912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| ///btSoftBody implementation by Nathanael Presson
 | |
| 
 | |
| #ifndef _BT_SOFT_BODY_INTERNALS_H
 | |
| #define _BT_SOFT_BODY_INTERNALS_H
 | |
| 
 | |
| #include "btSoftBody.h"
 | |
| 
 | |
| 
 | |
| #include "LinearMath/btQuickprof.h"
 | |
| #include "LinearMath/btPolarDecomposition.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | |
| #include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
 | |
| #include <string.h> //for memset
 | |
| //
 | |
| // btSymMatrix
 | |
| //
 | |
| template <typename T>
 | |
| struct btSymMatrix
 | |
| {
 | |
| 	btSymMatrix() : dim(0)					{}
 | |
| 	btSymMatrix(int n,const T& init=T())	{ resize(n,init); }
 | |
| 	void					resize(int n,const T& init=T())			{ dim=n;store.resize((n*(n+1))/2,init); }
 | |
| 	int						index(int c,int r) const				{ if(c>r) btSwap(c,r);btAssert(r<dim);return((r*(r+1))/2+c); }
 | |
| 	T&						operator()(int c,int r)					{ return(store[index(c,r)]); }
 | |
| 	const T&				operator()(int c,int r) const			{ return(store[index(c,r)]); }
 | |
| 	btAlignedObjectArray<T>	store;
 | |
| 	int						dim;
 | |
| };	
 | |
| 
 | |
| //
 | |
| // btSoftBodyCollisionShape
 | |
| //
 | |
| class btSoftBodyCollisionShape : public btConcaveShape
 | |
| {
 | |
| public:
 | |
| 	btSoftBody*						m_body;
 | |
| 
 | |
| 	btSoftBodyCollisionShape(btSoftBody* backptr)
 | |
| 	{
 | |
| 		m_shapeType = SOFTBODY_SHAPE_PROXYTYPE;
 | |
| 		m_body=backptr;
 | |
| 	}
 | |
| 
 | |
| 	virtual ~btSoftBodyCollisionShape()
 | |
| 	{
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	void	processAllTriangles(btTriangleCallback* /*callback*/,const btVector3& /*aabbMin*/,const btVector3& /*aabbMax*/) const
 | |
| 	{
 | |
| 		//not yet
 | |
| 		btAssert(0);
 | |
| 	}
 | |
| 
 | |
| 	///getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
 | |
| 	virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
 | |
| 	{
 | |
| 		/* t is usually identity, except when colliding against btCompoundShape. See Issue 512 */
 | |
| 		const btVector3	mins=m_body->m_bounds[0];
 | |
| 		const btVector3	maxs=m_body->m_bounds[1];
 | |
| 		const btVector3	crns[]={t*btVector3(mins.x(),mins.y(),mins.z()),
 | |
| 			t*btVector3(maxs.x(),mins.y(),mins.z()),
 | |
| 			t*btVector3(maxs.x(),maxs.y(),mins.z()),
 | |
| 			t*btVector3(mins.x(),maxs.y(),mins.z()),
 | |
| 			t*btVector3(mins.x(),mins.y(),maxs.z()),
 | |
| 			t*btVector3(maxs.x(),mins.y(),maxs.z()),
 | |
| 			t*btVector3(maxs.x(),maxs.y(),maxs.z()),
 | |
| 			t*btVector3(mins.x(),maxs.y(),maxs.z())};
 | |
| 		aabbMin=aabbMax=crns[0];
 | |
| 		for(int i=1;i<8;++i)
 | |
| 		{
 | |
| 			aabbMin.setMin(crns[i]);
 | |
| 			aabbMax.setMax(crns[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	virtual void	setLocalScaling(const btVector3& /*scaling*/)
 | |
| 	{		
 | |
| 		///na
 | |
| 	}
 | |
| 	virtual const btVector3& getLocalScaling() const
 | |
| 	{
 | |
| 		static const btVector3 dummy(1,1,1);
 | |
| 		return dummy;
 | |
| 	}
 | |
| 	virtual void	calculateLocalInertia(btScalar /*mass*/,btVector3& /*inertia*/) const
 | |
| 	{
 | |
| 		///not yet
 | |
| 		btAssert(0);
 | |
| 	}
 | |
| 	virtual const char*	getName()const
 | |
| 	{
 | |
| 		return "SoftBody";
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| //
 | |
| // btSoftClusterCollisionShape
 | |
| //
 | |
| class btSoftClusterCollisionShape : public btConvexInternalShape
 | |
| {
 | |
| public:
 | |
| 	const btSoftBody::Cluster*	m_cluster;
 | |
| 
 | |
| 	btSoftClusterCollisionShape (const btSoftBody::Cluster* cluster) : m_cluster(cluster) { setMargin(0); }
 | |
| 
 | |
| 
 | |
| 	virtual btVector3	localGetSupportingVertex(const btVector3& vec) const
 | |
| 	{
 | |
| 		btSoftBody::Node* const *						n=&m_cluster->m_nodes[0];
 | |
| 		btScalar										d=btDot(vec,n[0]->m_x);
 | |
| 		int												j=0;
 | |
| 		for(int i=1,ni=m_cluster->m_nodes.size();i<ni;++i)
 | |
| 		{
 | |
| 			const btScalar	k=btDot(vec,n[i]->m_x);
 | |
| 			if(k>d) { d=k;j=i; }
 | |
| 		}
 | |
| 		return(n[j]->m_x);
 | |
| 	}
 | |
| 	virtual btVector3	localGetSupportingVertexWithoutMargin(const btVector3& vec)const
