594 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			594 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef GIM_BOX_COLLISION_H_INCLUDED
 | |
| #define GIM_BOX_COLLISION_H_INCLUDED
 | |
| 
 | |
| /*! \file gim_box_collision.h
 | |
| \author Francisco Leon Najera
 | |
| */
 | |
| /*
 | |
| -----------------------------------------------------------------------------
 | |
| This source file is part of GIMPACT Library.
 | |
| 
 | |
| For the latest info, see http://gimpact.sourceforge.net/
 | |
| 
 | |
| Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
 | |
| email: projectileman@yahoo.com
 | |
| 
 | |
|  This library is free software; you can redistribute it and/or
 | |
|  modify it under the terms of EITHER:
 | |
|    (1) The GNU Lesser General Public License as published by the Free
 | |
|        Software Foundation; either version 2.1 of the License, or (at
 | |
|        your option) any later version. The text of the GNU Lesser
 | |
|        General Public License is included with this library in the
 | |
|        file GIMPACT-LICENSE-LGPL.TXT.
 | |
|    (2) The BSD-style license that is included with this library in
 | |
|        the file GIMPACT-LICENSE-BSD.TXT.
 | |
|    (3) The zlib/libpng license that is included with this library in
 | |
|        the file GIMPACT-LICENSE-ZLIB.TXT.
 | |
| 
 | |
|  This library is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 | |
|  GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
 | |
| 
 | |
| -----------------------------------------------------------------------------
 | |
| */
 | |
| #include "gim_basic_geometry_operations.h"
 | |
| #include "LinearMath/btTransform.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| //SIMD_FORCE_INLINE bool test_cross_edge_box(
 | |
| //	const btVector3 & edge,
 | |
| //	const btVector3 & absolute_edge,
 | |
| //	const btVector3 & pointa,
 | |
| //	const btVector3 & pointb, const btVector3 & extend,
 | |
| //	int dir_index0,
 | |
| //	int dir_index1
 | |
| //	int component_index0,
 | |
| //	int component_index1)
 | |
| //{
 | |
| //	// dir coords are -z and y
 | |
| //
 | |
| //	const btScalar dir0 = -edge[dir_index0];
 | |
| //	const btScalar dir1 = edge[dir_index1];
 | |
| //	btScalar pmin = pointa[component_index0]*dir0 + pointa[component_index1]*dir1;
 | |
| //	btScalar pmax = pointb[component_index0]*dir0 + pointb[component_index1]*dir1;
 | |
| //	//find minmax
 | |
| //	if(pmin>pmax)
 | |
| //	{
 | |
| //		GIM_SWAP_NUMBERS(pmin,pmax);
 | |
| //	}
 | |
| //	//find extends
 | |
| //	const btScalar rad = extend[component_index0] * absolute_edge[dir_index0] +
 | |
| //					extend[component_index1] * absolute_edge[dir_index1];
 | |
| //
 | |
| //	if(pmin>rad || -rad>pmax) return false;
 | |
| //	return true;
 | |
| //}
 | |
| //
 | |
| //SIMD_FORCE_INLINE bool test_cross_edge_box_X_axis(
 | |
| //	const btVector3 & edge,
 | |
| //	const btVector3 & absolute_edge,
 | |
| //	const btVector3 & pointa,
 | |
| //	const btVector3 & pointb, btVector3 & extend)
 | |
| //{
 | |
| //
 | |
| //	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,2,1,1,2);
 | |
| //}
 | |
| //
 | |
| //
 | |
| //SIMD_FORCE_INLINE bool test_cross_edge_box_Y_axis(
 | |
| //	const btVector3 & edge,
 | |
| //	const btVector3 & absolute_edge,
 | |
| //	const btVector3 & pointa,
 | |
| //	const btVector3 & pointb, btVector3 & extend)
 | |
| //{
 | |
| //
 | |
| //	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,0,2,2,0);
 | |
| //}
 | |
| //
 | |
| //SIMD_FORCE_INLINE bool test_cross_edge_box_Z_axis(
 | |
| //	const btVector3 & edge,
 | |
| //	const btVector3 & absolute_edge,
 | |
| //	const btVector3 & pointa,
 | |
| //	const btVector3 & pointb, btVector3 & extend)
 | |
| //{
 | |
| //
 | |
| //	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,1,0,0,1);
 | |
| //}
 | |
| 
 | |
| #ifndef TEST_CROSS_EDGE_BOX_MCR
 | |
| 
 | |
| #define TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,i_dir_0,i_dir_1,i_comp_0,i_comp_1)\
 | |
| {\
 | |
| 	const btScalar dir0 = -edge[i_dir_0];\
 | |
| 	const btScalar dir1 = edge[i_dir_1];\
 | |
| 	btScalar pmin = pointa[i_comp_0]*dir0 + pointa[i_comp_1]*dir1;\
 | |
| 	btScalar pmax = pointb[i_comp_0]*dir0 + pointb[i_comp_1]*dir1;\
 | |
| 	if(pmin>pmax)\
 | |
| 	{\
 | |
| 		GIM_SWAP_NUMBERS(pmin,pmax); \
 | |
| 	}\
 | |
| 	const btScalar abs_dir0 = absolute_edge[i_dir_0];\
 | |
| 	const btScalar abs_dir1 = absolute_edge[i_dir_1];\
 | |
| 	const btScalar rad = _extend[i_comp_0] * abs_dir0 + _extend[i_comp_1] * abs_dir1;\
 | |
| 	if(pmin>rad || -rad>pmax) return false;\
 | |
| }\
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define TEST_CROSS_EDGE_BOX_X_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
 | |
| {\
 | |
| 	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,2,1,1,2);\
 | |
| }\
 | |
| 
 | |
| #define TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
 | |
| {\
 | |
| 	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,0,2,2,0);\
 | |
| }\
 | |
| 
 | |
| #define TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
 | |
| {\
 | |
| 	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,1,0,0,1);\
 | |
| }\
 | |
| 
 | |
| 
 | |
| 
 | |
| //!  Class for transforming a model1 to the space of model0
 | |
| class GIM_BOX_BOX_TRANSFORM_CACHE
 | |
| {
 | |
| public:
 | |
|     btVector3  m_T1to0;//!< Transforms translation of model1 to model 0
 | |
| 	btMatrix3x3 m_R1to0;//!< Transforms Rotation of model1 to model 0, equal  to R0' * R1
 | |
| 	btMatrix3x3 m_AR;//!< Absolute value of m_R1to0
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void calc_absolute_matrix()
 | |
| 	{
 | |
| 		static const btVector3 vepsi(1e-6f,1e-6f,1e-6f);
 | |
| 		m_AR[0] = vepsi + m_R1to0[0].absolute();
 | |
| 		m_AR[1] = vepsi + m_R1to0[1].absolute();
 | |
| 		m_AR[2] = vepsi + m_R1to0[2].absolute();
 | |
| 	}
 | |
| 
 | |
| 	GIM_BOX_BOX_TRANSFORM_CACHE()
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	GIM_BOX_BOX_TRANSFORM_CACHE(mat4f  trans1_to_0)
 | |
| 	{
 | |
| 		COPY_MATRIX_3X3(m_R1to0,trans1_to_0)
 | |
|         MAT_GET_TRANSLATION(trans1_to_0,m_T1to0)
 | |
| 		calc_absolute_matrix();
 | |
| 	}
 | |
| 
 | |
| 	//! Calc the transformation relative  1 to 0. Inverts matrics by transposing
 | |
| 	SIMD_FORCE_INLINE void calc_from_homogenic(const btTransform & trans0,const btTransform & trans1)
 | |
| 	{
 | |
| 
 | |
| 		m_R1to0 = trans0.getBasis().transpose();
 | |
| 		m_T1to0 = m_R1to0 * (-trans0.getOrigin());
 | |
| 
 | |
| 		m_T1to0 += m_R1to0*trans1.getOrigin();
 | |
| 		m_R1to0 *= trans1.getBasis();
 | |
| 
 | |
| 		calc_absolute_matrix();
 | |
| 	}
 | |
| 
 | |
| 	//! Calcs the full invertion of the matrices. Useful for scaling matrices
 | |
| 	SIMD_FORCE_INLINE void calc_from_full_invert(const btTransform & trans0,const btTransform & trans1)
 | |
| 	{
 | |
| 		m_R1to0 = trans0.getBasis().inverse();
 | |
| 		m_T1to0 = m_R1to0 * (-trans0.getOrigin());
 | |
| 
 | |
| 		m_T1to0 += m_R1to0*trans1.getOrigin();
 | |
| 		m_R1to0 *= trans1.getBasis();
 | |
| 
 | |
| 		calc_absolute_matrix();
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector3 transform(const btVector3 & point)
 | |
| 	{
 | |
|         return point.dot3(m_R1to0[0], m_R1to0[1], m_R1to0[2]) + m_T1to0;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #ifndef BOX_PLANE_EPSILON
 | |
| #define BOX_PLANE_EPSILON 0.000001f
 | |
| #endif
 | |
| 
 | |
| //! Axis aligned box
 | |
| class GIM_AABB
 | |
| {
 | |
| public:
 | |
| 	btVector3 m_min;
 | |
| 	btVector3 m_max;
 | |
| 
 | |
| 	GIM_AABB()
 | |
| 	{}
 | |
| 
 | |
| 
 | |
| 	GIM_AABB(const btVector3 & V1,
 | |
| 			 const btVector3 & V2,
 | |
| 			 const btVector3 & V3)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
 | |
| 		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
 | |
| 		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
 | |
| 		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
 | |
| 		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
 | |
| 	}
 | |
| 
 | |
| 	GIM_AABB(const btVector3 & V1,
 | |
| 			 const btVector3 & V2,
 | |
| 			 const btVector3 & V3,
 | |
| 			 GREAL margin)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
 | |
| 		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
 | |
| 		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
 | |
| 		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
 | |
| 		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_min[0] -= margin;
 | |
| 		m_min[1] -= margin;
 | |
| 		m_min[2] -= margin;
 | |
| 		m_max[0] += margin;
 | |
| 		m_max[1] += margin;
 | |
| 		m_max[2] += margin;
 | |
| 	}
 | |
| 
 | |
| 	GIM_AABB(const GIM_AABB &other):
 | |
| 		m_min(other.m_min),m_max(other.m_max)
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	GIM_AABB(const GIM_AABB &other,btScalar margin ):
 | |
| 		m_min(other.m_min),m_max(other.m_max)
 | |
| 	{
 | |
| 		m_min[0] -= margin;
 | |
| 		m_min[1] -= margin;
 | |
| 		m_min[2] -= margin;
 | |
| 		m_max[0] += margin;
 | |
| 		m_max[1] += margin;
 | |
| 		m_max[2] += margin;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void invalidate()
 | |
| 	{
 | |
| 		m_min[0] = G_REAL_INFINITY;
 | |
| 		m_min[1] = G_REAL_INFINITY;
 | |
| 		m_min[2] = G_REAL_INFINITY;
 | |
| 		m_max[0] = -G_REAL_INFINITY;
 | |
| 		m_max[1] = -G_REAL_INFINITY;
 | |
| 		m_max[2] = -G_REAL_INFINITY;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void increment_margin(btScalar margin)
 | |
| 	{
 | |
| 		m_min[0] -= margin;
 | |
| 		m_min[1] -= margin;
 | |
| 		m_min[2] -= margin;
 | |
| 		m_max[0] += margin;
 | |
| 		m_max[1] += margin;
 | |
| 		m_max[2] += margin;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void copy_with_margin(const GIM_AABB &other, btScalar margin)
 | |
| 	{
 | |
| 		m_min[0] = other.m_min[0] - margin;
 | |
| 		m_min[1] = other.m_min[1] - margin;
 | |
| 		m_min[2] = other.m_min[2] - margin;
 | |
| 
 | |
| 		m_max[0] = other.m_max[0] + margin;
 | |
| 		m_max[1] = other.m_max[1] + margin;
 | |
| 		m_max[2] = other.m_max[2] + margin;
 | |
| 	}
 | |
| 
 | |
| 	template<typename CLASS_POINT>
 | |
| 	SIMD_FORCE_INLINE void calc_from_triangle(
 | |
| 							const CLASS_POINT & V1,
 | |
| 							const CLASS_POINT & V2,
 | |
| 							const CLASS_POINT & V3)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
 | |
| 		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
 | |
| 		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
 | |
| 		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
 | |
| 		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
 | |
| 	}
 | |
| 
 | |
| 	template<typename CLASS_POINT>
 | |
| 	SIMD_FORCE_INLINE void calc_from_triangle_margin(
 | |
| 							const CLASS_POINT & V1,
 | |
| 							const CLASS_POINT & V2,
 | |
| 							const CLASS_POINT & V3, btScalar margin)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
 | |
| 		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
 | |
| 		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
 | |
| 		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
 | |
| 		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
 | |
| 
 | |
| 		m_min[0] -= margin;
 | |
| 		m_min[1] -= margin;
 | |
| 		m_min[2] -= margin;
 | |
| 		m_max[0] += margin;
 | |
| 		m_max[1] += margin;
 | |
| 		m_max[2] += margin;
 | |
| 	}
 | |
| 
 | |
| 	//! Apply a transform to an AABB
 | |
| 	SIMD_FORCE_INLINE void appy_transform(const btTransform & trans)
 | |
| 	{
 | |
| 		btVector3 center = (m_max+m_min)*0.5f;
 | |
| 		btVector3 extends = m_max - center;
 | |
| 		// Compute new center
 | |
| 		center = trans(center);
 | |
| 
 | |
|         btVector3 textends = extends.dot3(trans.getBasis().getRow(0).absolute(), 
 | |
|                                           trans.getBasis().getRow(1).absolute(), 
 | |
|                                           trans.getBasis().getRow(2).absolute());
 | |
|         
 | |
| 		m_min = center - textends;
 | |
| 		m_max = center + textends;
 | |
| 	}
 | |
| 
 | |
| 	//! Merges a Box
 | |
| 	SIMD_FORCE_INLINE void merge(const GIM_AABB & box)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN(m_min[0],box.m_min[0]);
 | |
| 		m_min[1] = GIM_MIN(m_min[1],box.m_min[1]);
 | |
| 		m_min[2] = GIM_MIN(m_min[2],box.m_min[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX(m_max[0],box.m_max[0]);
 | |
| 		m_max[1] = GIM_MAX(m_max[1],box.m_max[1]);
 | |
| 		m_max[2] = GIM_MAX(m_max[2],box.m_max[2]);
 | |
| 	}
 | |
| 
 | |
| 	//! Merges a point
 | |
| 	template<typename CLASS_POINT>
 | |
| 	SIMD_FORCE_INLINE void merge_point(const CLASS_POINT & point)
 | |
| 	{
 | |
| 		m_min[0] = GIM_MIN(m_min[0],point[0]);
 | |
| 		m_min[1] = GIM_MIN(m_min[1],point[1]);
 | |
| 		m_min[2] = GIM_MIN(m_min[2],point[2]);
 | |
| 
 | |
| 		m_max[0] = GIM_MAX(m_max[0],point[0]);
 | |
| 		m_max[1] = GIM_MAX(m_max[1],point[1]);
 | |
| 		m_max[2] = GIM_MAX(m_max[2],point[2]);
 | |
| 	}
 | |
| 
 | |
| 	//! Gets the extend and center
 | |
| 	SIMD_FORCE_INLINE void get_center_extend(btVector3 & center,btVector3 & extend)  const
 | |
| 	{
 | |
| 		center = (m_max+m_min)*0.5f;
 | |
| 		extend = m_max - center;
 | |
| 	}
 | |
| 
 | |
| 	//! Finds the intersecting box between this box and the other.
 | |
| 	SIMD_FORCE_INLINE void find_intersection(const GIM_AABB & other, GIM_AABB & intersection)  const
 | |
| 	{
 | |
| 		intersection.m_min[0] = GIM_MAX(other.m_min[0],m_min[0]);
 | |
| 		intersection.m_min[1] = GIM_MAX(other.m_min[1],m_min[1]);
 | |
| 		intersection.m_min[2] = GIM_MAX(other.m_min[2],m_min[2]);
 | |
| 
 | |
| 		intersection.m_max[0] = GIM_MIN(other.m_max[0],m_max[0]);
 | |
| 		intersection.m_max[1] = GIM_MIN(other.m_max[1],m_max[1]);
 | |
| 		intersection.m_max[2] = GIM_MIN(other.m_max[2],m_max[2]);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE bool has_collision(const GIM_AABB & other) const
 | |
| 	{
 | |
| 		if(m_min[0] > other.m_max[0] ||
 | |
| 		   m_max[0] < other.m_min[0] ||
 | |
| 		   m_min[1] > other.m_max[1] ||
 | |
| 		   m_max[1] < other.m_min[1] ||
 | |
| 		   m_min[2] > other.m_max[2] ||
 | |
| 		   m_max[2] < other.m_min[2])
 | |
| 		{
 | |
| 			return false;
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*! \brief Finds the Ray intersection parameter.
 | |
| 	\param aabb Aligned box
 | |
| 	\param vorigin A vec3f with the origin of the ray
 | |
| 	\param vdir A vec3f with the direction of the ray
 | |
| 	*/
 | |
| 	SIMD_FORCE_INLINE bool collide_ray(const btVector3 & vorigin,const btVector3 & vdir)
 | |
| 	{
 | |
| 		btVector3 extents,center;
 | |
| 		this->get_center_extend(center,extents);;
 | |
| 
 | |
| 		btScalar Dx = vorigin[0] - center[0];
 | |
| 		if(GIM_GREATER(Dx, extents[0]) && Dx*vdir[0]>=0.0f)	return false;
 | |
| 		btScalar Dy = vorigin[1] - center[1];
 | |
| 		if(GIM_GREATER(Dy, extents[1]) && Dy*vdir[1]>=0.0f)	return false;
 | |
| 		btScalar Dz = vorigin[2] - center[2];
 | |
| 		if(GIM_GREATER(Dz, extents[2]) && Dz*vdir[2]>=0.0f)	return false;
 | |
| 
 | |
| 
 | |
| 		btScalar f = vdir[1] * Dz - vdir[2] * Dy;
 | |
| 		if(btFabs(f) > extents[1]*btFabs(vdir[2]) + extents[2]*btFabs(vdir[1])) return false;
 | |
| 		f = vdir[2] * Dx - vdir[0] * Dz;
 | |
| 		if(btFabs(f) > extents[0]*btFabs(vdir[2]) + extents[2]*btFabs(vdir[0]))return false;
 | |
| 		f = vdir[0] * Dy - vdir[1] * Dx;
 | |
| 		if(btFabs(f) > extents[0]*btFabs(vdir[1]) + extents[1]*btFabs(vdir[0]))return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void projection_interval(const btVector3 & direction, btScalar &vmin, btScalar &vmax) const
 | |
| 	{
 | |
| 		btVector3 center = (m_max+m_min)*0.5f;
 | |
| 		btVector3 extend = m_max-center;
 | |
| 
 | |
| 		btScalar _fOrigin =  direction.dot(center);
 | |
| 		btScalar _fMaximumExtent = extend.dot(direction.absolute());
 | |
| 		vmin = _fOrigin - _fMaximumExtent;
 | |
| 		vmax = _fOrigin + _fMaximumExtent;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE ePLANE_INTERSECTION_TYPE plane_classify(const btVector4 &plane) const
 | |
| 	{
 | |
| 		btScalar _fmin,_fmax;
 | |
| 		this->projection_interval(plane,_fmin,_fmax);
 | |
| 
 | |
| 		if(plane[3] > _fmax + BOX_PLANE_EPSILON)
 | |
| 		{
 | |
| 			return G_BACK_PLANE; // 0
 | |
| 		}
 | |
| 
 | |
| 		if(plane[3]+BOX_PLANE_EPSILON >=_fmin)
 | |
| 		{
 | |
| 			return G_COLLIDE_PLANE; //1
 | |
| 		}
 | |
| 		return G_FRONT_PLANE;//2
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE bool overlapping_trans_conservative(const GIM_AABB & box, btTransform & trans1_to_0)
 | |
| 	{
 | |
| 		GIM_AABB tbox = box;
 | |
| 		tbox.appy_transform(trans1_to_0);
 | |
| 		return has_collision(tbox);
 | |
| 	}
 | |
| 
 | |
| 	//! transcache is the transformation cache from box to this AABB
 | |
| 	SIMD_FORCE_INLINE bool overlapping_trans_cache(
 | |
| 		const GIM_AABB & box,const GIM_BOX_BOX_TRANSFORM_CACHE & transcache, bool fulltest)
 | |
| 	{
 | |
| 
 | |
| 		//Taken from OPCODE
 | |
| 		btVector3 ea,eb;//extends
 | |
| 		btVector3 ca,cb;//extends
 | |
| 		get_center_extend(ca,ea);
 | |
| 		box.get_center_extend(cb,eb);
 | |
| 
 | |
| 
 | |
| 		btVector3 T;
 | |
| 		btScalar t,t2;
 | |
| 		int i;
 | |
| 
 | |
| 		// Class I : A's basis vectors
 | |
| 		for(i=0;i<3;i++)
 | |
| 		{
 | |
| 			T[i] =  transcache.m_R1to0[i].dot(cb) + transcache.m_T1to0[i] - ca[i];
 | |
| 			t = transcache.m_AR[i].dot(eb) + ea[i];
 | |
| 			if(GIM_GREATER(T[i], t))	return false;
 | |
| 		}
 | |
| 		// Class II : B's basis vectors
 | |
| 		for(i=0;i<3;i++)
 | |
| 		{
 | |
| 			t = MAT_DOT_COL(transcache.m_R1to0,T,i);
 | |
| 			t2 = MAT_DOT_COL(transcache.m_AR,ea,i) + eb[i];
 | |
| 			if(GIM_GREATER(t,t2))	return false;
 | |
| 		}
 | |
| 		// Class III : 9 cross products
 | |
| 		if(fulltest)
 | |
| 		{
 | |
| 			int j,m,n,o,p,q,r;
 | |
| 			for(i=0;i<3;i++)
 | |
| 			{
 | |
| 				m = (i+1)%3;
 | |
| 				n = (i+2)%3;
 | |
| 				o = i==0?1:0;
 | |
| 				p = i==2?1:2;
 | |
| 				for(j=0;j<3;j++)
 | |
| 				{
 | |
| 					q = j==2?1:2;
 | |
| 					r = j==0?1:0;
 | |
| 					t = T[n]*transcache.m_R1to0[m][j] - T[m]*transcache.m_R1to0[n][j];
 | |
| 					t2 = ea[o]*transcache.m_AR[p][j] + ea[p]*transcache.m_AR[o][j] +
 | |
| 						eb[r]*transcache.m_AR[i][q] + eb[q]*transcache.m_AR[i][r];
 | |
| 					if(GIM_GREATER(t,t2))	return false;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	//! Simple test for planes.
 | |
| 	SIMD_FORCE_INLINE bool collide_plane(
 | |
| 		const btVector4 & plane)
 | |
| 	{
 | |
| 		ePLANE_INTERSECTION_TYPE classify = plane_classify(plane);
 | |
| 		return (classify == G_COLLIDE_PLANE);
 | |
| 	}
 | |
| 
 | |
| 	//! test for a triangle, with edges
 | |
| 	SIMD_FORCE_INLINE bool collide_triangle_exact(
 | |
| 		const btVector3 & p1,
 | |
| 		const btVector3 & p2,
 | |
| 		const btVector3 & p3,
 | |
| 		const btVector4 & triangle_plane)
 | |
| 	{
 | |
| 		if(!collide_plane(triangle_plane)) return false;
 | |
| 
 | |
| 		btVector3 center,extends;
 | |
| 		this->get_center_extend(center,extends);
 | |
| 
 | |
| 		const btVector3 v1(p1 - center);
 | |
| 		const btVector3 v2(p2 - center);
 | |
| 		const btVector3 v3(p3 - center);
 | |
| 
 | |
| 		//First axis
 | |
| 		btVector3 diff(v2 - v1);
 | |
| 		btVector3 abs_diff = diff.absolute();
 | |
| 		//Test With X axis
 | |
| 		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v1,v3,extends);
 | |
| 		//Test With Y axis
 | |
| 		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v1,v3,extends);
 | |
| 		//Test With Z axis
 | |
| 		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v1,v3,extends);
 | |
| 
 | |
| 
 | |
| 		diff = v3 - v2;
 | |
| 		abs_diff = diff.absolute();
 | |
| 		//Test With X axis
 | |
| 		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v2,v1,extends);
 | |
| 		//Test With Y axis
 | |
| 		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v2,v1,extends);
 | |
| 		//Test With Z axis
 | |
| 		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v2,v1,extends);
 | |
| 
 | |
| 		diff = v1 - v3;
 | |
| 		abs_diff = diff.absolute();
 | |
| 		//Test With X axis
 | |
| 		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v3,v2,extends);
 | |
| 		//Test With Y axis
 | |
| 		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v3,v2,extends);
 | |
| 		//Test With Z axis
 | |
| 		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v3,v2,extends);
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #ifndef BT_BOX_COLLISION_H_INCLUDED
 | |
| //! Compairison of transformation objects
 | |
| SIMD_FORCE_INLINE bool btCompareTransformsEqual(const btTransform & t1,const btTransform & t2)
 | |
| {
 | |
| 	if(!(t1.getOrigin() == t2.getOrigin()) ) return false;
 | |
| 
 | |
| 	if(!(t1.getBasis().getRow(0) == t2.getBasis().getRow(0)) ) return false;
 | |
| 	if(!(t1.getBasis().getRow(1) == t2.getBasis().getRow(1)) ) return false;
 | |
| 	if(!(t1.getBasis().getRow(2) == t2.getBasis().getRow(2)) ) return false;
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif // GIM_BOX_COLLISION_H_INCLUDED
 |