403 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			403 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| */
 | |
| 
 | |
| #include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| #include "BulletCollision/CollisionShapes/btCompoundShape.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btDbvt.h"
 | |
| #include "LinearMath/btIDebugDraw.h"
 | |
| #include "LinearMath/btAabbUtil2.h"
 | |
| #include "btManifoldResult.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | |
| 
 | |
| btShapePairCallback gCompoundChildShapePairCallback = 0;
 | |
| 
 | |
| btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
 | |
| :btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
 | |
| m_isSwapped(isSwapped),
 | |
| m_sharedManifold(ci.m_manifold)
 | |
| {
 | |
| 	m_ownsManifold = false;
 | |
| 
 | |
| 	const btCollisionObjectWrapper* colObjWrap = m_isSwapped? body1Wrap : body0Wrap;
 | |
| 	btAssert (colObjWrap->getCollisionShape()->isCompound());
 | |
| 	
 | |
| 	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());
 | |
| 	m_compoundShapeRevision = compoundShape->getUpdateRevision();
 | |
| 	
 | |
| 	
 | |
| 	preallocateChildAlgorithms(body0Wrap,body1Wrap);
 | |
| }
 | |
| 
 | |
| void	btCompoundCollisionAlgorithm::preallocateChildAlgorithms(const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
 | |
| {
 | |
| 	const btCollisionObjectWrapper* colObjWrap = m_isSwapped? body1Wrap : body0Wrap;
 | |
| 	const btCollisionObjectWrapper* otherObjWrap = m_isSwapped? body0Wrap : body1Wrap;
 | |
| 	btAssert (colObjWrap->getCollisionShape()->isCompound());
 | |
| 	
 | |
| 	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());
 | |
| 
 | |
| 	int numChildren = compoundShape->getNumChildShapes();
 | |
| 	int i;
 | |
| 	
 | |
| 	m_childCollisionAlgorithms.resize(numChildren);
 | |
| 	for (i=0;i<numChildren;i++)
 | |
| 	{
 | |
| 		if (compoundShape->getDynamicAabbTree())
 | |
| 		{
 | |
| 			m_childCollisionAlgorithms[i] = 0;
 | |
| 		} else
 | |
| 		{
 | |
| 			
 | |
| 			const btCollisionShape* childShape = compoundShape->getChildShape(i);
 | |
| 
 | |
| 			btCollisionObjectWrapper childWrap(colObjWrap,childShape,colObjWrap->getCollisionObject(),colObjWrap->getWorldTransform(),-1,i);//wrong child trans, but unused (hopefully)
 | |
| 			m_childCollisionAlgorithms[i] = m_dispatcher->findAlgorithm(&childWrap,otherObjWrap,m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);
 | |
| 
 | |
| 
 | |
| 			btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithmsContact;
 | |
| 			btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithmsClosestPoints;
 | |
| 
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btCompoundCollisionAlgorithm::removeChildAlgorithms()
 | |
| {
 | |
| 	int numChildren = m_childCollisionAlgorithms.size();
 | |
| 	int i;
 | |
| 	for (i=0;i<numChildren;i++)
 | |
| 	{
 | |
| 		if (m_childCollisionAlgorithms[i])
 | |
| 		{
 | |
| 			m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
 | |
| 			m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
 | |
| {
 | |
| 	removeChildAlgorithms();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| struct	btCompoundLeafCallback : btDbvt::ICollide
 | |
| {
 | |
| 
 | |
| public:
 | |
| 
 | |
| 	const btCollisionObjectWrapper* m_compoundColObjWrap;
 | |
| 	const btCollisionObjectWrapper* m_otherObjWrap;
