127 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
package auratests.dsp;
 | 
						|
 | 
						|
import utest.Assert;
 | 
						|
 | 
						|
import kha.arrays.Float32Array;
 | 
						|
 | 
						|
import aura.Aura;
 | 
						|
import aura.dsp.FFTConvolver;
 | 
						|
import aura.types.AudioBuffer;
 | 
						|
import aura.types.Complex;
 | 
						|
import aura.utils.MathUtils;
 | 
						|
import aura.utils.TestSignals;
 | 
						|
 | 
						|
@:access(aura.dsp.FFTConvolver)
 | 
						|
class TestFFTConvolver extends utest.Test {
 | 
						|
	var audioBuffer: AudioBuffer;
 | 
						|
	var fftConvolver: FFTConvolver;
 | 
						|
 | 
						|
	function setup() {
 | 
						|
		audioBuffer = new AudioBuffer(2, FFTConvolver.FFT_SIZE);
 | 
						|
		fftConvolver = new FFTConvolver();
 | 
						|
	}
 | 
						|
 | 
						|
	function test_process_noFadeIfTemporalInterpLengthIsZero() {
 | 
						|
		fftConvolver.temporalInterpolationLength = 0;
 | 
						|
 | 
						|
		for (i in 0...audioBuffer.channelLength) {
 | 
						|
			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
		}
 | 
						|
 | 
						|
		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		discardOverlapForNextProcess();
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			Assert.floatEquals(Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			Assert.floatEquals(0, audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(0, audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	function test_process_crossfadeIfTemporalInterpLengthIsLargerZero() {
 | 
						|
		fftConvolver.temporalInterpolationLength = 20;
 | 
						|
 | 
						|
		for (i in 0...audioBuffer.channelLength) {
 | 
						|
			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
		}
 | 
						|
		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		discardOverlapForNextProcess();
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			final t = minF(i, fftConvolver.temporalInterpolationLength) / fftConvolver.temporalInterpolationLength;
 | 
						|
			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		for (i in 0...audioBuffer.channelLength) {
 | 
						|
			audioBuffer.getChannelView(0)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | 
						|
			audioBuffer.getChannelView(1)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | 
						|
		}
 | 
						|
		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			final t = minF(i, fftConvolver.temporalInterpolationLength) / fftConvolver.temporalInterpolationLength;
 | 
						|
			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	function test_process_crossfadeEntireChunkSize() {
 | 
						|
		fftConvolver.temporalInterpolationLength = -1;
 | 
						|
 | 
						|
		for (i in 0...audioBuffer.channelLength) {
 | 
						|
			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | 
						|
		}
 | 
						|
		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		discardOverlapForNextProcess();
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			final t = minF(i, FFTConvolver.CHUNK_SIZE) / FFTConvolver.CHUNK_SIZE;
 | 
						|
			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		for (i in 0...audioBuffer.channelLength) {
 | 
						|
			audioBuffer.getChannelView(0)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | 
						|
			audioBuffer.getChannelView(1)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | 
						|
		}
 | 
						|
		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | 
						|
		fftConvolver.process(audioBuffer);
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			final t = minF(i, FFTConvolver.CHUNK_SIZE) / FFTConvolver.CHUNK_SIZE;
 | 
						|
			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(0)[i]);
 | 
						|
			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(1)[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	function setImpulseFreqsToConstant(value: Complex) {
 | 
						|
		for (i in 0...FFTConvolver.FFT_SIZE) {
 | 
						|
			fftConvolver.impulseFFT.getOutput(0 + fftConvolver.currentImpulseAlternationIndex)[i] = value;
 | 
						|
			fftConvolver.impulseFFT.getOutput(2 + fftConvolver.currentImpulseAlternationIndex)[i] = value;
 | 
						|
		}
 | 
						|
		fftConvolver.currentImpulseAlternationIndex = 1 - fftConvolver.currentImpulseAlternationIndex;
 | 
						|
 | 
						|
		fftConvolver.overlapLength[0] = FFTConvolver.CHUNK_SIZE;
 | 
						|
		fftConvolver.overlapLength[1] = FFTConvolver.CHUNK_SIZE;
 | 
						|
		fftConvolver.prevImpulseLengths[0] = FFTConvolver.CHUNK_SIZE;
 | 
						|
		fftConvolver.prevImpulseLengths[1] = FFTConvolver.CHUNK_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	function discardOverlapForNextProcess() {
 | 
						|
		for (c in 0...FFTConvolver.NUM_CHANNELS) {
 | 
						|
			for (i in 0...fftConvolver.overlapPrev[c].length) {
 | 
						|
				fftConvolver.overlapPrev[c][i] = 0.0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |