1813 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1813 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include <float.h>
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include "Recast.h"
 | |
| #include "RecastAlloc.h"
 | |
| #include "RecastAssert.h"
 | |
| 
 | |
| namespace
 | |
| {
 | |
| struct LevelStackEntry
 | |
| {
 | |
| 	LevelStackEntry(int x_, int y_, int index_) : x(x_), y(y_), index(index_) {}
 | |
| 	int x;
 | |
| 	int y;
 | |
| 	int index;
 | |
| };
 | |
| }  // namespace
 | |
| 
 | |
| static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	
 | |
| 	// Init distance and points.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 		src[i] = 0xffff;
 | |
| 	
 | |
| 	// Mark boundary cells.
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				const unsigned char area = chf.areas[i];
 | |
| 				
 | |
| 				int nc = 0;
 | |
| 				for (int dir = 0; dir < 4; ++dir)
 | |
| 				{
 | |
| 					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int ax = x + rcGetDirOffsetX(dir);
 | |
| 						const int ay = y + rcGetDirOffsetY(dir);
 | |
| 						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
 | |
| 						if (area == chf.areas[ai])
 | |
| 							nc++;
 | |
| 					}
 | |
| 				}
 | |
| 				if (nc != 4)
 | |
| 					src[i] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 			
 | |
| 	// Pass 1
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				
 | |
| 				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					// (-1,0)
 | |
| 					const int ax = x + rcGetDirOffsetX(0);
 | |
| 					const int ay = y + rcGetDirOffsetY(0);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
 | |
| 					const rcCompactSpan& as = chf.spans[ai];
 | |
| 					if (src[ai]+2 < src[i])
 | |
| 						src[i] = src[ai]+2;
 | |
| 					
 | |
| 					// (-1,-1)
 | |
| 					if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int aax = ax + rcGetDirOffsetX(3);
 | |
| 						const int aay = ay + rcGetDirOffsetY(3);
 | |
| 						const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
 | |
| 						if (src[aai]+3 < src[i])
 | |
| 							src[i] = src[aai]+3;
 | |
| 					}
 | |
| 				}
 | |
| 				if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					// (0,-1)
 | |
| 					const int ax = x + rcGetDirOffsetX(3);
 | |
| 					const int ay = y + rcGetDirOffsetY(3);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
 | |
| 					const rcCompactSpan& as = chf.spans[ai];
 | |
| 					if (src[ai]+2 < src[i])
 | |
| 						src[i] = src[ai]+2;
 | |
| 					
 | |
| 					// (1,-1)
 | |
| 					if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int aax = ax + rcGetDirOffsetX(2);
 | |
| 						const int aay = ay + rcGetDirOffsetY(2);
 | |
| 						const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
 | |
| 						if (src[aai]+3 < src[i])
 | |
| 							src[i] = src[aai]+3;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Pass 2
 | |
| 	for (int y = h-1; y >= 0; --y)
 | |
| 	{
 | |
| 		for (int x = w-1; x >= 0; --x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				
 | |
| 				if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					// (1,0)
 | |
| 					const int ax = x + rcGetDirOffsetX(2);
 | |
| 					const int ay = y + rcGetDirOffsetY(2);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
 | |
| 					const rcCompactSpan& as = chf.spans[ai];
 | |
| 					if (src[ai]+2 < src[i])
 | |
| 						src[i] = src[ai]+2;
 | |
| 					
 | |
| 					// (1,1)
 | |
| 					if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int aax = ax + rcGetDirOffsetX(1);
 | |
| 						const int aay = ay + rcGetDirOffsetY(1);
 | |
| 						const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
 | |
| 						if (src[aai]+3 < src[i])
 | |
| 							src[i] = src[aai]+3;
 | |
| 					}
 | |
| 				}
 | |
| 				if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					// (0,1)
 | |
| 					const int ax = x + rcGetDirOffsetX(1);
 | |
| 					const int ay = y + rcGetDirOffsetY(1);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
 | |
| 					const rcCompactSpan& as = chf.spans[ai];
 | |
| 					if (src[ai]+2 < src[i])
 | |
| 						src[i] = src[ai]+2;
 | |
| 					
 | |
| 					// (-1,1)
 | |
| 					if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int aax = ax + rcGetDirOffsetX(0);
 | |
| 						const int aay = ay + rcGetDirOffsetY(0);
 | |
| 						const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
 | |
| 						if (src[aai]+3 < src[i])
 | |
| 							src[i] = src[aai]+3;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}	
 | |
| 	
 | |
| 	maxDist = 0;
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 		maxDist = rcMax(src[i], maxDist);
 | |
| 	
 | |
| }
 | |
| 
 | |
| static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr,
 | |
| 							   unsigned short* src, unsigned short* dst)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	
 | |
| 	thr *= 2;
 | |
| 	
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				const unsigned short cd = src[i];
 | |
| 				if (cd <= thr)
 | |
| 				{
 | |
| 					dst[i] = cd;
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				int d = (int)cd;
 | |
| 				for (int dir = 0; dir < 4; ++dir)
 | |
| 				{
 | |
| 					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int ax = x + rcGetDirOffsetX(dir);
 | |
| 						const int ay = y + rcGetDirOffsetY(dir);
 | |
| 						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
 | |
| 						d += (int)src[ai];
 | |
| 						
 | |
| 						const rcCompactSpan& as = chf.spans[ai];
 | |
| 						const int dir2 = (dir+1) & 0x3;
 | |
| 						if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
 | |
| 						{
 | |
| 							const int ax2 = ax + rcGetDirOffsetX(dir2);
 | |
| 							const int ay2 = ay + rcGetDirOffsetY(dir2);
 | |
| 							const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
 | |
| 							d += (int)src[ai2];
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							d += cd;
 | |
| 						}
 | |
| 					}
 | |
| 					else
 | |
| 					{
 | |
| 						d += cd*2;
 | |
| 					}
 | |
| 				}
 | |
| 				dst[i] = (unsigned short)((d+5)/9);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool floodRegion(int x, int y, int i,
 | |
| 						unsigned short level, unsigned short r,
 | |
| 						rcCompactHeightfield& chf,
 | |
| 						unsigned short* srcReg, unsigned short* srcDist,
 | |
| 						rcTempVector<LevelStackEntry>& stack)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	
 | |
| 	const unsigned char area = chf.areas[i];
 | |
| 	
 | |
| 	// Flood fill mark region.
 | |
| 	stack.clear();
 | |
| 	stack.push_back(LevelStackEntry(x, y, i));
 | |
| 	srcReg[i] = r;
 | |
| 	srcDist[i] = 0;
 | |
| 	
 | |
| 	unsigned short lev = level >= 2 ? level-2 : 0;
 | |
| 	int count = 0;
 | |
| 	
 | |
| 	while (stack.size() > 0)
 | |
| 	{
 | |
| 		LevelStackEntry& back = stack.back();
 | |
| 		int cx = back.x;
 | |
| 		int cy = back.y;
 | |
| 		int ci = back.index;
 | |
| 		stack.pop_back();
 | |
| 		
 | |
| 		const rcCompactSpan& cs = chf.spans[ci];
 | |
| 		
 | |
| 		// Check if any of the neighbours already have a valid region set.
 | |
| 		unsigned short ar = 0;
 | |
| 		for (int dir = 0; dir < 4; ++dir)
 | |
| 		{
 | |
| 			// 8 connected
 | |
| 			if (rcGetCon(cs, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const int ax = cx + rcGetDirOffsetX(dir);
 | |
| 				const int ay = cy + rcGetDirOffsetY(dir);
 | |
| 				const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
 | |
| 				if (chf.areas[ai] != area)
 | |
| 					continue;
 | |
| 				unsigned short nr = srcReg[ai];
 | |
| 				if (nr & RC_BORDER_REG) // Do not take borders into account.
 | |
| 					continue;
 | |
| 				if (nr != 0 && nr != r)
 | |
| 				{
 | |
| 					ar = nr;
 | |
| 					break;
 | |
| 				}
 | |
| 				
 | |
| 				const rcCompactSpan& as = chf.spans[ai];
 | |
| 				
 | |
| 				const int dir2 = (dir+1) & 0x3;
 | |
| 				if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					const int ax2 = ax + rcGetDirOffsetX(dir2);
 | |
| 					const int ay2 = ay + rcGetDirOffsetY(dir2);
 | |
| 					const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
 | |
| 					if (chf.areas[ai2] != area)
 | |
| 						continue;
 | |
| 					unsigned short nr2 = srcReg[ai2];
 | |
| 					if (nr2 != 0 && nr2 != r)
 | |
| 					{
 | |
| 						ar = nr2;
 | |
| 						break;
 | |
| 					}
 | |
| 				}				
 | |
| 			}
 | |
| 		}
 | |
| 		if (ar != 0)
 | |
| 		{
 | |
| 			srcReg[ci] = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		
 | |
| 		count++;
 | |
| 		
 | |
| 		// Expand neighbours.
 | |
| 		for (int dir = 0; dir < 4; ++dir)
 | |
| 		{
 | |
| 			if (rcGetCon(cs, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const int ax = cx + rcGetDirOffsetX(dir);
 | |
| 				const int ay = cy + rcGetDirOffsetY(dir);
 | |
| 				const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
 | |
| 				if (chf.areas[ai] != area)
 | |
| 					continue;
 | |
| 				if (chf.dist[ai] >= lev && srcReg[ai] == 0)
 | |
| 				{
 | |
| 					srcReg[ai] = r;
 | |
| 					srcDist[ai] = 0;
 | |
| 					stack.push_back(LevelStackEntry(ax, ay, ai));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return count > 0;
 | |
| }
 | |
| 
 | |
| // Struct to keep track of entries in the region table that have been changed.
 | |
| struct DirtyEntry
 | |
| {
 | |
| 	DirtyEntry(int index_, unsigned short region_, unsigned short distance2_)
 | |
| 		: index(index_), region(region_), distance2(distance2_) {}
 | |
| 	int index;
 | |
| 	unsigned short region;
 | |
| 	unsigned short distance2;
 | |
| };
 | |
| static void expandRegions(int maxIter, unsigned short level,
 | |
| 					      rcCompactHeightfield& chf,
 | |
| 					      unsigned short* srcReg, unsigned short* srcDist,
 | |
| 					      rcTempVector<LevelStackEntry>& stack,
 | |
| 					      bool fillStack)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 
 | |
| 	if (fillStack)
 | |
| 	{
 | |
| 		// Find cells revealed by the raised level.
 | |
| 		stack.clear();
 | |
| 		for (int y = 0; y < h; ++y)
 | |
| 		{
 | |
| 			for (int x = 0; x < w; ++x)
 | |
| 			{
 | |
| 				const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 				for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 				{
 | |
| 					if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
 | |
| 					{
 | |
| 						stack.push_back(LevelStackEntry(x, y, i));
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else // use cells in the input stack
 | |
| 	{
 | |
| 		// mark all cells which already have a region
 | |
| 		for (int j=0; j<stack.size(); j++)
 | |
| 		{
 | |
| 			int i = stack[j].index;
 | |
| 			if (srcReg[i] != 0)
 | |
| 				stack[j].index = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rcTempVector<DirtyEntry> dirtyEntries;
 | |
| 	int iter = 0;
 | |
| 	while (stack.size() > 0)
 | |
| 	{
 | |
| 		int failed = 0;
 | |
| 		dirtyEntries.clear();
 | |
| 		
 | |
| 		for (int j = 0; j < stack.size(); j++)
 | |
| 		{
 | |
| 			int x = stack[j].x;
 | |
| 			int y = stack[j].y;
 | |
| 			int i = stack[j].index;
 | |
| 			if (i < 0)
 | |
| 			{
 | |
| 				failed++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			unsigned short r = srcReg[i];
 | |
| 			unsigned short d2 = 0xffff;
 | |
| 			const unsigned char area = chf.areas[i];
 | |
| 			const rcCompactSpan& s = chf.spans[i];
 | |
| 			for (int dir = 0; dir < 4; ++dir)
 | |
| 			{
 | |
| 				if (rcGetCon(s, dir) == RC_NOT_CONNECTED) continue;
 | |
| 				const int ax = x + rcGetDirOffsetX(dir);
 | |
| 				const int ay = y + rcGetDirOffsetY(dir);
 | |
| 				const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
 | |
| 				if (chf.areas[ai] != area) continue;
 | |
| 				if (srcReg[ai] > 0 && (srcReg[ai] & RC_BORDER_REG) == 0)
 | |
| 				{
 | |
| 					if ((int)srcDist[ai]+2 < (int)d2)
 | |
| 					{
 | |
| 						r = srcReg[ai];
 | |
| 						d2 = srcDist[ai]+2;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (r)
 | |
| 			{
 | |
| 				stack[j].index = -1; // mark as used
 | |
| 				dirtyEntries.push_back(DirtyEntry(i, r, d2));
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				failed++;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Copy entries that differ between src and dst to keep them in sync.
 | |
| 		for (int i = 0; i < dirtyEntries.size(); i++) {
 | |
| 			int idx = dirtyEntries[i].index;
 | |
| 			srcReg[idx] = dirtyEntries[i].region;
 | |
| 			srcDist[idx] = dirtyEntries[i].distance2;
 | |
| 		}
 | |
| 		
 | |
| 		if (failed == stack.size())
 | |
| 			break;
 | |
| 		
 | |
| 		if (level > 0)
 | |
| 		{
 | |
| 			++iter;
 | |
| 			if (iter >= maxIter)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void sortCellsByLevel(unsigned short startLevel,
 | |
| 							  rcCompactHeightfield& chf,
 | |
| 							  const unsigned short* srcReg,
 | |
| 							  unsigned int nbStacks, rcTempVector<LevelStackEntry>* stacks,
 | |
| 							  unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	startLevel = startLevel >> loglevelsPerStack;
 | |
| 
 | |
| 	for (unsigned int j=0; j<nbStacks; ++j)
 | |
| 		stacks[j].clear();
 | |
| 
 | |
| 	// put all cells in the level range into the appropriate stacks
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				if (chf.areas[i] == RC_NULL_AREA || srcReg[i] != 0)
 | |
| 					continue;
 | |
| 
 | |
| 				int level = chf.dist[i] >> loglevelsPerStack;
 | |
| 				int sId = startLevel - level;
 | |
| 				if (sId >= (int)nbStacks)
 | |
| 					continue;
 | |
| 				if (sId < 0)
 | |
| 					sId = 0;
 | |
| 
 | |
| 				stacks[sId].push_back(LevelStackEntry(x, y, i));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void appendStacks(const rcTempVector<LevelStackEntry>& srcStack,
 | |
| 						 rcTempVector<LevelStackEntry>& dstStack,
 | |
| 						 const unsigned short* srcReg)
 | |
| {
 | |
| 	for (int j=0; j<srcStack.size(); j++)
 | |
| 	{
 | |
| 		int i = srcStack[j].index;
 | |
| 		if ((i < 0) || (srcReg[i] != 0))
 | |
| 			continue;
 | |
| 		dstStack.push_back(srcStack[j]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct rcRegion
 | |
| {
 | |
| 	inline rcRegion(unsigned short i) :
 | |
| 		spanCount(0),
 | |
| 		id(i),
 | |
| 		areaType(0),
 | |
| 		remap(false),
 | |
| 		visited(false),
 | |
| 		overlap(false),
 | |
| 		connectsToBorder(false),
 | |
| 		ymin(0xffff),
 | |
| 		ymax(0)
 | |
| 	{}
 | |
| 	
 | |
| 	int spanCount;					// Number of spans belonging to this region
 | |
| 	unsigned short id;				// ID of the region
 | |
| 	unsigned char areaType;			// Are type.
 | |
| 	bool remap;
 | |
| 	bool visited;
 | |
| 	bool overlap;
 | |
| 	bool connectsToBorder;
 | |
| 	unsigned short ymin, ymax;
 | |
| 	rcIntArray connections;
 | |
| 	rcIntArray floors;
 | |
| };
 | |
| 
 | |
| static void removeAdjacentNeighbours(rcRegion& reg)
 | |
| {
 | |
| 	// Remove adjacent duplicates.
 | |
| 	for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; )
 | |
| 	{
 | |
| 		int ni = (i+1) % reg.connections.size();
 | |
| 		if (reg.connections[i] == reg.connections[ni])
 | |
| 		{
 | |
| 			// Remove duplicate
 | |
| 			for (int j = i; j < reg.connections.size()-1; ++j)
 | |
| 				reg.connections[j] = reg.connections[j+1];
 | |
| 			reg.connections.pop();
 | |
| 		}
 | |
| 		else
 | |
| 			++i;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId)
 | |
| {
 | |
| 	bool neiChanged = false;
 | |
| 	for (int i = 0; i < reg.connections.size(); ++i)
 | |
| 	{
 | |
| 		if (reg.connections[i] == oldId)
 | |
| 		{
 | |
| 			reg.connections[i] = newId;
 | |
| 			neiChanged = true;
 | |
| 		}
 | |
| 	}
 | |
| 	for (int i = 0; i < reg.floors.size(); ++i)
 | |
| 	{
 | |
| 		if (reg.floors[i] == oldId)
 | |
| 			reg.floors[i] = newId;
 | |
| 	}
 | |
| 	if (neiChanged)
 | |
| 		removeAdjacentNeighbours(reg);
 | |
| }
 | |
| 
 | |
| static bool canMergeWithRegion(const rcRegion& rega, const rcRegion& regb)
 | |
| {
 | |
| 	if (rega.areaType != regb.areaType)
 | |
| 		return false;
 | |
| 	int n = 0;
 | |
| 	for (int i = 0; i < rega.connections.size(); ++i)
 | |
| 	{
 | |
| 		if (rega.connections[i] == regb.id)
 | |
| 			n++;
 | |
| 	}
 | |
| 	if (n > 1)
 | |
| 		return false;
 | |
| 	for (int i = 0; i < rega.floors.size(); ++i)
 | |
| 	{
 | |
| 		if (rega.floors[i] == regb.id)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void addUniqueFloorRegion(rcRegion& reg, int n)
 | |
| {
 | |
| 	for (int i = 0; i < reg.floors.size(); ++i)
 | |
| 		if (reg.floors[i] == n)
 | |
| 			return;
 | |
| 	reg.floors.push(n);
 | |
| }
 | |
| 
 | |
| static bool mergeRegions(rcRegion& rega, rcRegion& regb)
 | |
| {
 | |
| 	unsigned short aid = rega.id;
 | |
| 	unsigned short bid = regb.id;
 | |
| 	
 | |
| 	// Duplicate current neighbourhood.
 | |
| 	rcIntArray acon;
 | |
| 	acon.resize(rega.connections.size());
 | |
| 	for (int i = 0; i < rega.connections.size(); ++i)
 | |
| 		acon[i] = rega.connections[i];
 | |
| 	rcIntArray& bcon = regb.connections;
 | |
| 	
 | |
| 	// Find insertion point on A.
 | |
| 	int insa = -1;
 | |
| 	for (int i = 0; i < acon.size(); ++i)
 | |
| 	{
 | |
| 		if (acon[i] == bid)
 | |
| 		{
 | |
| 			insa = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (insa == -1)
 | |
| 		return false;
 | |
| 	
 | |
| 	// Find insertion point on B.
 | |
| 	int insb = -1;
 | |
| 	for (int i = 0; i < bcon.size(); ++i)
 | |
| 	{
 | |
| 		if (bcon[i] == aid)
 | |
| 		{
 | |
| 			insb = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (insb == -1)
 | |
| 		return false;
 | |
| 	
 | |
| 	// Merge neighbours.
 | |
| 	rega.connections.clear();
 | |
| 	for (int i = 0, ni = acon.size(); i < ni-1; ++i)
 | |
| 		rega.connections.push(acon[(insa+1+i) % ni]);
 | |
| 		
 | |
| 	for (int i = 0, ni = bcon.size(); i < ni-1; ++i)
 | |
| 		rega.connections.push(bcon[(insb+1+i) % ni]);
 | |
| 	
 | |
| 	removeAdjacentNeighbours(rega);
 | |
| 	
 | |
| 	for (int j = 0; j < regb.floors.size(); ++j)
 | |
| 		addUniqueFloorRegion(rega, regb.floors[j]);
 | |
| 	rega.spanCount += regb.spanCount;
 | |
| 	regb.spanCount = 0;
 | |
| 	regb.connections.resize(0);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool isRegionConnectedToBorder(const rcRegion& reg)
 | |
| {
 | |
| 	// Region is connected to border if
 | |
| 	// one of the neighbours is null id.
 | |
| 	for (int i = 0; i < reg.connections.size(); ++i)
 | |
| 	{
 | |
| 		if (reg.connections[i] == 0)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool isSolidEdge(rcCompactHeightfield& chf, const unsigned short* srcReg,
 | |
| 						int x, int y, int i, int dir)
 | |
| {
 | |
| 	const rcCompactSpan& s = chf.spans[i];
 | |
| 	unsigned short r = 0;
 | |
| 	if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 	{
 | |
| 		const int ax = x + rcGetDirOffsetX(dir);
 | |
| 		const int ay = y + rcGetDirOffsetY(dir);
 | |
| 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
 | |
| 		r = srcReg[ai];
 | |
| 	}
 | |
| 	if (r == srcReg[i])
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void walkContour(int x, int y, int i, int dir,
 | |
| 						rcCompactHeightfield& chf,
 | |
| 						const unsigned short* srcReg,
 | |
| 						rcIntArray& cont)
 | |
| {
 | |
| 	int startDir = dir;
 | |
| 	int starti = i;
 | |
| 
 | |
| 	const rcCompactSpan& ss = chf.spans[i];
 | |
| 	unsigned short curReg = 0;
 | |
| 	if (rcGetCon(ss, dir) != RC_NOT_CONNECTED)
 | |
| 	{
 | |
| 		const int ax = x + rcGetDirOffsetX(dir);
 | |
| 		const int ay = y + rcGetDirOffsetY(dir);
 | |
| 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir);
 | |
| 		curReg = srcReg[ai];
 | |
| 	}
 | |
| 	cont.push(curReg);
 | |
| 			
 | |
| 	int iter = 0;
 | |
| 	while (++iter < 40000)
 | |
| 	{
 | |
| 		const rcCompactSpan& s = chf.spans[i];
 | |
| 		
 | |
| 		if (isSolidEdge(chf, srcReg, x, y, i, dir))
 | |
| 		{
 | |
| 			// Choose the edge corner
 | |
| 			unsigned short r = 0;
 | |
| 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const int ax = x + rcGetDirOffsetX(dir);
 | |
| 				const int ay = y + rcGetDirOffsetY(dir);
 | |
| 				const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
 | |
| 				r = srcReg[ai];
 | |
| 			}
 | |
| 			if (r != curReg)
 | |
| 			{
 | |
| 				curReg = r;
 | |
| 				cont.push(curReg);
 | |
| 			}
 | |
| 			
 | |
| 			dir = (dir+1) & 0x3;  // Rotate CW
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			int ni = -1;
 | |
| 			const int nx = x + rcGetDirOffsetX(dir);
 | |
| 			const int ny = y + rcGetDirOffsetY(dir);
 | |
| 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
 | |
| 				ni = (int)nc.index + rcGetCon(s, dir);
 | |
| 			}
 | |
| 			if (ni == -1)
 | |
| 			{
 | |
| 				// Should not happen.
 | |
| 				return;
 | |
| 			}
 | |
| 			x = nx;
 | |
| 			y = ny;
 | |
| 			i = ni;
 | |
| 			dir = (dir+3) & 0x3;	// Rotate CCW
 | |
| 		}
 | |
| 		
 | |
| 		if (starti == i && startDir == dir)
 | |
| 		{
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Remove adjacent duplicates.
 | |
| 	if (cont.size() > 1)
 | |
| 	{
 | |
| 		for (int j = 0; j < cont.size(); )
 | |
| 		{
 | |
| 			int nj = (j+1) % cont.size();
 | |
| 			if (cont[j] == cont[nj])
 | |
| 			{
 | |
| 				for (int k = j; k < cont.size()-1; ++k)
 | |
| 					cont[k] = cont[k+1];
 | |
| 				cont.pop();
 | |
| 			}
 | |
| 			else
 | |
| 				++j;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
 | |
| 								  unsigned short& maxRegionId,
 | |
| 								  rcCompactHeightfield& chf,
 | |
| 								  unsigned short* srcReg, rcIntArray& overlaps)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	
 | |
| 	const int nreg = maxRegionId+1;
 | |
| 	rcTempVector<rcRegion> regions;
 | |
| 	if (!regions.reserve(nreg)) {
 | |
| 		ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Construct regions
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 		regions.push_back(rcRegion((unsigned short) i));
 | |
| 	
 | |
| 	// Find edge of a region and find connections around the contour.
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				unsigned short r = srcReg[i];
 | |
| 				if (r == 0 || r >= nreg)
 | |
| 					continue;
 | |
| 				
 | |
| 				rcRegion& reg = regions[r];
 | |
| 				reg.spanCount++;
 | |
| 				
 | |
| 				// Update floors.
 | |
| 				for (int j = (int)c.index; j < ni; ++j)
 | |
| 				{
 | |
| 					if (i == j) continue;
 | |
| 					unsigned short floorId = srcReg[j];
 | |
| 					if (floorId == 0 || floorId >= nreg)
 | |
| 						continue;
 | |
| 					if (floorId == r)
 | |
| 						reg.overlap = true;
 | |
| 					addUniqueFloorRegion(reg, floorId);
 | |
| 				}
 | |
| 				
 | |
| 				// Have found contour
 | |
| 				if (reg.connections.size() > 0)
 | |
| 					continue;
 | |
| 				
 | |
| 				reg.areaType = chf.areas[i];
 | |
| 				
 | |
| 				// Check if this cell is next to a border.
 | |
| 				int ndir = -1;
 | |
| 				for (int dir = 0; dir < 4; ++dir)
 | |
| 				{
 | |
| 					if (isSolidEdge(chf, srcReg, x, y, i, dir))
 | |
| 					{
 | |
| 						ndir = dir;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				
 | |
| 				if (ndir != -1)
 | |
| 				{
 | |
| 					// The cell is at border.
 | |
| 					// Walk around the contour to find all the neighbours.
 | |
| 					walkContour(x, y, i, ndir, chf, srcReg, reg.connections);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Remove too small regions.
 | |
| 	rcIntArray stack(32);
 | |
| 	rcIntArray trace(32);
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		rcRegion& reg = regions[i];
 | |
| 		if (reg.id == 0 || (reg.id & RC_BORDER_REG))
 | |
| 			continue;                       
 | |
| 		if (reg.spanCount == 0)
 | |
| 			continue;
 | |
| 		if (reg.visited)
 | |
| 			continue;
 | |
| 		
 | |
| 		// Count the total size of all the connected regions.
 | |
| 		// Also keep track of the regions connects to a tile border.
 | |
| 		bool connectsToBorder = false;
 | |
| 		int spanCount = 0;
 | |
| 		stack.clear();
 | |
| 		trace.clear();
 | |
| 
 | |
| 		reg.visited = true;
 | |
| 		stack.push(i);
 | |
| 		
 | |
| 		while (stack.size())
 | |
| 		{
 | |
| 			// Pop
 | |
| 			int ri = stack.pop();
 | |
| 			
 | |
| 			rcRegion& creg = regions[ri];
 | |
| 
 | |
| 			spanCount += creg.spanCount;
 | |
| 			trace.push(ri);
 | |
| 
 | |
| 			for (int j = 0; j < creg.connections.size(); ++j)
 | |
| 			{
 | |
| 				if (creg.connections[j] & RC_BORDER_REG)
 | |
| 				{
 | |
| 					connectsToBorder = true;
 | |
| 					continue;
 | |
| 				}
 | |
| 				rcRegion& neireg = regions[creg.connections[j]];
 | |
| 				if (neireg.visited)
 | |
| 					continue;
 | |
| 				if (neireg.id == 0 || (neireg.id & RC_BORDER_REG))
 | |
| 					continue;
 | |
| 				// Visit
 | |
| 				stack.push(neireg.id);
 | |
| 				neireg.visited = true;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// If the accumulated regions size is too small, remove it.