 | |
| 	{
 | |
| 		return(localGetSupportingVertex(vec));
 | |
| 	}
 | |
| 	//notice that the vectors should be unit length
 | |
| 	virtual void	batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
 | |
| 	{}
 | |
| 
 | |
| 
 | |
| 	virtual void	calculateLocalInertia(btScalar mass,btVector3& inertia) const
 | |
| 	{}
 | |
| 
 | |
| 	virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
 | |
| 	{}
 | |
| 
 | |
| 	virtual int	getShapeType() const { return SOFTBODY_SHAPE_PROXYTYPE; }
 | |
| 
 | |
| 	//debugging
 | |
| 	virtual const char*	getName()const {return "SOFTCLUSTER";}
 | |
| 
 | |
| 	virtual void	setMargin(btScalar margin)
 | |
| 	{
 | |
| 		btConvexInternalShape::setMargin(margin);
 | |
| 	}
 | |
| 	virtual btScalar	getMargin() const
 | |
| 	{
 | |
| 		return btConvexInternalShape::getMargin();
 | |
| 	}
 | |
| };
 | |
| 
 | |
| //
 | |
| // Inline's
 | |
| //
 | |
| 
 | |
| //
 | |
| template <typename T>
 | |
| static inline void			ZeroInitialize(T& value)
 | |
| {
 | |
| 	memset(&value,0,sizeof(T));
 | |
| }
 | |
| //
 | |
| template <typename T>
 | |
| static inline bool			CompLess(const T& a,const T& b)
 | |
| { return(a<b); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline bool			CompGreater(const T& a,const T& b)
 | |
| { return(a>b); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				Lerp(const T& a,const T& b,btScalar t)
 | |
| { return(a+(b-a)*t); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				InvLerp(const T& a,const T& b,btScalar t)
 | |
| { return((b+a*t-b*t)/(a*b)); }
 | |
| //
 | |
| static inline btMatrix3x3	Lerp(	const btMatrix3x3& a,
 | |
| 								 const btMatrix3x3& b,
 | |
| 								 btScalar t)
 | |
| {
 | |
| 	btMatrix3x3	r;
 | |
| 	r[0]=Lerp(a[0],b[0],t);
 | |
| 	r[1]=Lerp(a[1],b[1],t);
 | |
| 	r[2]=Lerp(a[2],b[2],t);
 | |
| 	return(r);
 | |
| }
 | |
| //
 | |
| static inline btVector3		Clamp(const btVector3& v,btScalar maxlength)
 | |
| {
 | |
| 	const btScalar sql=v.length2();
 | |
| 	if(sql>(maxlength*maxlength))
 | |
| 		return((v*maxlength)/btSqrt(sql));
 | |
| 	else
 | |
| 		return(v);
 | |
| }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				Clamp(const T& x,const T& l,const T& h)
 | |
| { return(x<l?l:x>h?h:x); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				Sq(const T& x)
 | |
| { return(x*x); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				Cube(const T& x)
 | |
| { return(x*x*x); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				Sign(const T& x)
 | |
| { return((T)(x<0?-1:+1)); }
 | |
| //
 | |
| template <typename T>
 | |
| static inline bool			SameSign(const T& x,const T& y)
 | |
| { return((x*y)>0); }
 | |
| //
 | |
| static inline btScalar		ClusterMetric(const btVector3& x,const btVector3& y)
 | |
| {
 | |
| 	const btVector3	d=x-y;
 | |
| 	return(btFabs(d[0])+btFabs(d[1])+btFabs(d[2]));
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	ScaleAlongAxis(const btVector3& a,btScalar s)
 | |
| {
 | |
| 	const btScalar	xx=a.x()*a.x();
 | |
| 	const btScalar	yy=a.y()*a.y();
 | |
| 	const btScalar	zz=a.z()*a.z();
 | |
| 	const btScalar	xy=a.x()*a.y();
 | |
| 	const btScalar	yz=a.y()*a.z();
 | |
| 	const btScalar	zx=a.z()*a.x();
 | |
| 	btMatrix3x3		m;
 | |
| 	m[0]=btVector3(1-xx+xx*s,xy*s-xy,zx*s-zx);
 | |
| 	m[1]=btVector3(xy*s-xy,1-yy+yy*s,yz*s-yz);
 | |
| 	m[2]=btVector3(zx*s-zx,yz*s-yz,1-zz+zz*s);
 | |
| 	return(m);
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	Cross(const btVector3& v)
 | |
| {
 | |
| 	btMatrix3x3	m;
 | |
| 	m[0]=btVector3(0,-v.z(),+v.y());
 | |
| 	m[1]=btVector3(+v.z(),0,-v.x());
 | |
| 	m[2]=btVector3(-v.y(),+v.x(),0);
 | |
| 	return(m);
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	Diagonal(btScalar x)
 | |
| {
 | |
| 	btMatrix3x3	m;
 | |
| 	m[0]=btVector3(x,0,0);
 | |
| 	m[1]=btVector3(0,x,0);
 | |
| 	m[2]=btVector3(0,0,x);
 | |
| 	return(m);
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	Add(const btMatrix3x3& a,
 | |
| 								const btMatrix3x3& b)
 | |
| {
 | |
| 	btMatrix3x3	r;
 | |
| 	for(int i=0;i<3;++i) r[i]=a[i]+b[i];
 | |
| 	return(r);
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	Sub(const btMatrix3x3& a,
 | |
| 								const btMatrix3x3& b)
 | |
| {
 | |
| 	btMatrix3x3	r;
 | |
| 	for(int i=0;i<3;++i) r[i]=a[i]-b[i];
 | |
| 	return(r);
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	Mul(const btMatrix3x3& a,
 | |
| 								btScalar b)
 | |
| {
 | |
| 	btMatrix3x3	r;
 | |
| 	for(int i=0;i<3;++i) r[i]=a[i]*b;
 | |
| 	return(r);
 | |
| }
 | |
| //
 | |
| static inline void			Orthogonalize(btMatrix3x3& m)
 | |
| {
 | |
| 	m[2]=btCross(m[0],m[1]).normalized();
 | |
| 	m[1]=btCross(m[2],m[0]).normalized();
 | |
| 	m[0]=btCross(m[1],m[2]).normalized();
 | |
| }
 | |
| //
 | |
| static inline btMatrix3x3	MassMatrix(btScalar im,const btMatrix3x3& iwi,const btVector3& r)
 | |
| {
 | |
| 	const btMatrix3x3	cr=Cross(r);
 | |
| 	return(Sub(Diagonal(im),cr*iwi*cr));
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btMatrix3x3	ImpulseMatrix(	btScalar dt,
 | |
| 										  btScalar ima,
 | |
| 										  btScalar imb,
 | |
| 										  const btMatrix3x3& iwi,
 | |
| 										  const btVector3& r)
 | |
| {
 | |
| 	return(Diagonal(1/dt)*Add(Diagonal(ima),MassMatrix(imb,iwi,r)).inverse());
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btMatrix3x3	ImpulseMatrix(	btScalar ima,const btMatrix3x3& iia,const btVector3& ra,
 | |
| 										  btScalar imb,const btMatrix3x3& iib,const btVector3& rb)	
 | |
| {
 | |
| 	return(Add(MassMatrix(ima,iia,ra),MassMatrix(imb,iib,rb)).inverse());
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btMatrix3x3	AngularImpulseMatrix(	const btMatrix3x3& iia,
 | |
| 												 const btMatrix3x3& iib)
 | |
| {
 | |
| 	return(Add(iia,iib).inverse());
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btVector3		ProjectOnAxis(	const btVector3& v,
 | |
| 										  const btVector3& a)
 | |
| {
 | |
| 	return(a*btDot(v,a));
 | |
| }
 | |
| //
 | |
| static inline btVector3		ProjectOnPlane(	const btVector3& v,
 | |
| 										   const btVector3& a)
 | |
| {
 | |
| 	return(v-ProjectOnAxis(v,a));
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline void			ProjectOrigin(	const btVector3& a,
 | |
| 										  const btVector3& b,
 | |
| 										  btVector3& prj,
 | |
| 										  btScalar& sqd)
 | |
| {
 | |
| 	const btVector3	d=b-a;
 | |
| 	const btScalar	m2=d.length2();
 | |
| 	if(m2>SIMD_EPSILON)
 | |
| 	{	
 | |
| 		const btScalar	t=Clamp<btScalar>(-btDot(a,d)/m2,0,1);
 | |
| 		const btVector3	p=a+d*t;
 | |
| 		const btScalar	l2=p.length2();
 | |
| 		if(l2<sqd)
 | |
| 		{
 | |
| 			prj=p;
 | |
| 			sqd=l2;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| //
 | |
| static inline void			ProjectOrigin(	const btVector3& a,
 | |
| 										  const btVector3& b,
 | |
| 										  const btVector3& c,
 | |
| 										  btVector3& prj,
 | |
| 										  btScalar& sqd)
 | |
| {
 | |
| 	const btVector3&	q=btCross(b-a,c-a);
 | |
| 	const btScalar		m2=q.length2();
 | |
| 	if(m2>SIMD_EPSILON)
 | |
| 	{
 | |
| 		const btVector3	n=q/btSqrt(m2);
 | |
| 		const btScalar	k=btDot(a,n);
 | |
| 		const btScalar	k2=k*k;
 | |
| 		if(k2<sqd)
 | |
| 		{
 | |
| 			const btVector3	p=n*k;
 | |
| 			if(	(btDot(btCross(a-p,b-p),q)>0)&&
 | |
| 				(btDot(btCross(b-p,c-p),q)>0)&&
 | |
| 				(btDot(btCross(c-p,a-p),q)>0))
 | |
| 			{			
 | |
| 				prj=p;
 | |
| 				sqd=k2;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				ProjectOrigin(a,b,prj,sqd);
 | |
| 				ProjectOrigin(b,c,prj,sqd);
 | |
| 				ProjectOrigin(c,a,prj,sqd);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| template <typename T>
 | |
| static inline T				BaryEval(		const T& a,
 | |
| 									 const T& b,
 | |
| 									 const T& c,
 | |
| 									 const btVector3& coord)
 | |
| {
 | |
| 	return(a*coord.x()+b*coord.y()+c*coord.z());
 | |
| }
 | |
| //
 | |
| static inline btVector3		BaryCoord(	const btVector3& a,
 | |
| 									  const btVector3& b,
 | |
| 									  const btVector3& c,
 | |
| 									  const btVector3& p)
 | |
| {
 | |
| 	const btScalar	w[]={	btCross(a-p,b-p).length(),
 | |
| 		btCross(b-p,c-p).length(),
 | |
| 		btCross(c-p,a-p).length()};
 | |
| 	const btScalar	isum=1/(w[0]+w[1]+w[2]);
 | |
