);
 | |
| 	
 | |
| 	if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
 | |
| 		removeVertex(0);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //clear the simplex, remove all the vertices
 | |
| void btVoronoiSimplexSolver::reset()
 | |
| {
 | |
| 	m_cachedValidClosest = false;
 | |
| 	m_numVertices = 0;
 | |
| 	m_needsUpdate = true;
 | |
| 	m_lastW = btVector3(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | |
| 	m_cachedBC.reset();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 	//add a vertex
 | |
| void btVoronoiSimplexSolver::addVertex(const btVector3& w, const btVector3& p, const btVector3& q)
 | |
| {
 | |
| 	m_lastW = w;
 | |
| 	m_needsUpdate = true;
 | |
| 
 | |
| 	m_simplexVectorW[m_numVertices] = w;
 | |
| 	m_simplexPointsP[m_numVertices] = p;
 | |
| 	m_simplexPointsQ[m_numVertices] = q;
 | |
| 
 | |
| 	m_numVertices++;
 | |
| }
 | |
| 
 | |
| bool	btVoronoiSimplexSolver::updateClosestVectorAndPoints()
 | |
| {
 | |
| 	
 | |
| 	if (m_needsUpdate)
 | |
| 	{
 | |
| 		m_cachedBC.reset();
 | |
| 
 | |
| 		m_needsUpdate = false;
 | |
| 
 | |
| 		switch (numVertices())
 | |
| 		{
 | |
| 		case 0:
 | |
| 				m_cachedValidClosest = false;
 | |
| 				break;
 | |
| 		case 1:
 | |
| 			{
 | |
| 				m_cachedP1 = m_simplexPointsP[0];
 | |
| 				m_cachedP2 = m_simplexPointsQ[0];
 | |
| 				m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
 | |
| 				m_cachedBC.reset();
 | |
| 				m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 				m_cachedValidClosest = m_cachedBC.isValid();
 | |
| 				break;
 | |
| 			};
 | |
| 		case 2:
 | |
| 			{
 | |
| 			//closest point origin from line segment
 | |
| 					const btVector3& from = m_simplexVectorW[0];
 | |
| 					const btVector3& to = m_simplexVectorW[1];
 | |
| 					btVector3 nearest;
 | |
| 
 | |
| 					btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 					btVector3 diff = p - from;
 | |
| 					btVector3 v = to - from;
 | |
| 					btScalar t = v.dot(diff);
 | |
| 					
 | |
| 					if (t > 0) {
 | |
| 						btScalar dotVV = v.dot(v);
 | |
| 						if (t < dotVV) {
 | |
| 							t /= dotVV;
 | |
| 							diff -= t*v;
 | |
| 							m_cachedBC.m_usedVertices.usedVertexA = true;
 | |
| 							m_cachedBC.m_usedVertices.usedVertexB = true;
 | |
| 						} else {
 | |
| 							t = 1;
 | |
| 							diff -= v;
 | |
| 							//reduce to 1 point
 | |
| 							m_cachedBC.m_usedVertices.usedVertexB = true;
 | |
| 						}
 | |
| 					} else
 | |
| 					{
 | |
| 						t = 0;
 | |
| 						//reduce to 1 point
 | |
| 						m_cachedBC.m_usedVertices.usedVertexA = true;
 | |
| 					}
 | |
| 					m_cachedBC.setBarycentricCoordinates(1-t,t);
 | |
| 					nearest = from + t*v;
 | |
| 
 | |
| 					m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
 | |
| 					m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
 | |
| 					m_cachedV = m_cachedP1 - m_cachedP2;
 | |
| 					
 | |
| 					reduceVertices(m_cachedBC.m_usedVertices);
 | |
| 
 | |
| 					m_cachedValidClosest = m_cachedBC.isValid();
 | |
| 					break;
 | |
| 			}
 | |
| 		case 3: 
 | |
| 			{ 
 | |
| 				//closest point origin from triangle 
 | |
| 				btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); 
 | |
| 
 | |
| 				const btVector3& a = m_simplexVectorW[0]; 
 | |
| 				const btVector3& b = m_simplexVectorW[1]; 
 | |
| 				const btVector3& c = m_simplexVectorW[2]; 
 | |
| 
 | |
| 				closestPtPointTriangle(p,a,b,c,m_cachedBC); 
 | |
| 				m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + 
 | |
| 				m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + 
 | |
| 				m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; 
 | |
| 
 | |
| 				m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + 
 | |
| 				m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + 
 | |
| 				m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; 
 | |
| 
 | |
| 				m_cachedV = m_cachedP1-m_cachedP2; 
 | |
| 
 | |
| 				reduceVertices (m_cachedBC.m_usedVertices); 
 | |
| 				m_cachedValidClosest = m_cachedBC.isValid(); 
 | |
| 
 | |
| 				break; 
 | |
| 			}
 | |
| 		case 4:
 | |
| 			{
 | |
| 
 | |
| 				
 | |
| 				btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 				
 | |
| 				const btVector3& a = m_simplexVectorW[0];
 | |
| 				const btVector3& b = m_simplexVectorW[1];
 | |
| 				const btVector3& c = m_simplexVectorW[2];
 | |
| 				const btVector3& d = m_simplexVectorW[3];
 | |
| 
 | |
| 				bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
 | |
| 
 | |
| 				if (hasSeperation)
 | |
| 				{
 | |
| 
 | |
| 					m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
 | |
| 						m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
 | |
| 						m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
 | |
| 						m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
 | |
| 
 | |
| 					m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
 | |
| 						m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
 | |
| 						m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
 | |
| 						m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
 | |
| 
 | |
| 					m_cachedV = m_cachedP1-m_cachedP2;
 | |
| 					reduceVertices (m_cachedBC.m_usedVertices);
 | |
| 				} else
 | |
| 				{
 | |
| //					printf("sub distance got penetration\n");
 | |
| 
 | |
| 					if (m_cachedBC.m_degenerate)
 | |
| 					{
 | |
| 						m_cachedValidClosest = false;
 | |
| 					} else
 | |
| 					{
 | |
| 						m_cachedValidClosest = true;
 | |
| 						//degenerate case == false, penetration = true + zero
 | |
| 						m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 					}
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				m_cachedValidClosest = m_cachedBC.isValid();
 | |
| 
 | |
| 				//closest point origin from tetrahedron
 | |
| 				break;
 | |
| 			}
 | |
| 		default:
 | |
| 			{
 | |
| 				m_cachedValidClosest = false;
 | |
| 			}
 | |
| 		};
 | |
| 	}
 | |
| 
 | |
| 	return m_cachedValidClosest;
 | |
| 
 | |
| }
 | |
| 
 | |
| //return/calculate the closest vertex
 | |
| bool btVoronoiSimplexSolver::closest(btVector3& v)
 | |
| {
 | |
| 	bool succes = updateClosestVectorAndPoints();
 | |
| 	v = m_cachedV;
 | |
| 	return succes;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btVoronoiSimplexSolver::maxVertex()
 | |
| {
 | |
| 	int i, numverts = numVertices();
 | |
| 	btScalar maxV = btScalar(0.);
 | |
| 	for (i=0;i<numverts;i++)
 | |
| 	{
 | |
| 		btScalar curLen2 = m_simplexVectorW[i].length2();
 | |
| 		if (maxV < curLen2)
 | |
| 			maxV = curLen2;
 | |
| 	}
 | |
| 	return maxV;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 	//return the current simplex
 | |
| int btVoronoiSimplexSolver::getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const
 | |
| {
 | |
| 	int i;
 | |
| 	for (i=0;i<numVertices();i++)
 | |
| 	{
 | |
| 		yBuf[i] = m_simplexVectorW[i];
 | |
| 		pBuf[i] = m_simplexPointsP[i];
 | |
| 		qBuf[i] = m_simplexPointsQ[i];
 | |
| 	}
 | |
| 	return numVertices();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| bool btVoronoiSimplexSolver::inSimplex(const btVector3& w)
 | |
| {
 | |
| 	bool found = false;
 | |
| 	int i, numverts = numVertices();
 | |
| 	//btScalar maxV = btScalar(0.);
 | |
| 	
 | |
| 	//w is in the current (reduced) simplex
 | |
| 	for (i=0;i<numverts;i++)
 | |
| 	{
 | |
| #ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
 | |
| 		if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
 | |
| #else
 | |
| 		if (m_simplexVectorW[i] == w)
 | |
| #endif
 | |
| 		{
 | |
| 			found = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//check in case lastW is already removed
 | |
| 	if (w == m_lastW)
 | |
| 		return true;
 | |
|     	
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| void btVoronoiSimplexSolver::backup_closest(btVector3& v) 
 | |
| {
 | |
| 	v = m_cachedV;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool btVoronoiSimplexSolver::emptySimplex() const 
 | |
| {
 | |
| 	return (numVertices() == 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| void btVoronoiSimplexSolver::compute_points(btVector3& p1, btVector3& p2) 
 | |
| {
 | |
| 	updateClosestVectorAndPoints();
 | |
| 	p1 = m_cachedP1;
 | |
| 	p2 = m_cachedP2;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| bool	btVoronoiSimplexSolver::closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result)
 | |
| {
 | |
| 	result.m_usedVertices.reset();
 | |
| 
 | |
|     // Check if P in vertex region outside A
 | |
|     btVector3 ab = b - a;
 | |
|     btVector3 ac = c - a;
 | |
|     btVector3 ap = p - a;
 | |
|     btScalar d1 = ab.dot(ap);
 | |
|     btScalar d2 = ac.dot(ap);
 | |
|     if (d1 <= btScalar(0.0) && d2 <= btScalar(0.0)) 
 | |
| 	{
 | |
| 		result.m_closestPointOnSimplex = a;
 | |
| 		result.m_usedVertices.usedVertexA = true;
 | |
| 		result.setBarycentricCoordinates(1,0,0);
 | |
| 		return true;// a; // barycentric coordinates (1,0,0)
 | |
| 	}
 | |
| 
 | |
|     // Check if P in vertex region outside B
 | |
|     btVector3 bp = p - b;
 | |
|     btScalar d3 = ab.dot(bp);
 | |
|     btScalar d4 = ac.dot(bp);
 | |
|     if (d3 >= btScalar(0.0) && d4 <= d3) 
 | |
| 	{
 | |
| 		result.m_closestPointOnSimplex = b;
 | |
| 		result.m_usedVertices.usedVertexB = true;
 | |
| 		result.setBarycentricCoordinates(0,1,0);
 | |
| 
 | |
| 		return true; // b; // barycentric coordinates (0,1,0)
 | |
| 	}
 | |
|     // Check if P in edge region of AB, if so return projection of P onto AB
 | |
|     btScalar vc = d1*d4 - d3*d2;
 | |
|     if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) {
 | |
|         btScalar v = d1 / (d1 - d3);
 | |
| 		result.m_closestPointOnSimplex = a + v * ab;
 | |
| 		result.m_usedVertices.usedVertexA = true;
 | |
| 		result.m_usedVertices.usedVertexB = true;
 | |
| 		result.setBarycentricCoordinates(1-v,v,0);
 | |
| 		return true;
 | |
|         //return a + v * ab; // barycentric coordinates (1-v,v,0)
 | |
|     }
 | |
| 
 | |
|     // Check if P in vertex region outside C
 | |
|     btVector3 cp = p - c;
 | |
|     btScalar d5 = ab.dot(cp);
 | |
|     btScalar d6 = ac.dot(cp);
 | |
|     if (d6 >= btScalar(0.0) && d5 <= d6) 
 | |
| 	{
 | |
| 		result.m_closestPointOnSimplex = c;
 | |
| 		result.m_usedVertices.usedVertexC = true;
 | |
| 		result.setBarycentricCoordinates(0,0,1);
 | |
| 		return true;//c; // barycentric coordinates (0,0,1)
 | |
| 	}
 | |
| 
 | |
|     // Check if P in edge region of AC, if so return projection of P onto AC
 | |
|     btScalar vb = d5*d2 - d1*d6;
 | |
|     if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) {
 | |
|         btScalar w = d2 / (d2 - d6);
 | |
| 		result.m_closestPointOnSimplex = a + w * ac;
 | |
| 		result.m_usedVertices.usedVertexA = true;
 | |
| 		result.m_usedVertices.usedVertexC = true;
 | |
| 		result.setBarycentricCoordinates(1-w,0,w);
 | |
| 		return true;
 | |
|         //return a + w * ac; // barycentric coordinates (1-w,0,w)
 | |
|     }
 | |
| 
 | |
|     // Check if P in edge region of BC, if so return projection of P onto BC
 | |
|     btScalar va = d3*d6 - d5*d4;
 | |
|     if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) {
 | |
|         btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
 | |
| 		
 | |
| 		result.m_closestPointOnSimplex = b + w * (c - b);
 | |
| 		result.m_usedVertices.usedVertexB = true;
 | |
| 		result.m_usedVertices.usedVertexC = true;
 | |
| 		result.setBarycentricCoordinates(0,1-w,w);
 | |
| 		return true;		
 | |
|        // return b + w * (c - b); // barycentric coordinates (0,1-w,w)
 | |
|     }
 | |
| 
 | |
|     // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
 | |
|     btScalar denom = btScalar(1.0) / (va + vb + vc);
 | |
|     btScalar v = vb * denom;
 | |
|     btScalar w = vc * denom;
 | |
|     
 | |
| 	result.m_closestPointOnSimplex = a + ab * v + ac * w;
 | |
| 	result.m_usedVertices.usedVertexA = true;
 | |
| 	result.m_usedVertices.usedVertexB = true;
 | |
| 	result.m_usedVertices.usedVertexC = true;
 | |
| 	result.setBarycentricCoordinates(1-v-w,v,w);
 | |
| 	
 | |
| 	return true;
 | |
| //	return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// Test if point p and d lie on opposite sides of plane through abc
 | |
| int btVoronoiSimplexSolver::pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d)
 | |
| {
 | |
| 	btVector3 normal = (b-a).cross(c-a);
 | |
| 
 | |
|     btScalar signp = (p - a).dot(normal); // [AP AB AC]
 | |
|     btScalar signd = (d - a).dot( normal); // [AD AB AC]
 | |
| 
 | |
| #ifdef CATCH_DEGENERATE_TETRAHEDRON
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| if (signd * signd < (btScalar(1e-8) * btScalar(1e-8)))
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| #else
 | |
| 	if (signd * signd < (btScalar(1e-4) * btScalar(1e-4)))
 | |
| 	{
 | |
| //		printf("affine dependent/degenerate\n");//
 | |
| 		return -1;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 	// Points on opposite sides if expression signs are opposite
 | |
|     return signp * signd < btScalar(0.);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool	btVoronoiSimplexSolver::closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult)
 | |
| {
 | |
| 	btSubSimplexClosestResult tempResult;
 | |
| 
 | |
|     // Start out assuming point inside all halfspaces, so closest to itself
 | |
| 	finalResult.m_closestPointOnSimplex = p;
 | |
| 	finalResult.m_usedVertices.reset();
 | |
|     finalResult.m_usedVertices.usedVertexA = true;
 | |
| 	finalResult.m_usedVertices.usedVertexB = true;
 | |
| 	finalResult.m_usedVertices.usedVertexC = true;
 | |
| 	finalResult.m_usedVertices.usedVertexD = true;
 | |
| 
 | |
|     int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
 | |
| 	int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
 | |
|   	int	pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
 | |
| 	int	pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
 | |
| 
 | |
|    if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
 | |
|    {
 | |
| 	   finalResult.m_degenerate = true;
 | |
| 	   return false;
 | |
|    }
 | |
| 
 | |
|    if (!pointOutsideABC  && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
 | |
| 	 {
 | |
| 		 return false;
 | |
| 	 }
 | |
| 
 | |
| 
 | |
|     btScalar bestSqDist = FLT_MAX;
 | |
|     // If point outside face abc then compute closest point on abc
 | |
| 	if (pointOutsideABC) 
 | |
| 	{
 | |
|         closestPtPointTriangle(p, a, b, c,tempResult);
 | |
| 		btVector3 q = tempResult.m_closestPointOnSimplex;
 | |
| 		
 | |
|         btScalar sqDist = (q - p).dot( q - p);
 | |
|         // Update best closest point if (squared) distance is less than current best
 | |
|         if (sqDist < bestSqDist) {
 | |
| 			bestSqDist = sqDist;
 | |
| 			finalResult.m_closestPointOnSimplex = q;
 | |
| 			//convert result bitmask!
 | |
| 			finalResult.m_usedVertices.reset();
 | |
| 			finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
 | |
| 			finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
 | |
| 			finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
 | |
| 			finalResult.setBarycentricCoordinates(
 | |
| 					tempResult.m_barycentricCoords[VERTA],
 | |
| 					tempResult.m_barycentricCoords[VERTB],
 | |
| 					tempResult.m_barycentricCoords[VERTC],
 | |
| 					0
 | |
| 			);
 | |
| 
 | |
| 		}
 | |
|     }
 | |
|   
 | |
| 
 | |
| 	// Repeat test for face acd
 | |
| 	if (pointOutsideACD) 
 | |
| 	{
 | |
|         closestPtPointTriangle(p, a, c, d,tempResult);
 | |
| 		btVector3 q = tempResult.m_closestPointOnSimplex;
 | |
| 		//convert result bitmask!
 | |
| 
 | |
|         btScalar sqDist = (q - p).dot( q - p);
 | |
|         if (sqDist < bestSqDist) 
 | |
| 		{
 | |
| 			bestSqDist = sqDist;
 | |
| 			finalResult.m_closestPointOnSimplex = q;
 | |
| 			finalResult.m_usedVertices.reset();
 | |
| 			finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
 | |
| 
 | |
| 			finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
 | |
| 			finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
 | |
| 			finalResult.setBarycentricCoordinates(
 | |
| 					tempResult.m_barycentricCoords[VERTA],
 | |
| 					0,
 | |
| 					tempResult.m_barycentricCoords[VERTB],
 | |
| 					tempResult.m_barycentricCoords[VERTC]
 | |
| 			);
 | |
| 
 | |
| 		}
 | |
|     }
 | |
|     // Repeat test for face adb
 | |
| 
 | |
| 	
 | |
| 	if (pointOutsideADB)
 | |
| 	{
 | |
| 		closestPtPointTriangle(p, a, d, b,tempResult);
 | |
| 		btVector3 q = tempResult.m_closestPointOnSimplex;
 | |
| 		//convert result bitmask!
 | |
| 
 | |
|         btScalar sqDist = (q - p).dot( q - p);
 | |
|         if (sqDist < bestSqDist) 
 | |
| 		{
 | |
| 			bestSqDist = sqDist;
 | |
| 			finalResult.m_closestPointOnSimplex = q;
 | |
| 			finalResult.m_usedVertices.reset();
 | |
| 			finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
 | |
| 			finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
 | |
| 			
 | |
| 			finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
 | |
| 			finalResult.setBarycentricCoordinates(
 | |
| 					tempResult.m_barycentricCoords[VERTA],
 | |
| 					tempResult.m_barycentricCoords[VERTC],
 | |
| 					0,
 | |
| 					tempResult.m_barycentricCoords[VERTB]
 | |
| 			);
 | |
| 
 | |
| 		}
 | |
|     }
 | |
|     // Repeat test for face bdc
 | |
|     
 | |
| 
 | |
| 	if (pointOutsideBDC)
 | |
| 	{
 | |
|         closestPtPointTriangle(p, b, d, c,tempResult);
 | |
| 		btVector3 q = tempResult.m_closestPointOnSimplex;
 | |
| 		//convert result bitmask!
 | |
|         btScalar sqDist = (q - p).dot( q - p);
 | |
|         if (sqDist < bestSqDist) 
 | |
| 		{
 | |
| 			bestSqDist = sqDist;
 | |
| 			finalResult.m_closestPointOnSimplex = q;
 | |
| 			finalResult.m_usedVertices.reset();
 | |
| 			//
 | |
| 			finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
 | |
| 			finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
 | |
| 			finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
 | |
| 
 | |
| 			finalResult.setBarycentricCoordinates(
 | |
| 					0,
 | |
| 					tempResult.m_barycentricCoords[VERTA],
 | |
| 					tempResult.m_barycentricCoords[VERTC],
 | |
| 					tempResult.m_barycentricCoords[VERTB]
 | |
| 			);
 | |
| 
 | |
| 		}
 | |
|     }
 | |
| 
 | |
| 	//help! we ended up full !
 | |
| 	
 | |
| 	if (finalResult.m_usedVertices.usedVertexA &&
 | |
| 		finalResult.m_usedVertices.usedVertexB &&
 | |
| 		finalResult.m_usedVertices.usedVertexC &&
 | |
| 		finalResult.m_usedVertices.usedVertexD) 
 | |
| 	{
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 |