 | |
| 	btDispatcher* m_dispatcher;
 | |
| 	const btDispatcherInfo& m_dispatchInfo;
 | |
| 	btManifoldResult*	m_resultOut;
 | |
| 	btCollisionAlgorithm**	m_childCollisionAlgorithms;
 | |
| 	btPersistentManifold*	m_sharedManifold;
 | |
| 	
 | |
| 	btCompoundLeafCallback (const btCollisionObjectWrapper* compoundObjWrap,const btCollisionObjectWrapper* otherObjWrap,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult*	resultOut,btCollisionAlgorithm**	childCollisionAlgorithms,btPersistentManifold*	sharedManifold)
 | |
| 		:m_compoundColObjWrap(compoundObjWrap),m_otherObjWrap(otherObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
 | |
| 		m_childCollisionAlgorithms(childCollisionAlgorithms),
 | |
| 		m_sharedManifold(sharedManifold)
 | |
| 	{
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	void	ProcessChildShape(const btCollisionShape* childShape,int index)
 | |
| 	{
 | |
| 		btAssert(index>=0);
 | |
| 		const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObjWrap->getCollisionShape());
 | |
| 		btAssert(index<compoundShape->getNumChildShapes());
 | |
| 
 | |
| 
 | |
| 		//backup
 | |
| 		btTransform	orgTrans = m_compoundColObjWrap->getWorldTransform();
 | |
| 		
 | |
| 		const btTransform& childTrans = compoundShape->getChildTransform(index);
 | |
| 		btTransform	newChildWorldTrans = orgTrans*childTrans ;
 | |
| 
 | |
| 		//perform an AABB check first
 | |
| 		btVector3 aabbMin0,aabbMax0;
 | |
| 		childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
 | |
| 
 | |
| 		btVector3 extendAabb(m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold);
 | |
| 		aabbMin0 -= extendAabb;
 | |
| 		aabbMax0 += extendAabb;
 | |
| 
 | |
| 		btVector3 aabbMin1, aabbMax1;
 | |
| 		m_otherObjWrap->getCollisionShape()->getAabb(m_otherObjWrap->getWorldTransform(),aabbMin1,aabbMax1);
 | |
| 
 | |
| 		if (gCompoundChildShapePairCallback)
 | |
| 		{
 | |
| 			if (!gCompoundChildShapePairCallback(m_otherObjWrap->getCollisionShape(), childShape))
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
 | |
| 		{
 | |
| 
 | |
| 			btCollisionObjectWrapper compoundWrap(this->m_compoundColObjWrap,childShape,m_compoundColObjWrap->getCollisionObject(),newChildWorldTrans,-1,index);
 | |
| 			
 | |
| 			btCollisionAlgorithm* algo = 0;
 | |
| 
 | |
| 			if (m_resultOut->m_closestPointDistanceThreshold > 0)
 | |
| 			{
 | |
| 				algo = m_dispatcher->findAlgorithm(&compoundWrap, m_otherObjWrap, 0, BT_CLOSEST_POINT_ALGORITHMS);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				//the contactpoint is still projected back using the original inverted worldtrans
 | |
| 				if (!m_childCollisionAlgorithms[index])
 | |
| 				{
 | |
| 					m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(&compoundWrap, m_otherObjWrap, m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);
 | |
| 				}
 | |
| 				algo = m_childCollisionAlgorithms[index];
 | |
| 			}
 | |
| 			
 | |
| 			const btCollisionObjectWrapper* tmpWrap = 0;
 | |
| 
 | |
| 			///detect swapping case
 | |
| 			if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject())
 | |
| 			{
 | |
| 				tmpWrap = m_resultOut->getBody0Wrap();
 | |
| 				m_resultOut->setBody0Wrap(&compoundWrap);
 | |
| 				m_resultOut->setShapeIdentifiersA(-1,index);
 | |
| 			} else
 | |
| 			{
 | |
| 				tmpWrap = m_resultOut->getBody1Wrap();
 | |
| 				m_resultOut->setBody1Wrap(&compoundWrap);
 | |
| 				m_resultOut->setShapeIdentifiersB(-1,index);
 | |
| 			}
 | |
| 
 | |
| 			algo->processCollision(&compoundWrap,m_otherObjWrap,m_dispatchInfo,m_resultOut);
 | |
| 
 | |
| #if 0
 | |
| 			if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
 | |
| 			{
 | |
| 				btVector3 worldAabbMin,worldAabbMax;
 | |
| 				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
 | |
| 				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| 			if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject())
 | |
| 			{
 | |
| 				m_resultOut->setBody0Wrap(tmpWrap);
 | |
| 			} else
 | |
| 			{
 | |
| 				m_resultOut->setBody1Wrap(tmpWrap);
 | |
| 			}
 | |
| 			
 | |
| 		}
 | |
| 	}
 | |
| 	void		Process(const btDbvtNode* leaf)
 | |
| 	{
 | |
| 		int index = leaf->dataAsInt;
 | |
| 
 | |
| 		const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObjWrap->getCollisionShape());
 | |
| 		const btCollisionShape* childShape = compoundShape->getChildShape(index);
 | |
| 
 | |
| #if 0
 | |
| 		if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
 | |
| 		{
 | |
| 			btVector3 worldAabbMin,worldAabbMax;
 | |
| 			btTransform	orgTrans = m_compoundColObjWrap->getWorldTransform();
 | |
| 			btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
 | |
| 			m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		ProcessChildShape(childShape,index);
 | |
| 
 | |
| 	}
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 	const btCollisionObjectWrapper* colObjWrap = m_isSwapped? body1Wrap : body0Wrap;
 | |
| 	const btCollisionObjectWrapper* otherObjWrap = m_isSwapped? body0Wrap : body1Wrap;
 | |
| 
 | |
| 	btAssert (colObjWrap->getCollisionShape()->isCompound());
 | |
| 	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());
 | |
| 
 | |
| 	///btCompoundShape might have changed:
 | |
| 	////make sure the internal child collision algorithm caches are still valid
 | |
| 	if (compoundShape->getUpdateRevision() != m_compoundShapeRevision)
 | |
| 	{
 | |
| 		///clear and update all
 | |
| 		removeChildAlgorithms();
 | |
| 		
 | |
| 		preallocateChildAlgorithms(body0Wrap,body1Wrap);
 | |
| 		m_compoundShapeRevision = compoundShape->getUpdateRevision();
 | |
| 	}
 | |
| 
 | |
|     if (m_childCollisionAlgorithms.size()==0)
 | |
|         return;
 | |
|     
 | |
| 	const btDbvt* tree = compoundShape->getDynamicAabbTree();
 | |
| 	//use a dynamic aabb tree to cull potential child-overlaps
 | |
| 	btCompoundLeafCallback  callback(colObjWrap,otherObjWrap,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold);
 | |
| 
 | |
| 	///we need to refresh all contact manifolds
 | |
| 	///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
 | |
| 	///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
 | |
| 	{
 | |
| 		int i;
 | |
| 		manifoldArray.resize(0);
 | |
| 		for (i=0;i<m_childCollisionAlgorithms.size();i++)
 | |
| 		{
 | |
| 			if (m_childCollisionAlgorithms[i])
 | |
| 			{
 | |
| 				m_childCollisionAlgorithms[i]->getAllContactManifolds(manifoldArray);
 | |
| 				for (int m=0;m<manifoldArray.size();m++)
 | |
| 				{
 | |
| 					if (manifoldArray[m]->getNumContacts())
 | |
| 					{
 | |
| 						resultOut->setPersistentManifold(manifoldArray[m]);
 | |
| 						resultOut->refreshContactPoints();
 | |
| 						resultOut->setPersistentManifold(0);//??necessary?