| 	return(btVector3(w[1]*isum,w[2]*isum,w[0]*isum));
 | |
| }
 | |
| 
 | |
| //
 | |
| inline static btScalar				ImplicitSolve(	btSoftBody::ImplicitFn* fn,
 | |
| 										  const btVector3& a,
 | |
| 										  const btVector3& b,
 | |
| 										  const btScalar accuracy,
 | |
| 										  const int maxiterations=256)
 | |
| {
 | |
| 	btScalar	span[2]={0,1};
 | |
| 	btScalar	values[2]={fn->Eval(a),fn->Eval(b)};
 | |
| 	if(values[0]>values[1])
 | |
| 	{
 | |
| 		btSwap(span[0],span[1]);
 | |
| 		btSwap(values[0],values[1]);
 | |
| 	}
 | |
| 	if(values[0]>-accuracy) return(-1);
 | |
| 	if(values[1]<+accuracy) return(-1);
 | |
| 	for(int i=0;i<maxiterations;++i)
 | |
| 	{
 | |
| 		const btScalar	t=Lerp(span[0],span[1],values[0]/(values[0]-values[1]));
 | |
| 		const btScalar	v=fn->Eval(Lerp(a,b,t));
 | |
| 		if((t<=0)||(t>=1))		break;
 | |
| 		if(btFabs(v)<accuracy)	return(t);
 | |
| 		if(v<0)
 | |
| 		{ span[0]=t;values[0]=v; }
 | |
| 		else
 | |
| 		{ span[1]=t;values[1]=v; }
 | |
| 	}
 | |
| 	return(-1);
 | |
| }
 | |
| 
 | |
| inline static void					EvaluateMedium(	const btSoftBodyWorldInfo* wfi,
 | |
| 										   const btVector3& x,
 | |
| 										   btSoftBody::sMedium& medium)
 | |
| {
 | |
| 	medium.m_velocity	=	btVector3(0,0,0);
 | |
| 	medium.m_pressure	=	0;
 | |
| 	medium.m_density	=	wfi->air_density;
 | |
| 	if(wfi->water_density>0)
 | |
| 	{
 | |
| 		const btScalar	depth=-(btDot(x,wfi->water_normal)+wfi->water_offset);
 | |
| 		if(depth>0)
 | |
| 		{
 | |
| 			medium.m_density	=	wfi->water_density;
 | |
| 			medium.m_pressure	=	depth*wfi->water_density*wfi->m_gravity.length();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| static inline btVector3		NormalizeAny(const btVector3& v)
 | |
| {
 | |
| 	const btScalar l=v.length();
 | |
| 	if(l>SIMD_EPSILON)
 | |
| 		return(v/l);
 | |
| 	else
 | |
| 		return(btVector3(0,0,0));
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btDbvtVolume	VolumeOf(	const btSoftBody::Face& f,
 | |
| 									 btScalar margin)
 | |
| {
 | |
| 	const btVector3*	pts[]={	&f.m_n[0]->m_x,
 | |
| 		&f.m_n[1]->m_x,
 | |
| 		&f.m_n[2]->m_x};
 | |
| 	btDbvtVolume		vol=btDbvtVolume::FromPoints(pts,3);
 | |
| 	vol.Expand(btVector3(margin,margin,margin));
 | |
| 	return(vol);
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btVector3			CenterOf(	const btSoftBody::Face& f)
 | |
| {
 | |
| 	return((f.m_n[0]->m_x+f.m_n[1]->m_x+f.m_n[2]->m_x)/3);
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btScalar			AreaOf(		const btVector3& x0,
 | |
| 									   const btVector3& x1,
 | |
| 									   const btVector3& x2)
 | |
| {
 | |
| 	const btVector3	a=x1-x0;
 | |
| 	const btVector3	b=x2-x0;
 | |
| 	const btVector3	cr=btCross(a,b);
 | |
| 	const btScalar	area=cr.length();
 | |
| 	return(area);
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline btScalar		VolumeOf(	const btVector3& x0,
 | |
| 									 const btVector3& x1,
 | |
| 									 const btVector3& x2,
 | |
| 									 const btVector3& x3)
 | |
| {
 | |
| 	const btVector3	a=x1-x0;
 | |
| 	const btVector3	b=x2-x0;
 | |
| 	const btVector3	c=x3-x0;
 | |
| 	return(btDot(a,btCross(b,c)));
 | |
| }
 | |
| 
 | |
| //
 | |
| 
 | |
| 
 | |
| //
 | |
| static inline void			ApplyClampedForce(	btSoftBody::Node& n,
 | |
| 											  const btVector3& f,
 | |
| 											  btScalar dt)
 | |
| {
 | |
| 	const btScalar	dtim=dt*n.m_im;
 | |
| 	if((f*dtim).length2()>n.m_v.length2())
 | |
| 	{/* Clamp	*/ 
 | |
| 		n.m_f-=ProjectOnAxis(n.m_v,f.normalized())/dtim;						
 | |
| 	}
 | |
| 	else
 | |
| 	{/* Apply	*/ 
 | |
| 		n.m_f+=f;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| static inline int		MatchEdge(	const btSoftBody::Node* a,
 | |
| 								  const btSoftBody::Node* b,
 | |
| 								  const btSoftBody::Node* ma,
 | |
| 								  const btSoftBody::Node* mb)
 | |
| {
 | |
| 	if((a==ma)&&(b==mb)) return(0);
 | |
| 	if((a==mb)&&(b==ma)) return(1);
 | |
| 	return(-1);
 | |
| }
 | |
| 
 | |
| //
 | |
| // btEigen : Extract eigen system,
 | |
| // straitforward implementation of http://math.fullerton.edu/mathews/n2003/JacobiMethodMod.html
 | |
| // outputs are NOT sorted.
 | |
| //
 | |
| struct	btEigen
 | |
| {
 | |
| 	static int			system(btMatrix3x3& a,btMatrix3x3* vectors,btVector3* values=0)
 | |
| 	{
 | |
| 		static const int		maxiterations=16;
 | |
| 		static const btScalar	accuracy=(btScalar)0.0001;
 | |
| 		btMatrix3x3&			v=*vectors;
 | |
| 		int						iterations=0;
 | |
| 		vectors->setIdentity();
 | |
| 		do	{
 | |
| 			int				p=0,q=1;
 | |
| 			if(btFabs(a[p][q])<btFabs(a[0][2])) { p=0;q=2; }
 | |
| 			if(btFabs(a[p][q])<btFabs(a[1][2])) { p=1;q=2; }
 | |
| 			if(btFabs(a[p][q])>accuracy)
 | |
| 			{
 | |
| 				const btScalar	w=(a[q][q]-a[p][p])/(2*a[p][q]);
 | |
| 				const btScalar	z=btFabs(w);
 | |
| 				const btScalar	t=w/(z*(btSqrt(1+w*w)+z));
 | |
| 				if(t==t)/* [WARNING] let hope that one does not get thrown aways by some compilers... */ 
 | |
| 				{
 | |
| 					const btScalar	c=1/btSqrt(t*t+1);
 | |
| 					const btScalar	s=c*t;
 | |
| 					mulPQ(a,c,s,p,q);
 | |
| 					mulTPQ(a,c,s,p,q);
 | |
| 					mulPQ(v,c,s,p,q);
 | |
| 				} else break;
 | |
| 			} else break;
 | |
| 		} while((++iterations)<maxiterations);
 | |
| 		if(values)
 | |
| 		{
 | |
| 			*values=btVector3(a[0][0],a[1][1],a[2][2]);
 | |
| 		}
 | |
| 		return(iterations);
 | |
| 	}
 | |
| private:
 | |
| 	static inline void	mulTPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
 | |
| 	{
 | |
| 		const btScalar	m[2][3]={	{a[p][0],a[p][1],a[p][2]},
 | |
| 		{a[q][0],a[q][1],a[q][2]}};
 | |
| 		int i;
 | |
| 
 | |
| 		for(i=0;i<3;++i) a[p][i]=c*m[0][i]-s*m[1][i];
 | |
| 		for(i=0;i<3;++i) a[q][i]=c*m[1][i]+s*m[0][i];
 | |
| 	}
 | |
| 	static inline void	mulPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
 | |
| 	{
 | |
| 		const btScalar	m[2][3]={	{a[0][p],a[1][p],a[2][p]},
 | |
| 		{a[0][q],a[1][q],a[2][q]}};
 | |
| 		int i;
 | |
| 
 | |
| 		for(i=0;i<3;++i) a[i][p]=c*m[0][i]-s*m[1][i];
 | |
| 		for(i=0;i<3;++i) a[i][q]=c*m[1][i]+s*m[0][i];
 | |
| 	}
 | |
| };
 | |
| 
 | |
| //
 | |
| // Polar decomposition,
 | |
| // "Computing the Polar Decomposition with Applications", Nicholas J. Higham, 1986.
 | |
| //
 | |
| static inline int			PolarDecompose(	const btMatrix3x3& m,btMatrix3x3& q,btMatrix3x3& s)
 | |
| {
 | |
| 	static const btPolarDecomposition polar;  
 | |
| 	return polar.decompose(m, q, s);
 | |
| }
 | |
| 
 | |
| //
 | |
| // btSoftColliders
 | |
| //
 | |
| struct btSoftColliders
 | |
| {
 | |
| 	//
 | |
| 	// ClusterBase
 | |
| 	//
 | |
| 	struct	ClusterBase : btDbvt::ICollide
 | |
| 	{
 | |
| 		btScalar			erp;
 | |
| 		btScalar			idt;
 | |
| 		btScalar			m_margin;
 | |
| 		btScalar			friction;
 | |
| 		btScalar			threshold;
 | |
| 		ClusterBase()
 | |
| 		{
 | |
| 			erp			=(btScalar)1;
 | |
| 			idt			=0;
 | |
| 			m_margin		=0;
 | |
| 			friction	=0;
 | |
| 			threshold	=(btScalar)0;
 | |
| 		}
 | |
| 		bool				SolveContact(	const btGjkEpaSolver2::sResults& res,
 | |
| 			btSoftBody::Body ba,const btSoftBody::Body bb,
 | |
| 			btSoftBody::CJoint& joint)
 | |
| 		{
 | |
| 			if(res.distance<m_margin)
 | |
| 			{
 | |
| 				btVector3 norm = res.normal;
 | |
| 				norm.normalize();//is it necessary?
 | |
| 
 | |
| 				const btVector3		ra=res.witnesses[0]-ba.xform().getOrigin();
 | |
| 				const btVector3		rb=res.witnesses[1]-bb.xform().getOrigin();
 | |
| 				const btVector3		va=ba.velocity(ra);
 | |
| 				const btVector3		vb=bb.velocity(rb);
 | |
| 				const btVector3		vrel=va-vb;
 | |
| 				const btScalar		rvac=btDot(vrel,norm);
 | |
| 				 btScalar		depth=res.distance-m_margin;
 | |
| 				
 | |
| //				printf("depth=%f\n",depth);
 | |
| 				const btVector3		iv=norm*rvac;
 | |
| 				const btVector3		fv=vrel-iv;
 | |
| 				joint.m_bodies[0]	=	ba;
 | |
| 				joint.m_bodies[1]	=	bb;
 | |
| 				joint.m_refs[0]		=	ra*ba.xform().getBasis();
 | |
| 				joint.m_refs[1]		=	rb*bb.xform().getBasis();
 | |
| 				joint.m_rpos[0]		=	ra;
 | |
| 				joint.m_rpos[1]		=	rb;
 | |
| 				joint.m_cfm			=	1;
 | |
| 				joint.m_erp			=	1;
 | |
| 				joint.m_life		=	0;
 | |
| 				joint.m_maxlife		=	0;
 | |
| 				joint.m_split		=	1;
 | |
| 				
 | |
| 				joint.m_drift		=	depth*norm;
 | |
| 
 | |
| 				joint.m_normal		=	norm;
 | |
| //				printf("normal=%f,%f,%f\n",res.normal.getX(),res.normal.getY(),res.normal.getZ());
 | |
| 				joint.m_delete		=	false;
 | |
| 				joint.m_friction	=	fv.length2()<(rvac*friction*rvac*friction)?1:friction;
 | |
| 				joint.m_massmatrix	=	ImpulseMatrix(	ba.invMass(),ba.invWorldInertia(),joint.m_rpos[0],
 | |
| 					bb.invMass(),bb.invWorldInertia(),joint.m_rpos[1]);
 | |
| 
 | |
| 				return(true);
 | |
| 			}
 | |
| 			return(false);
 | |
| 		}
 | |
| 	};
 | |
| 	//
 | |
| 	// CollideCL_RS
 | |
| 	//
 | |
| 	struct	CollideCL_RS : ClusterBase
 | |
| 	{
 | |
| 		btSoftBody*		psb;
 | |
| 		const btCollisionObjectWrapper*	m_colObjWrap;
 | |
| 
 | |
| 		void		Process(const btDbvtNode* leaf)
 | |
| 		{
 | |
| 			btSoftBody::Cluster*		cluster=(btSoftBody::Cluster*)leaf->data;
 | |
| 			btSoftClusterCollisionShape	cshape(cluster);
 | |
| 			
 | |
| 			const btConvexShape*		rshape=(const btConvexShape*)m_colObjWrap->getCollisionShape();
 | |
| 
 | |
| 			///don't collide an anchored cluster with a static/kinematic object
 | |
| 			if(m_colObjWrap->getCollisionObject()->isStaticOrKinematicObject() && cluster->m_containsAnchor)
 | |
| 				return;
 | |
| 
 | |
| 			btGjkEpaSolver2::sResults	res;		
 | |
| 			if(btGjkEpaSolver2::SignedDistance(	&cshape,btTransform::getIdentity(),
 | |
| 				rshape,m_colObjWrap->getWorldTransform(),
 | |
| 				btVector3(1,0,0),res))
 | |
| 			{
 | |
| 				btSoftBody::CJoint	joint;
 | |
| 				if(SolveContact(res,cluster,m_colObjWrap->getCollisionObject(),joint))//prb,joint))
 | |
| 				{
 | |
| 					btSoftBody::CJoint*	pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
 | |
| 					*pj=joint;psb->m_joints.push_back(pj);
 | |
| 					if(m_colObjWrap->getCollisionObject()->isStaticOrKinematicObject())
 | |
| 					{
 | |
| 						pj->m_erp	*=	psb->m_cfg.kSKHR_CL;
 | |
| 						pj->m_split	*=	psb->m_cfg.kSK_SPLT_CL;
 | |
| 					}
 | |
| 					else
 | |
| 					{
 | |
| 						pj->m_erp	*=	psb->m_cfg.kSRHR_CL;
 | |
| 						pj->m_split	*=	psb->m_cfg.kSR_SPLT_CL;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		void		ProcessColObj(btSoftBody* ps,const btCollisionObjectWrapper* colObWrap)
 | |
| 		{
 | |
| 			psb			=	ps;
 | |
| 			m_colObjWrap			=	colObWrap;
 | |
| 			idt			=	ps->m_sst.isdt;
 | |
| 			m_margin		=	m_colObjWrap->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin();
 | |
| 			///Bullet rigid body uses multiply instead of minimum to determine combined friction. Some customization would be useful.
 | |
| 			friction	=	btMin(psb->m_cfg.kDF,m_colObjWrap->getCollisionObject()->getFriction());
 | |
| 			btVector3			mins;
 | |
| 			btVector3			maxs;
 | |
| 
 | |
| 			ATTRIBUTE_ALIGNED16(btDbvtVolume)		volume;
 | |
| 			colObWrap->getCollisionShape()->getAabb(colObWrap->getWorldTransform(),mins,maxs);
 | |
| 			volume=btDbvtVolume::FromMM(mins,maxs);
 | |
| 			volume.Expand(btVector3(1,1,1)*m_margin);
 | |
| 			ps->m_cdbvt.collideTV(ps->m_cdbvt.m_root,volume,*this);
 | |
| 		}	
 | |
| 	};
 | |
| 	//
 | |
| 	// CollideCL_SS
 | |
| 	//
 | |
| 	struct	CollideCL_SS : ClusterBase
 | |
| 	{
 | |
| 		btSoftBody*	bodies[2];
 | |
| 		void		Process(const btDbvtNode* la,const btDbvtNode* lb)
 | |
| 		{
 | |
| 			btSoftBody::Cluster*		cla=(btSoftBody::Cluster*)la->data;
 | |
| 			btSoftBody::Cluster*		clb=(btSoftBody::Cluster*)lb->data;
 | |
| 
 | |
| 
 | |
| 			bool connected=false;
 | |
| 			if ((bodies[0]==bodies[1])&&(bodies[0]->m_clusterConnectivity.size()))
 | |
| 			{
 | |
| 				connected = bodies[0]->m_clusterConnectivity[cla->m_clusterIndex+bodies[0]->m_clusters.size()*clb->m_clusterIndex];
 | |
| 			}
 | |
| 
 | |
| 			if (!connected)
 | |
| 			{
 | |
| 				btSoftClusterCollisionShape	csa(cla);
 | |
| 				btSoftClusterCollisionShape	csb(clb);
 | |
| 				btGjkEpaSolver2::sResults	res;		
 | |
| 				if(btGjkEpaSolver2::SignedDistance(	&csa,btTransform::getIdentity(),
 | |
| 					&csb,btTransform::getIdentity(),
 | |
| 					cla->m_com-clb->m_com,res))
 | |
| 				{
 | |
| 					btSoftBody::CJoint	joint;
 | |
| 					if(SolveContact(res,cla,clb,joint))
 | |
| 					{
 | |
| 						btSoftBody::CJoint*	pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
 | |
| 						*pj=joint;bodies[0]->m_joints.push_back(pj);
 | |
| 						pj->m_erp	*=	btMax(bodies[0]->m_cfg.kSSHR_CL,bodies[1]->m_cfg.kSSHR_CL);
 | |
| 						pj->m_split	*=	(bodies[0]->m_cfg.kSS_SPLT_CL+bodies[1]->m_cfg.kSS_SPLT_CL)/2;
 | |
| 					}
 | |
| 				}
 | |
| 			} else
 | |
| 			{
 | |
| 				static int count=0;
 | |
| 				count++;
 | |
| 				//printf("count=%d\n",count);
 | |
| 				
 | |
| 			}
 | |
| 		}
 | |
| 		void		ProcessSoftSoft(btSoftBody* psa,btSoftBody* psb)
 | |
| 		{
 | |
| 			idt			=	psa->m_sst.isdt;
 | |
| 			//m_margin		=	(psa->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin())/2;
 | |
| 			m_margin		=	(psa->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin());
 | |
| 			friction	=	btMin(psa->m_cfg.kDF,psb->m_cfg.kDF);
 | |
| 			bodies[0]	=	psa;
 | |
| 			bodies[1]	=	psb;
 | |
| 			psa->m_cdbvt.collideTT(psa->m_cdbvt.m_root,psb->m_cdbvt.m_root,*this);
 | |
| 		}	
 | |
| 	};
 | |
| 	//
 | |
| 	// CollideSDF_RS
 | |
| 	//
 | |
| 	struct	CollideSDF_RS : btDbvt::ICollide
 | |
| 	{
 | |
| 		void		Process(const btDbvtNode* leaf)
 | |
| 		{
 | |
| 			btSoftBody::Node*	node=(btSoftBody::Node*)leaf->data;
 | |
| 			DoNode(*node);
 | |
| 		}
 | |
| 		void		DoNode(btSoftBody::Node& n) const
 | |
| 		{
 | |
| 			const btScalar			m=n.m_im>0?dynmargin:stamargin;
 | |
| 			btSoftBody::RContact	c;
 | |
| 
 | |
| 			if(	(!n.m_battach)&&
 | |
| 				psb->checkContact(m_colObj1Wrap,n.m_x,m,c.m_cti))
 | |
| 			{
 | |
| 				const btScalar	ima=n.m_im;
 | |
| 				const btScalar	imb= m_rigidBody? m_rigidBody->getInvMass() : 0.f;
 | |
| 				const btScalar	ms=ima+imb;
 | |
| 				if(ms>0)
 | |
| 				{
 | |
| 					const btTransform&	wtr=m_rigidBody?m_rigidBody->getWorldTransform() : m_colObj1Wrap->getCollisionObject()->getWorldTransform();
 | |
| 					static const btMatrix3x3	iwiStatic(0,0,0,0,0,0,0,0,0);
 | |
| 					const btMatrix3x3&	iwi=m_rigidBody?m_rigidBody->getInvInertiaTensorWorld() : iwiStatic;
 | |
| 					const btVector3		ra=n.m_x-wtr.getOrigin();
 | |
| 					const btVector3		va=m_rigidBody ? m_rigidBody->getVelocityInLocalPoint(ra)*psb->m_sst.sdt : btVector3(0,0,0);
 | |
| 					const btVector3		vb=n.m_x-n.m_q;	
 | |
| 					const btVector3		vr=vb-va;
 | |
| 					const btScalar		dn=btDot(vr,c.m_cti.m_normal);
 | |
| 					const btVector3		fv=vr-c.m_cti.m_normal*dn;
 | |
| 					const btScalar		fc=psb->m_cfg.kDF*m_colObj1Wrap->getCollisionObject()->getFriction();
 | |
| 					c.m_node	=	&n;
 | |
| 					c.m_c0		=	ImpulseMatrix(psb->m_sst.sdt,ima,imb,iwi,ra);
 | |
| 					c.m_c1		=	ra;
 | |
| 					c.m_c2		=	ima*psb->m_sst.sdt;
 | |
| 			        c.m_c3		=	fv.length2()<(dn*fc*dn*fc)?0:1-fc;
 | |
| 					c.m_c4		=	m_colObj1Wrap->getCollisionObject()->isStaticOrKinematicObject()?psb->m_cfg.kKHR:psb->m_cfg.kCHR;
 | |
| 					psb->m_rcontacts.push_back(c);
 | |
| 					if (m_rigidBody)
 | |
| 						m_rigidBody->activate();
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		btSoftBody*		psb;
 | |
| 		const btCollisionObjectWrapper*	m_colObj1Wrap;
 | |
| 		btRigidBody*	m_rigidBody;
 | |
| 		btScalar		dynmargin;
 | |
| 		btScalar		stamargin;
 | |
| 	};
 | |
| 	//
 | |
| 	// CollideVF_SS
 | |
| 	//
 | |
| 	struct	CollideVF_SS : btDbvt::ICollide
 | |
| 	{
 | |
| 		void		Process(const btDbvtNode* lnode,
 | |
| 			const btDbvtNode* lface)
 | |
| 		{
 | |
| 			btSoftBody::Node*	node=(btSoftBody::Node*)lnode->data;
 | |
| 			btSoftBody::Face*	face=(btSoftBody::Face*)lface->data;
 | |
| 			btVector3			o=node->m_x;
 | |
| 			btVector3			p;
 | |
| 			btScalar			d=SIMD_INFINITY;
 | |
| 			ProjectOrigin(	face->m_n[0]->m_x-o,
 | |
| 				face->m_n[1]->m_x-o,
 | |
| 				face->m_n[2]->m_x-o,
 | |
| 				p,d);
 | |
| 			const btScalar	m=mrg+(o-node->m_q).length()*2;
 | |
| 			if(d<(m*m))
 | |
| 			{
 | |
| 				const btSoftBody::Node*	n[]={face->m_n[0],face->m_n[1],face->m_n[2]};
 | |
| 				const btVector3			w=BaryCoord(n[0]->m_x,n[1]->m_x,n[2]->m_x,p+o);
 | |
| 				const btScalar			ma=node->m_im;
 | |
| 				btScalar				mb=BaryEval(n[0]->m_im,n[1]->m_im,n[2]->m_im,w);
 | |
| 				if(	(n[0]->m_im<=0)||
 | |
| 					(n[1]->m_im<=0)||
 | |
| 					(n[2]->m_im<=0))
 | |
| 				{
 | |
| 					mb=0;
 | |
| 				}
 | |
| 				const btScalar	ms=ma+mb;
 | |
| 				if(ms>0)
 | |
| 				{
 | |
| 					btSoftBody::SContact	c;
 | |
| 					c.m_normal		=	p/-btSqrt(d);
 | |
| 					c.m_margin		=	m;
 | |
| 					c.m_node		=	node;
 | |
| 					c.m_face		=	face;
 | |
| 					c.m_weights		=	w;
 | |
| 					c.m_friction	=	btMax(psb[0]->m_cfg.kDF,psb[1]->m_cfg.kDF);
 | |
| 					c.m_cfm[0]		=	ma/ms*psb[0]->m_cfg.kSHR;
 | |
| 					c.m_cfm[1]		=	mb/ms*psb[1]->m_cfg.kSHR;
 | |
| 					psb[0]->m_scontacts.push_back(c);
 | |
| 				}
 | |
| 			}	
 | |
| 		}
 | |
| 		btSoftBody*		psb[2];
 | |
| 		btScalar		mrg;
 | |
| 	};
 | |
| };
 | |
| 
 | |
| #endif //_BT_SOFT_BODY_INTERNALS_H
 |