 | |
| 		// Do not remove areas which connect to tile borders
 | |
| 		// as their size cannot be estimated correctly and removing them
 | |
| 		// can potentially remove necessary areas.
 | |
| 		if (spanCount < minRegionArea && !connectsToBorder)
 | |
| 		{
 | |
| 			// Kill all visited regions.
 | |
| 			for (int j = 0; j < trace.size(); ++j)
 | |
| 			{
 | |
| 				regions[trace[j]].spanCount = 0;
 | |
| 				regions[trace[j]].id = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Merge too small regions to neighbour regions.
 | |
| 	int mergeCount = 0 ;
 | |
| 	do
 | |
| 	{
 | |
| 		mergeCount = 0;
 | |
| 		for (int i = 0; i < nreg; ++i)
 | |
| 		{
 | |
| 			rcRegion& reg = regions[i];
 | |
| 			if (reg.id == 0 || (reg.id & RC_BORDER_REG))
 | |
| 				continue;
 | |
| 			if (reg.overlap)
 | |
| 				continue;
 | |
| 			if (reg.spanCount == 0)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Check to see if the region should be merged.
 | |
| 			if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg))
 | |
| 				continue;
 | |
| 			
 | |
| 			// Small region with more than 1 connection.
 | |
| 			// Or region which is not connected to a border at all.
 | |
| 			// Find smallest neighbour region that connects to this one.
 | |
| 			int smallest = 0xfffffff;
 | |
| 			unsigned short mergeId = reg.id;
 | |
| 			for (int j = 0; j < reg.connections.size(); ++j)
 | |
| 			{
 | |
| 				if (reg.connections[j] & RC_BORDER_REG) continue;
 | |
| 				rcRegion& mreg = regions[reg.connections[j]];
 | |
| 				if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue;
 | |
| 				if (mreg.spanCount < smallest &&
 | |
| 					canMergeWithRegion(reg, mreg) &&
 | |
| 					canMergeWithRegion(mreg, reg))
 | |
| 				{
 | |
| 					smallest = mreg.spanCount;
 | |
| 					mergeId = mreg.id;
 | |
| 				}
 | |
| 			}
 | |
| 			// Found new id.
 | |
| 			if (mergeId != reg.id)
 | |
| 			{
 | |
| 				unsigned short oldId = reg.id;
 | |
| 				rcRegion& target = regions[mergeId];
 | |
| 				
 | |
| 				// Merge neighbours.
 | |
| 				if (mergeRegions(target, reg))
 | |
| 				{
 | |
| 					// Fixup regions pointing to current region.
 | |
| 					for (int j = 0; j < nreg; ++j)
 | |
| 					{
 | |
| 						if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue;
 | |
| 						// If another region was already merged into current region
 | |
| 						// change the nid of the previous region too.
 | |
| 						if (regions[j].id == oldId)
 | |
| 							regions[j].id = mergeId;
 | |
| 						// Replace the current region with the new one if the
 | |
| 						// current regions is neighbour.
 | |
| 						replaceNeighbour(regions[j], oldId, mergeId);
 | |
| 					}
 | |
| 					mergeCount++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	while (mergeCount > 0);
 | |
| 	
 | |
| 	// Compress region Ids.
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		regions[i].remap = false;
 | |
| 		if (regions[i].id == 0) continue;       // Skip nil regions.
 | |
| 		if (regions[i].id & RC_BORDER_REG) continue;    // Skip external regions.
 | |
| 		regions[i].remap = true;
 | |
| 	}
 | |
| 	
 | |
| 	unsigned short regIdGen = 0;
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		if (!regions[i].remap)
 | |
| 			continue;
 | |
| 		unsigned short oldId = regions[i].id;
 | |
| 		unsigned short newId = ++regIdGen;
 | |
| 		for (int j = i; j < nreg; ++j)
 | |
| 		{
 | |
| 			if (regions[j].id == oldId)
 | |
| 			{
 | |
| 				regions[j].id = newId;
 | |
| 				regions[j].remap = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	maxRegionId = regIdGen;
 | |
| 	
 | |
| 	// Remap regions.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 	{
 | |
| 		if ((srcReg[i] & RC_BORDER_REG) == 0)
 | |
| 			srcReg[i] = regions[srcReg[i]].id;
 | |
| 	}
 | |
| 
 | |
| 	// Return regions that we found to be overlapping.
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 		if (regions[i].overlap)
 | |
| 			overlaps.push(regions[i].id);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void addUniqueConnection(rcRegion& reg, int n)
 | |
| {
 | |
| 	for (int i = 0; i < reg.connections.size(); ++i)
 | |
| 		if (reg.connections[i] == n)
 | |
| 			return;
 | |
| 	reg.connections.push(n);
 | |
| }
 | |
| 
 | |
| static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
 | |
| 									   unsigned short& maxRegionId,
 | |
| 									   rcCompactHeightfield& chf,
 | |
| 									   unsigned short* srcReg)
 | |
| {
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	
 | |
| 	const int nreg = maxRegionId+1;
 | |
| 	rcTempVector<rcRegion> regions;
 | |
| 	
 | |
| 	// Construct regions
 | |
| 	if (!regions.reserve(nreg)) {
 | |
| 		ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
 | |
| 		return false;
 | |
| 	}
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 		regions.push_back(rcRegion((unsigned short) i));
 | |
| 	
 | |
| 	// Find region neighbours and overlapping regions.
 | |
| 	rcIntArray lregs(32);
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 
 | |
| 			lregs.clear();
 | |
| 			
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				const unsigned short ri = srcReg[i];
 | |
| 				if (ri == 0 || ri >= nreg) continue;
 | |
| 				rcRegion& reg = regions[ri];
 | |
| 				
 | |
| 				reg.spanCount++;
 | |
| 				
 | |
| 				reg.ymin = rcMin(reg.ymin, s.y);
 | |
| 				reg.ymax = rcMax(reg.ymax, s.y);
 | |
| 				
 | |
| 				// Collect all region layers.
 | |
| 				lregs.push(ri);
 | |
| 				
 | |
| 				// Update neighbours
 | |
| 				for (int dir = 0; dir < 4; ++dir)
 | |
| 				{
 | |
| 					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int ax = x + rcGetDirOffsetX(dir);
 | |
| 						const int ay = y + rcGetDirOffsetY(dir);
 | |
| 						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
 | |
| 						const unsigned short rai = srcReg[ai];
 | |
| 						if (rai > 0 && rai < nreg && rai != ri)
 | |
| 							addUniqueConnection(reg, rai);
 | |
| 						if (rai & RC_BORDER_REG)
 | |
| 							reg.connectsToBorder = true;
 | |
| 					}
 | |
| 				}
 | |
| 				
 | |
| 			}
 | |
| 			
 | |
| 			// Update overlapping regions.
 | |
| 			for (int i = 0; i < lregs.size()-1; ++i)
 | |
| 			{
 | |
| 				for (int j = i+1; j < lregs.size(); ++j)
 | |
| 				{
 | |
| 					if (lregs[i] != lregs[j])
 | |
| 					{
 | |
| 						rcRegion& ri = regions[lregs[i]];
 | |
| 						rcRegion& rj = regions[lregs[j]];
 | |
| 						addUniqueFloorRegion(ri, lregs[j]);
 | |
| 						addUniqueFloorRegion(rj, lregs[i]);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Create 2D layers from regions.
 | |
| 	unsigned short layerId = 1;
 | |
| 
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 		regions[i].id = 0;
 | |
| 
 | |
| 	// Merge montone regions to create non-overlapping areas.
 | |
| 	rcIntArray stack(32);
 | |
| 	for (int i = 1; i < nreg; ++i)
 | |
| 	{
 | |
| 		rcRegion& root = regions[i];
 | |
| 		// Skip already visited.
 | |
| 		if (root.id != 0)
 | |
| 			continue;
 | |
| 		
 | |
| 		// Start search.
 | |
| 		root.id = layerId;
 | |
| 
 | |
| 		stack.clear();
 | |
| 		stack.push(i);
 | |
| 		
 | |
| 		while (stack.size() > 0)
 | |
| 		{
 | |
| 			// Pop front
 | |
| 			rcRegion& reg = regions[stack[0]];
 | |
| 			for (int j = 0; j < stack.size()-1; ++j)
 | |
| 				stack[j] = stack[j+1];
 | |
| 			stack.resize(stack.size()-1);
 | |
| 			
 | |
| 			const int ncons = (int)reg.connections.size();
 | |
| 			for (int j = 0; j < ncons; ++j)
 | |
| 			{
 | |
| 				const int nei = reg.connections[j];
 | |
| 				rcRegion& regn = regions[nei];
 | |
| 				// Skip already visited.
 | |
| 				if (regn.id != 0)
 | |
| 					continue;
 | |
| 				// Skip if the neighbour is overlapping root region.
 | |
| 				bool overlap = false;
 | |
| 				for (int k = 0; k < root.floors.size(); k++)
 | |
| 				{
 | |
| 					if (root.floors[k] == nei)
 | |
| 					{
 | |
| 						overlap = true;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				if (overlap)
 | |
| 					continue;
 | |
| 					
 | |
| 				// Deepen
 | |
| 				stack.push(nei);
 | |
| 					
 | |
| 				// Mark layer id
 | |
| 				regn.id = layerId;
 | |
| 				// Merge current layers to root.
 | |
| 				for (int k = 0; k < regn.floors.size(); ++k)
 | |
| 					addUniqueFloorRegion(root, regn.floors[k]);
 | |
| 				root.ymin = rcMin(root.ymin, regn.ymin);
 | |
| 				root.ymax = rcMax(root.ymax, regn.ymax);
 | |
| 				root.spanCount += regn.spanCount;
 | |
| 				regn.spanCount = 0;
 | |
| 				root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		layerId++;
 | |
| 	}
 | |
| 	
 | |
| 	// Remove small regions
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder)
 | |
| 		{
 | |
| 			unsigned short reg = regions[i].id;
 | |
| 			for (int j = 0; j < nreg; ++j)
 | |
| 				if (regions[j].id == reg)
 | |
| 					regions[j].id = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Compress region Ids.
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		regions[i].remap = false;
 | |
| 		if (regions[i].id == 0) continue;				// Skip nil regions.
 | |
| 		if (regions[i].id & RC_BORDER_REG) continue;    // Skip external regions.
 | |
| 		regions[i].remap = true;
 | |
| 	}
 | |
| 	
 | |
| 	unsigned short regIdGen = 0;
 | |
| 	for (int i = 0; i < nreg; ++i)
 | |
| 	{
 | |
| 		if (!regions[i].remap)
 | |
| 			continue;
 | |
| 		unsigned short oldId = regions[i].id;
 | |
| 		unsigned short newId = ++regIdGen;
 | |
| 		for (int j = i; j < nreg; ++j)
 | |
| 		{
 | |
| 			if (regions[j].id == oldId)
 | |
| 			{
 | |
| 				regions[j].id = newId;
 | |
| 				regions[j].remap = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	maxRegionId = regIdGen;
 | |
| 	
 | |
| 	// Remap regions.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 	{
 | |
| 		if ((srcReg[i] & RC_BORDER_REG) == 0)
 | |
| 			srcReg[i] = regions[srcReg[i]].id;
 | |
| 	}
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// This is usually the second to the last step in creating a fully built
 | |
| /// compact heightfield.  This step is required before regions are built
 | |
| /// using #rcBuildRegions or #rcBuildRegionsMonotone.
 | |
| /// 
 | |
| /// After this step, the distance data is available via the rcCompactHeightfield::maxDistance
 | |
| /// and rcCompactHeightfield::dist fields.
 | |
| ///
 | |
| /// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone
 | |
| bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf)
 | |
| {
 | |
| 	rcAssert(ctx);
 | |
| 	
 | |
| 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD);
 | |
| 	
 | |
| 	if (chf.dist)
 | |
| 	{
 | |
| 		rcFree(chf.dist);
 | |
| 		chf.dist = 0;
 | |
| 	}
 | |
| 	
 | |
| 	unsigned short* src = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
 | |
| 	if (!src)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'src' (%d).", chf.spanCount);
 | |
| 		return false;
 | |
| 	}
 | |
| 	unsigned short* dst = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
 | |
| 	if (!dst)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dst' (%d).", chf.spanCount);
 | |
| 		rcFree(src);
 | |
| 		return false;
 | |
| 	}
 | |
| 	
 | |
| 	unsigned short maxDist = 0;
 | |
| 
 | |
| 	{
 | |
| 		rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST);
 | |
| 
 | |
| 		calculateDistanceField(chf, src, maxDist);
 | |
| 		chf.maxDistance = maxDist;
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR);
 | |
| 
 | |
| 		// Blur
 | |
| 		if (boxBlur(chf, 1, src, dst) != src)
 | |
| 			rcSwap(src, dst);
 | |
| 
 | |
| 		// Store distance.
 | |
| 		chf.dist = src;
 | |
| 	}
 | |
| 	
 | |
| 	rcFree(dst);
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId,
 | |
| 							rcCompactHeightfield& chf, unsigned short* srcReg)
 | |
| {
 | |
| 	const int w = chf.width;	
 | |
| 	for (int y = miny; y < maxy; ++y)
 | |
| 	{
 | |
| 		for (int x = minx; x < maxx; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				if (chf.areas[i] != RC_NULL_AREA)
 | |
| 					srcReg[i] = regId;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static const unsigned short RC_NULL_NEI = 0xffff;
 | |
| 
 | |
| struct rcSweepSpan
 | |
| {
 | |
| 	unsigned short rid;	// row id
 | |
| 	unsigned short id;	// region id
 | |
| 	unsigned short ns;	// number samples
 | |
| 	unsigned short nei;	// neighbour id
 | |
| };
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
 | |
| /// Contours will form simple polygons.
 | |
| /// 
 | |
| /// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
 | |
| /// re-assigned to the zero (null) region.
 | |
| /// 
 | |
| /// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps 
 | |
| /// reduce unecessarily small regions.
 | |
| /// 
 | |
| /// See the #rcConfig documentation for more information on the configuration parameters.
 | |
| /// 
 | |
| /// The region data will be available via the rcCompactHeightfield::maxRegions
 | |
| /// and rcCompactSpan::reg fields.
 | |
| /// 
 | |
| /// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
 | |
| /// 
 | |
| /// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
 | |
| bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
 | |
| 							const int borderSize, const int minRegionArea, const int mergeRegionArea)
 | |
| {
 | |
| 	rcAssert(ctx);
 | |
| 	
 | |
| 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
 | |
| 	
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	unsigned short id = 1;
 | |
| 	
 | |
| 	rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
 | |
| 	if (!srcReg)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
 | |
| 		return false;
 | |
| 	}
 | |
| 	memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
 | |
| 
 | |
| 	const int nsweeps = rcMax(chf.width,chf.height);
 | |
| 	rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
 | |
| 	if (!sweeps)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
 | |
| 		return false;
 | |
| 	}
 | |
| 	
 | |
| 	
 | |
| 	// Mark border regions.
 | |
| 	if (borderSize > 0)
 | |
| 	{
 | |
| 		// Make sure border will not overflow.
 | |
| 		const int bw = rcMin(w, borderSize);
 | |
| 		const int bh = rcMin(h, borderSize);
 | |
| 		// Paint regions
 | |
| 		paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 	}
 | |
| 
 | |
| 	chf.borderSize = borderSize;
 | |
| 	
 | |
| 	rcIntArray prev(256);
 | |
| 
 | |
| 	// Sweep one line at a time.
 | |
| 	for (int y = borderSize; y < h-borderSize; ++y)
 | |
| 	{
 | |
| 		// Collect spans from this row.
 | |
| 		prev.resize(id+1);
 | |
| 		memset(&prev[0],0,sizeof(int)*id);
 | |
| 		unsigned short rid = 1;
 | |
| 		
 | |
| 		for (int x = borderSize; x < w-borderSize; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				if (chf.areas[i] == RC_NULL_AREA) continue;
 | |
| 				
 | |
| 				// -x
 | |
| 				unsigned short previd = 0;
 | |
| 				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					const int ax = x + rcGetDirOffsetX(0);
 | |
| 					const int ay = y + rcGetDirOffsetY(0);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
 | |
| 					if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
 | |
| 						previd = srcReg[ai];
 | |
| 				}
 | |
| 				
 | |
| 				if (!previd)
 | |
| 				{
 | |
| 					previd = rid++;
 | |
| 					sweeps[previd].rid = previd;
 | |
| 					sweeps[previd].ns = 0;
 | |
| 					sweeps[previd].nei = 0;
 | |
| 				}
 | |
| 
 | |
| 				// -y
 | |
| 				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					const int ax = x + rcGetDirOffsetX(3);
 | |
| 					const int ay = y + rcGetDirOffsetY(3);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
 | |
| 					if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
 | |
| 					{
 | |
| 						unsigned short nr = srcReg[ai];
 | |
| 						if (!sweeps[previd].nei || sweeps[previd].nei == nr)
 | |
| 						{
 | |
| 							sweeps[previd].nei = nr;
 | |
| 							sweeps[previd].ns++;
 | |
| 							prev[nr]++;
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							sweeps[previd].nei = RC_NULL_NEI;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				srcReg[i] = previd;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Create unique ID.
 | |
| 		for (int i = 1; i < rid; ++i)
 | |
| 		{
 | |
| 			if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
 | |
| 				prev[sweeps[i].nei] == (int)sweeps[i].ns)
 | |
| 			{
 | |
| 				sweeps[i].id = sweeps[i].nei;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				sweeps[i].id = id++;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Remap IDs
 | |
| 		for (int x = borderSize; x < w-borderSize; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				if (srcReg[i] > 0 && srcReg[i] < rid)
 | |
| 					srcReg[i] = sweeps[srcReg[i]].id;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	{
 | |
| 		rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
 | |
| 
 | |
| 		// Merge regions and filter out small regions.
 | |
| 		rcIntArray overlaps;
 | |
| 		chf.maxRegions = id;
 | |
| 		if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
 | |
| 			return false;
 | |
| 
 | |
| 		// Monotone partitioning does not generate overlapping regions.
 | |
| 	}
 | |
| 	
 | |
| 	// Store the result out.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 		chf.spans[i].reg = srcReg[i];
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
 | |
| /// Contours will form simple polygons.
 | |
| /// 
 | |
| /// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
 | |
| /// re-assigned to the zero (null) region.
 | |
| /// 
 | |
| /// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors. 
 | |
| /// @p mergeRegionArea helps reduce unecessarily small regions.
 | |
| /// 
 | |
| /// See the #rcConfig documentation for more information on the configuration parameters.
 | |
| /// 
 | |
| /// The region data will be available via the rcCompactHeightfield::maxRegions
 | |
| /// and rcCompactSpan::reg fields.
 | |
| /// 
 | |
| /// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
 | |
| /// 
 | |
| /// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
 | |
| bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
 | |
| 					const int borderSize, const int minRegionArea, const int mergeRegionArea)
 | |
| {
 | |
| 	rcAssert(ctx);
 | |
| 	
 | |
| 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
 | |
| 	
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	
 | |
| 	rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*2, RC_ALLOC_TEMP));
 | |
| 	if (!buf)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4);
 | |
| 		return false;
 | |
| 	}
 | |
| 	
 | |
| 	ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
 | |
| 
 | |
| 	const int LOG_NB_STACKS = 3;
 | |
| 	const int NB_STACKS = 1 << LOG_NB_STACKS;
 | |
| 	rcTempVector<LevelStackEntry> lvlStacks[NB_STACKS];
 | |
| 	for (int i=0; i<NB_STACKS; ++i)
 | |
| 		lvlStacks[i].reserve(256);
 | |
| 
 | |
| 	rcTempVector<LevelStackEntry> stack;
 | |
| 	stack.reserve(256);
 | |
| 	
 | |
| 	unsigned short* srcReg = buf;
 | |
| 	unsigned short* srcDist = buf+chf.spanCount;
 | |
| 	
 | |
| 	memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount);
 | |
| 	memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount);
 | |
| 	
 | |
| 	unsigned short regionId = 1;
 | |
| 	unsigned short level = (chf.maxDistance+1) & ~1;
 | |
| 
 | |
| 	// TODO: Figure better formula, expandIters defines how much the 
 | |
| 	// watershed "overflows" and simplifies the regions. Tying it to
 | |
| 	// agent radius was usually good indication how greedy it could be.
 | |
| //	const int expandIters = 4 + walkableRadius * 2;
 | |
| 	const int expandIters = 8;
 | |
| 
 | |
| 	if (borderSize > 0)
 | |
| 	{
 | |
| 		// Make sure border will not overflow.
 | |
| 		const int bw = rcMin(w, borderSize);
 | |
| 		const int bh = rcMin(h, borderSize);
 | |
| 		
 | |
| 		// Paint regions
 | |
| 		paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
 | |
| 		paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
 | |
| 		paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
 | |
| 		paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
 | |
| 	}
 | |
| 
 | |
| 	chf.borderSize = borderSize;
 | |
| 	
 | |
| 	int sId = -1;
 | |
| 	while (level > 0)
 | |
| 	{
 | |
| 		level = level >= 2 ? level-2 : 0;
 | |
| 		sId = (sId+1) & (NB_STACKS-1);
 | |
| 
 | |
| //		ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS);
 | |
| 
 | |
| 		if (sId == 0)
 | |
| 			sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1);
 | |
| 		else 
 | |
| 			appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level
 | |
| 
 | |
| //		ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS);
 | |
| 
 | |
| 		{
 | |
| 			rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND);
 | |
| 
 | |
| 			// Expand current regions until no empty connected cells found.
 | |
| 			expandRegions(expandIters, level, chf, srcReg, srcDist, lvlStacks[sId], false);
 | |
| 		}
 | |
| 		
 | |
| 		{
 | |
| 			rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD);
 | |
| 
 | |
| 			// Mark new regions with IDs.
 | |
| 			for (int j = 0; j<lvlStacks[sId].size(); j++)
 | |
| 			{
 | |
| 				LevelStackEntry current = lvlStacks[sId][j];
 | |
| 				int x = current.x;
 | |
| 				int y = current.y;
 | |
| 				int i = current.index;
 | |
| 				if (i >= 0 && srcReg[i] == 0)
 | |
| 				{
 | |
| 					if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
 | |
| 					{
 | |
| 						if (regionId == 0xFFFF)
 | |
| 						{
 | |
| 							ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow");
 | |
| 							return false;
 | |
| 						}
 | |
| 						
 | |
| 						regionId++;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Expand current regions until no empty connected cells found.
 | |
| 	expandRegions(expandIters*8, 0, chf, srcReg, srcDist, stack, true);
 | |
| 	
 | |
| 	ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
 | |
| 	
 | |
| 	{
 | |
| 		rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
 | |
| 
 | |
| 		// Merge regions and filter out smalle regions.
 | |
| 		rcIntArray overlaps;
 | |
| 		chf.maxRegions = regionId;
 | |
| 		if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
 | |
| 			return false;
 | |
| 
 | |
| 		// If overlapping regions were found during merging, split those regions.
 | |
| 		if (overlaps.size() > 0)
 | |
| 		{
 | |
| 			ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size());
 | |
| 		}
 | |
| 	}
 | |
| 		
 | |
| 	// Write the result out.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 		chf.spans[i].reg = srcReg[i];
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
 | |
| 						 const int borderSize, const int minRegionArea)
 | |
| {
 | |
| 	rcAssert(ctx);
 | |
| 	
 | |
| 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
 | |
| 	
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	unsigned short id = 1;
 | |
| 	
 | |
| 	rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
 | |
| 	if (!srcReg)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'src' (%d).", chf.spanCount);
 | |
| 		return false;
 | |
| 	}
 | |
| 	memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
 | |
| 	
 | |
| 	const int nsweeps = rcMax(chf.width,chf.height);
 | |
| 	rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
 | |
| 	if (!sweeps)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'sweeps' (%d).", nsweeps);
 | |
| 		return false;
 | |
| 	}
 | |
| 	
 | |
| 	
 | |
| 	// Mark border regions.
 | |
| 	if (borderSize > 0)
 | |
| 	{
 | |
| 		// Make sure border will not overflow.
 | |
| 		const int bw = rcMin(w, borderSize);
 | |
| 		const int bh = rcMin(h, borderSize);
 | |
| 		// Paint regions
 | |
| 		paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 		paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
 | |
| 	}
 | |
| 
 | |
| 	chf.borderSize = borderSize;
 | |
| 	
 | |
| 	rcIntArray prev(256);
 | |
| 	
 | |
| 	// Sweep one line at a time.
 | |
| 	for (int y = borderSize; y < h-borderSize; ++y)
 | |
| 	{
 | |
| 		// Collect spans from this row.
 | |
| 		prev.resize(id+1);
 | |
| 		memset(&prev[0],0,sizeof(int)*id);
 | |
| 		unsigned short rid = 1;
 | |
| 		
 | |
| 		for (int x = borderSize; x < w-borderSize; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				if (chf.areas[i] == RC_NULL_AREA) continue;
 | |
| 				
 | |
| 				// -x
 | |
| 				unsigned short previd = 0;
 | |
| 				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					const int ax = x + rcGetDirOffsetX(0);
 | |
| 					const int ay = y + rcGetDirOffsetY(0);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
 | |
| 					if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
 | |
| 						previd = srcReg[ai];
 | |
| 				}
 | |
| 				
 | |
| 				if (!previd)
 | |
| 				{
 | |
| 					previd = rid++;
 | |
| 					sweeps[previd].rid = previd;
 | |
| 					sweeps[previd].ns = 0;
 | |
| 					sweeps[previd].nei = 0;
 | |
| 				}
 | |
| 				
 | |
| 				// -y
 | |
| 				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
 | |
| 				{
 | |
| 					const int ax = x + rcGetDirOffsetX(3);
 | |
| 					const int ay = y + rcGetDirOffsetY(3);
 | |
| 					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
 | |
| 					if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
 | |
| 					{
 | |
| 						unsigned short nr = srcReg[ai];
 | |
| 						if (!sweeps[previd].nei || sweeps[previd].nei == nr)
 | |
| 						{
 | |
| 							sweeps[previd].nei = nr;
 | |
| 							sweeps[previd].ns++;
 | |
| 							prev[nr]++;
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							sweeps[previd].nei = RC_NULL_NEI;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				
 | |
| 				srcReg[i] = previd;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Create unique ID.
 | |
| 		for (int i = 1; i < rid; ++i)
 | |
| 		{
 | |
| 			if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
 | |
| 				prev[sweeps[i].nei] == (int)sweeps[i].ns)
 | |
| 			{
 | |
| 				sweeps[i].id = sweeps[i].nei;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				sweeps[i].id = id++;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// Remap IDs
 | |
| 		for (int x = borderSize; x < w-borderSize; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				if (srcReg[i] > 0 && srcReg[i] < rid)
 | |
| 					srcReg[i] = sweeps[srcReg[i]].id;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	
 | |
| 	{
 | |
| 		rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
 | |
| 
 | |
| 		// Merge monotone regions to layers and remove small regions.
 | |
| 		chf.maxRegions = id;
 | |
| 		if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg))
 | |
| 			return false;
 | |
| 	}
 | |
| 	
 | |
| 	
 | |
| 	// Store the result out.
 | |
| 	for (int i = 0; i < chf.spanCount; ++i)
 | |
| 		chf.spans[i].reg = srcReg[i];
 | |
| 	
 | |
| 	return true;
 | |
| }
 |