 | |
| 					}
 | |
| 				}
 | |
| 				manifoldArray.resize(0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tree)
 | |
| 	{
 | |
| 
 | |
| 		btVector3 localAabbMin,localAabbMax;
 | |
| 		btTransform otherInCompoundSpace;
 | |
| 		otherInCompoundSpace = colObjWrap->getWorldTransform().inverse() * otherObjWrap->getWorldTransform();
 | |
| 		otherObjWrap->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax);
 | |
| 		btVector3 extraExtends(resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold);
 | |
| 		localAabbMin -= extraExtends;
 | |
| 		localAabbMax += extraExtends;
 | |
| 
 | |
| 		const ATTRIBUTE_ALIGNED16(btDbvtVolume)	bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
 | |
| 		//process all children, that overlap with  the given AABB bounds
 | |
| 		tree->collideTVNoStackAlloc(tree->m_root,bounds,stack2,callback);
 | |
| 
 | |
| 	} else
 | |
| 	{
 | |
| 		//iterate over all children, perform an AABB check inside ProcessChildShape
 | |
| 		int numChildren = m_childCollisionAlgorithms.size();
 | |
| 		int i;
 | |
| 		for (i=0;i<numChildren;i++)
 | |
| 		{
 | |
| 			callback.ProcessChildShape(compoundShape->getChildShape(i),i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 				//iterate over all children, perform an AABB check inside ProcessChildShape
 | |
| 		int numChildren = m_childCollisionAlgorithms.size();
 | |
| 		int i;
 | |
| 		manifoldArray.resize(0);
 | |
|         const btCollisionShape* childShape = 0;
 | |
|         btTransform	orgTrans;
 | |
|         
 | |
|         btTransform	newChildWorldTrans;
 | |
|         btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;        
 | |
|         
 | |
| 		for (i=0;i<numChildren;i++)
 | |
| 		{
 | |
| 			if (m_childCollisionAlgorithms[i])
 | |
| 			{
 | |
| 				childShape = compoundShape->getChildShape(i);
 | |
| 			//if not longer overlapping, remove the algorithm
 | |
| 				orgTrans = colObjWrap->getWorldTransform();
 | |
|                 
 | |
| 				const btTransform& childTrans = compoundShape->getChildTransform(i);
 | |
|                 newChildWorldTrans = orgTrans*childTrans ;
 | |
| 
 | |
| 				//perform an AABB check first
 | |
| 				childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
 | |
| 				otherObjWrap->getCollisionShape()->getAabb(otherObjWrap->getWorldTransform(),aabbMin1,aabbMax1);
 | |
| 
 | |
| 				if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
 | |
| 				{
 | |
| 					m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
 | |
| 					m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
 | |
| 					m_childCollisionAlgorithms[i] = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btScalar	btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 	btAssert(0);
 | |
| 	//needs to be fixed, using btCollisionObjectWrapper and NOT modifying internal data structures
 | |
| 	btCollisionObject* colObj = m_isSwapped? body1 : body0;
 | |
| 	btCollisionObject* otherObj = m_isSwapped? body0 : body1;
 | |
| 
 | |
| 	btAssert (colObj->getCollisionShape()->isCompound());
 | |
| 	
 | |
| 	btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
 | |
| 
 | |
| 	//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
 | |
| 	//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
 | |
| 	//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
 | |
| 	//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
 | |
| 	//then use each overlapping node AABB against Tree0
 | |
| 	//and vise versa.
 | |
| 
 | |
| 	btScalar hitFraction = btScalar(1.);
 | |
| 
 | |
| 	int numChildren = m_childCollisionAlgorithms.size();
 | |
| 	int i;
 | |
|     btTransform	orgTrans;
 | |
|     btScalar frac;
 | |
| 	for (i=0;i<numChildren;i++)
 | |
| 	{
 | |
| 		//btCollisionShape* childShape = compoundShape->getChildShape(i);
 | |
| 
 | |
| 		//backup
 | |
|         orgTrans = colObj->getWorldTransform();
 | |
| 	
 | |
| 		const btTransform& childTrans = compoundShape->getChildTransform(i);
 | |
| 		//btTransform	newChildWorldTrans = orgTrans*childTrans ;
 | |
| 		colObj->setWorldTransform( orgTrans*childTrans );
 | |
| 
 | |
| 		//btCollisionShape* tmpShape = colObj->getCollisionShape();
 | |
| 		//colObj->internalSetTemporaryCollisionShape( childShape );
 | |
|         frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj,otherObj,dispatchInfo,resultOut);
 | |
| 		if (frac<hitFraction)
 | |
| 		{
 | |
| 			hitFraction = frac;
 | |
| 		}
 | |
| 		//revert back
 | |
| 		//colObj->internalSetTemporaryCollisionShape( tmpShape);
 | |
| 		colObj->setWorldTransform( orgTrans);
 | |
| 	}
 | |
| 	return hitFraction;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |