5521 lines
		
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5521 lines
		
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Ogg Vorbis audio decoder - v1.17 - public domain
 | |
| // http://nothings.org/stb_vorbis/
 | |
| //
 | |
| // Original version written by Sean Barrett in 2007.
 | |
| //
 | |
| // Originally sponsored by RAD Game Tools. Seeking implementation
 | |
| // sponsored by Phillip Bennefall, Marc Andersen, Aaron Baker,
 | |
| // Elias Software, Aras Pranckevicius, and Sean Barrett.
 | |
| //
 | |
| // LICENSE
 | |
| //
 | |
| //   See end of file for license information.
 | |
| //
 | |
| // Limitations:
 | |
| //
 | |
| //   - floor 0 not supported (used in old ogg vorbis files pre-2004)
 | |
| //   - lossless sample-truncation at beginning ignored
 | |
| //   - cannot concatenate multiple vorbis streams
 | |
| //   - sample positions are 32-bit, limiting seekable 192Khz
 | |
| //       files to around 6 hours (Ogg supports 64-bit)
 | |
| //
 | |
| // Feature contributors:
 | |
| //    Dougall Johnson (sample-exact seeking)
 | |
| //
 | |
| // Bugfix/warning contributors:
 | |
| //    Terje Mathisen     Niklas Frykholm     Andy Hill
 | |
| //    Casey Muratori     John Bolton         Gargaj
 | |
| //    Laurent Gomila     Marc LeBlanc        Ronny Chevalier
 | |
| //    Bernhard Wodo      Evan Balster        alxprd@github
 | |
| //    Tom Beaumont       Ingo Leitgeb        Nicolas Guillemot
 | |
| //    Phillip Bennefall  Rohit               Thiago Goulart
 | |
| //    manxorist@github   saga musix          github:infatum
 | |
| //    Timur Gagiev       Maxwell Koo
 | |
| //
 | |
| // Partial history:
 | |
| //    1.17    - 2019-07-08 - fix CVE-2019-13217..CVE-2019-13223 (by ForAllSecure)
 | |
| //    1.16    - 2019-03-04 - fix warnings
 | |
| //    1.15    - 2019-02-07 - explicit failure if Ogg Skeleton data is found
 | |
| //    1.14    - 2018-02-11 - delete bogus dealloca usage
 | |
| //    1.13    - 2018-01-29 - fix truncation of last frame (hopefully)
 | |
| //    1.12    - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files
 | |
| //    1.11    - 2017-07-23 - fix MinGW compilation 
 | |
| //    1.10    - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory
 | |
| //    1.09    - 2016-04-04 - back out 'truncation of last frame' fix from previous version
 | |
| //    1.08    - 2016-04-02 - warnings; setup memory leaks; truncation of last frame
 | |
| //    1.07    - 2015-01-16 - fixes for crashes on invalid files; warning fixes; const
 | |
| //    1.06    - 2015-08-31 - full, correct support for seeking API (Dougall Johnson)
 | |
| //                           some crash fixes when out of memory or with corrupt files
 | |
| //                           fix some inappropriately signed shifts
 | |
| //    1.05    - 2015-04-19 - don't define __forceinline if it's redundant
 | |
| //    1.04    - 2014-08-27 - fix missing const-correct case in API
 | |
| //    1.03    - 2014-08-07 - warning fixes
 | |
| //    1.02    - 2014-07-09 - declare qsort comparison as explicitly _cdecl in Windows
 | |
| //    1.01    - 2014-06-18 - fix stb_vorbis_get_samples_float (interleaved was correct)
 | |
| //    1.0     - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in >2-channel;
 | |
| //                           (API change) report sample rate for decode-full-file funcs
 | |
| //
 | |
| // See end of file for full version history.
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  HEADER BEGINS HERE
 | |
| //
 | |
| 
 | |
| #ifndef STB_VORBIS_INCLUDE_STB_VORBIS_H
 | |
| #define STB_VORBIS_INCLUDE_STB_VORBIS_H
 | |
| 
 | |
| #define STB_VORBIS_NO_STDIO
 | |
| 
 | |
| #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO)
 | |
| #define STB_VORBIS_NO_STDIO 1
 | |
| #endif
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
| #include <stdio.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic ignored "-Wcomma"
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| ///////////   THREAD SAFETY
 | |
| 
 | |
| // Individual stb_vorbis* handles are not thread-safe; you cannot decode from
 | |
| // them from multiple threads at the same time. However, you can have multiple
 | |
| // stb_vorbis* handles and decode from them independently in multiple thrads.
 | |
| 
 | |
| 
 | |
| ///////////   MEMORY ALLOCATION
 | |
| 
 | |
| // normally stb_vorbis uses malloc() to allocate memory at startup,
 | |
| // and alloca() to allocate temporary memory during a frame on the
 | |
| // stack. (Memory consumption will depend on the amount of setup
 | |
| // data in the file and how you set the compile flags for speed
 | |
| // vs. size. In my test files the maximal-size usage is ~150KB.)
 | |
| //
 | |
| // You can modify the wrapper functions in the source (setup_malloc,
 | |
| // setup_temp_malloc, temp_malloc) to change this behavior, or you
 | |
| // can use a simpler allocation model: you pass in a buffer from
 | |
| // which stb_vorbis will allocate _all_ its memory (including the
 | |
| // temp memory). "open" may fail with a VORBIS_outofmem if you
 | |
| // do not pass in enough data; there is no way to determine how
 | |
| // much you do need except to succeed (at which point you can
 | |
| // query get_info to find the exact amount required. yes I know
 | |
| // this is lame).
 | |
| //
 | |
| // If you pass in a non-NULL buffer of the type below, allocation
 | |
| // will occur from it as described above. Otherwise just pass NULL
 | |
| // to use malloc()/alloca()
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    char *alloc_buffer;
 | |
|    int   alloc_buffer_length_in_bytes;
 | |
| } stb_vorbis_alloc;
 | |
| 
 | |
| 
 | |
| ///////////   FUNCTIONS USEABLE WITH ALL INPUT MODES
 | |
| 
 | |
| typedef struct stb_vorbis stb_vorbis;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    unsigned int sample_rate;
 | |
|    int channels;
 | |
| 
 | |
|    unsigned int setup_memory_required;
 | |
|    unsigned int setup_temp_memory_required;
 | |
|    unsigned int temp_memory_required;
 | |
| 
 | |
|    int max_frame_size;
 | |
| } stb_vorbis_info;
 | |
| 
 | |
| // get general information about the file
 | |
| extern stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f);
 | |
| 
 | |
| // get the last error detected (clears it, too)
 | |
| extern int stb_vorbis_get_error(stb_vorbis *f);
 | |
| 
 | |
| // close an ogg vorbis file and free all memory in use
 | |
| extern void stb_vorbis_close(stb_vorbis *f);
 | |
| 
 | |
| // this function returns the offset (in samples) from the beginning of the
 | |
| // file that will be returned by the next decode, if it is known, or -1
 | |
| // otherwise. after a flush_pushdata() call, this may take a while before
 | |
| // it becomes valid again.
 | |
| // NOT WORKING YET after a seek with PULLDATA API
 | |
| extern int stb_vorbis_get_sample_offset(stb_vorbis *f);
 | |
| 
 | |
| // returns the current seek point within the file, or offset from the beginning
 | |
| // of the memory buffer. In pushdata mode it returns 0.
 | |
| extern unsigned int stb_vorbis_get_file_offset(stb_vorbis *f);
 | |
| 
 | |
| ///////////   PUSHDATA API
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
| 
 | |
| // this API allows you to get blocks of data from any source and hand
 | |
| // them to stb_vorbis. you have to buffer them; stb_vorbis will tell
 | |
| // you how much it used, and you have to give it the rest next time;
 | |
| // and stb_vorbis may not have enough data to work with and you will
 | |
| // need to give it the same data again PLUS more. Note that the Vorbis
 | |
| // specification does not bound the size of an individual frame.
 | |
| 
 | |
| extern stb_vorbis *stb_vorbis_open_pushdata(
 | |
|          const unsigned char * datablock, int datablock_length_in_bytes,
 | |
|          int *datablock_memory_consumed_in_bytes,
 | |
|          int *error,
 | |
|          const stb_vorbis_alloc *alloc_buffer);
 | |
| // create a vorbis decoder by passing in the initial data block containing
 | |
| //    the ogg&vorbis headers (you don't need to do parse them, just provide
 | |
| //    the first N bytes of the file--you're told if it's not enough, see below)
 | |
| // on success, returns an stb_vorbis *, does not set error, returns the amount of
 | |
| //    data parsed/consumed on this call in *datablock_memory_consumed_in_bytes;
 | |
| // on failure, returns NULL on error and sets *error, does not change *datablock_memory_consumed
 | |
| // if returns NULL and *error is VORBIS_need_more_data, then the input block was
 | |
| //       incomplete and you need to pass in a larger block from the start of the file
 | |
| 
 | |
| extern int stb_vorbis_decode_frame_pushdata(
 | |
|          stb_vorbis *f,
 | |
|          const unsigned char *datablock, int datablock_length_in_bytes,
 | |
|          int *channels,             // place to write number of float * buffers
 | |
|          float ***output,           // place to write float ** array of float * buffers
 | |
|          int *samples               // place to write number of output samples
 | |
|      );
 | |
| // decode a frame of audio sample data if possible from the passed-in data block
 | |
| //
 | |
| // return value: number of bytes we used from datablock
 | |
| //
 | |
| // possible cases:
 | |
| //     0 bytes used, 0 samples output (need more data)
 | |
| //     N bytes used, 0 samples output (resynching the stream, keep going)
 | |
| //     N bytes used, M samples output (one frame of data)
 | |
| // note that after opening a file, you will ALWAYS get one N-bytes,0-sample
 | |
| // frame, because Vorbis always "discards" the first frame.
 | |
| //
 | |
| // Note that on resynch, stb_vorbis will rarely consume all of the buffer,
 | |
| // instead only datablock_length_in_bytes-3 or less. This is because it wants
 | |
| // to avoid missing parts of a page header if they cross a datablock boundary,
 | |
| // without writing state-machiney code to record a partial detection.
 | |
| //
 | |
| // The number of channels returned are stored in *channels (which can be
 | |
| // NULL--it is always the same as the number of channels reported by
 | |
| // get_info). *output will contain an array of float* buffers, one per
 | |
| // channel. In other words, (*output)[0][0] contains the first sample from
 | |
| // the first channel, and (*output)[1][0] contains the first sample from
 | |
| // the second channel.
 | |
| 
 | |
| extern void stb_vorbis_flush_pushdata(stb_vorbis *f);
 | |
| // inform stb_vorbis that your next datablock will not be contiguous with
 | |
| // previous ones (e.g. you've seeked in the data); future attempts to decode
 | |
| // frames will cause stb_vorbis to resynchronize (as noted above), and
 | |
| // once it sees a valid Ogg page (typically 4-8KB, as large as 64KB), it
 | |
| // will begin decoding the _next_ frame.
 | |
| //
 | |
| // if you want to seek using pushdata, you need to seek in your file, then
 | |
| // call stb_vorbis_flush_pushdata(), then start calling decoding, then once
 | |
| // decoding is returning you data, call stb_vorbis_get_sample_offset, and
 | |
| // if you don't like the result, seek your file again and repeat.
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //////////   PULLING INPUT API
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_PULLDATA_API
 | |
| // This API assumes stb_vorbis is allowed to pull data from a source--
 | |
| // either a block of memory containing the _entire_ vorbis stream, or a
 | |
| // FILE * that you or it create, or possibly some other reading mechanism
 | |
| // if you go modify the source to replace the FILE * case with some kind
 | |
| // of callback to your code. (But if you don't support seeking, you may
 | |
| // just want to go ahead and use pushdata.)
 | |
| 
 | |
| #if !defined(STB_VORBIS_NO_STDIO) && !defined(STB_VORBIS_NO_INTEGER_CONVERSION)
 | |
| extern int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output);
 | |
| #endif
 | |
| #if !defined(STB_VORBIS_NO_INTEGER_CONVERSION)
 | |
| extern int stb_vorbis_decode_memory(const unsigned char *mem, int len, int *channels, int *sample_rate, short **output);
 | |
| #endif
 | |
| // decode an entire file and output the data interleaved into a malloc()ed
 | |
| // buffer stored in *output. The return value is the number of samples
 | |
| // decoded, or -1 if the file could not be opened or was not an ogg vorbis file.
 | |
| // When you're done with it, just free() the pointer returned in *output.
 | |
| 
 | |
| extern stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len,
 | |
|                                   int *error, const stb_vorbis_alloc *alloc_buffer);
 | |
| // create an ogg vorbis decoder from an ogg vorbis stream in memory (note
 | |
| // this must be the entire stream!). on failure, returns NULL and sets *error
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
| extern stb_vorbis * stb_vorbis_open_filename(const char *filename,
 | |
|                                   int *error, const stb_vorbis_alloc *alloc_buffer);
 | |
| // create an ogg vorbis decoder from a filename via fopen(). on failure,
 | |
| // returns NULL and sets *error (possibly to VORBIS_file_open_failure).
 | |
| 
 | |
| extern stb_vorbis * stb_vorbis_open_file(FILE *f, int close_handle_on_close,
 | |
|                                   int *error, const stb_vorbis_alloc *alloc_buffer);
 | |
| // create an ogg vorbis decoder from an open FILE *, looking for a stream at
 | |
| // the _current_ seek point (ftell). on failure, returns NULL and sets *error.
 | |
| // note that stb_vorbis must "own" this stream; if you seek it in between
 | |
| // calls to stb_vorbis, it will become confused. Moreover, if you attempt to
 | |
| // perform stb_vorbis_seek_*() operations on this file, it will assume it
 | |
| // owns the _entire_ rest of the file after the start point. Use the next
 | |
| // function, stb_vorbis_open_file_section(), to limit it.
 | |
| 
 | |
| extern stb_vorbis * stb_vorbis_open_file_section(FILE *f, int close_handle_on_close,
 | |
|                 int *error, const stb_vorbis_alloc *alloc_buffer, unsigned int len);
 | |
| // create an ogg vorbis decoder from an open FILE *, looking for a stream at
 | |
| // the _current_ seek point (ftell); the stream will be of length 'len' bytes.
 | |
| // on failure, returns NULL and sets *error. note that stb_vorbis must "own"
 | |
| // this stream; if you seek it in between calls to stb_vorbis, it will become
 | |
| // confused.
 | |
| #endif
 | |
| 
 | |
| extern int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number);
 | |
| extern int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number);
 | |
| // these functions seek in the Vorbis file to (approximately) 'sample_number'.
 | |
| // after calling seek_frame(), the next call to get_frame_*() will include
 | |
| // the specified sample. after calling stb_vorbis_seek(), the next call to
 | |
| // stb_vorbis_get_samples_* will start with the specified sample. If you
 | |
| // do not need to seek to EXACTLY the target sample when using get_samples_*,
 | |
| // you can also use seek_frame().
 | |
| 
 | |
| extern int stb_vorbis_seek_start(stb_vorbis *f);
 | |
| // this function is equivalent to stb_vorbis_seek(f,0)
 | |
| 
 | |
| extern unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f);
 | |
| extern float        stb_vorbis_stream_length_in_seconds(stb_vorbis *f);
 | |
| // these functions return the total length of the vorbis stream
 | |
| 
 | |
| extern int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output);
 | |
| // decode the next frame and return the number of samples. the number of
 | |
| // channels returned are stored in *channels (which can be NULL--it is always
 | |
| // the same as the number of channels reported by get_info). *output will
 | |
| // contain an array of float* buffers, one per channel. These outputs will
 | |
| // be overwritten on the next call to stb_vorbis_get_frame_*.
 | |
| //
 | |
| // You generally should not intermix calls to stb_vorbis_get_frame_*()
 | |
| // and stb_vorbis_get_samples_*(), since the latter calls the former.
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| extern int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts);
 | |
| extern int stb_vorbis_get_frame_short            (stb_vorbis *f, int num_c, short **buffer, int num_samples);
 | |
| #endif
 | |
| // decode the next frame and return the number of *samples* per channel.
 | |
| // Note that for interleaved data, you pass in the number of shorts (the
 | |
| // size of your array), but the return value is the number of samples per
 | |
| // channel, not the total number of samples.
 | |
| //
 | |
| // The data is coerced to the number of channels you request according to the
 | |
| // channel coercion rules (see below). You must pass in the size of your
 | |
| // buffer(s) so that stb_vorbis will not overwrite the end of the buffer.
 | |
| // The maximum buffer size needed can be gotten from get_info(); however,
 | |
| // the Vorbis I specification implies an absolute maximum of 4096 samples
 | |
| // per channel.
 | |
| 
 | |
| // Channel coercion rules:
 | |
| //    Let M be the number of channels requested, and N the number of channels present,
 | |
| //    and Cn be the nth channel; let stereo L be the sum of all L and center channels,
 | |
| //    and stereo R be the sum of all R and center channels (channel assignment from the
 | |
| //    vorbis spec).
 | |
| //        M    N       output
 | |
| //        1    k      sum(Ck) for all k
 | |
| //        2    *      stereo L, stereo R
 | |
| //        k    l      k > l, the first l channels, then 0s
 | |
| //        k    l      k <= l, the first k channels
 | |
| //    Note that this is not _good_ surround etc. mixing at all! It's just so
 | |
| //    you get something useful.
 | |
| 
 | |
| extern int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats);
 | |
| extern int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples);
 | |
| // gets num_samples samples, not necessarily on a frame boundary--this requires
 | |
| // buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES.
 | |
| // Returns the number of samples stored per channel; it may be less than requested
 | |
| // at the end of the file. If there are no more samples in the file, returns 0.
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| extern int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts);
 | |
| extern int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int num_samples);
 | |
| #endif
 | |
| // gets num_samples samples, not necessarily on a frame boundary--this requires
 | |
| // buffering so you have to supply the buffers. Applies the coercion rules above
 | |
| // to produce 'channels' channels. Returns the number of samples stored per channel;
 | |
| // it may be less than requested at the end of the file. If there are no more
 | |
| // samples in the file, returns 0.
 | |
| 
 | |
| #endif
 | |
| 
 | |
| ////////   ERROR CODES
 | |
| 
 | |
| enum STBVorbisError
 | |
| {
 | |
|    VORBIS__no_error,
 | |
| 
 | |
|    VORBIS_need_more_data=1,             // not a real error
 | |
| 
 | |
|    VORBIS_invalid_api_mixing,           // can't mix API modes
 | |
|    VORBIS_outofmem,                     // not enough memory
 | |
|    VORBIS_feature_not_supported,        // uses floor 0
 | |
|    VORBIS_too_many_channels,            // STB_VORBIS_MAX_CHANNELS is too small
 | |
|    VORBIS_file_open_failure,            // fopen() failed
 | |
|    VORBIS_seek_without_length,          // can't seek in unknown-length file
 | |
| 
 | |
|    VORBIS_unexpected_eof=10,            // file is truncated?
 | |
|    VORBIS_seek_invalid,                 // seek past EOF
 | |
| 
 | |
|    // decoding errors (corrupt/invalid stream) -- you probably
 | |
|    // don't care about the exact details of these
 | |
| 
 | |
|    // vorbis errors:
 | |
|    VORBIS_invalid_setup=20,
 | |
|    VORBIS_invalid_stream,
 | |
| 
 | |
|    // ogg errors:
 | |
|    VORBIS_missing_capture_pattern=30,
 | |
|    VORBIS_invalid_stream_structure_version,
 | |
|    VORBIS_continued_packet_flag_invalid,
 | |
|    VORBIS_incorrect_stream_serial_number,
 | |
|    VORBIS_invalid_first_page,
 | |
|    VORBIS_bad_packet_type,
 | |
|    VORBIS_cant_find_last_page,
 | |
|    VORBIS_seek_failed,
 | |
|    VORBIS_ogg_skeleton_not_supported
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif // STB_VORBIS_INCLUDE_STB_VORBIS_H
 | |
| //
 | |
| //  HEADER ENDS HERE
 | |
| //
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #ifndef STB_VORBIS_HEADER_ONLY
 | |
| 
 | |
| // global configuration settings (e.g. set these in the project/makefile),
 | |
| // or just set them in this file at the top (although ideally the first few
 | |
| // should be visible when the header file is compiled too, although it's not
 | |
| // crucial)
 | |
| 
 | |
| // STB_VORBIS_NO_PUSHDATA_API
 | |
| //     does not compile the code for the various stb_vorbis_*_pushdata()
 | |
| //     functions
 | |
| // #define STB_VORBIS_NO_PUSHDATA_API
 | |
| 
 | |
| // STB_VORBIS_NO_PULLDATA_API
 | |
| //     does not compile the code for the non-pushdata APIs
 | |
| // #define STB_VORBIS_NO_PULLDATA_API
 | |
| 
 | |
| // STB_VORBIS_NO_STDIO
 | |
| //     does not compile the code for the APIs that use FILE *s internally
 | |
| //     or externally (implied by STB_VORBIS_NO_PULLDATA_API)
 | |
| // #define STB_VORBIS_NO_STDIO
 | |
| 
 | |
| // STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| //     does not compile the code for converting audio sample data from
 | |
| //     float to integer (implied by STB_VORBIS_NO_PULLDATA_API)
 | |
| // #define STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| 
 | |
| // STB_VORBIS_NO_FAST_SCALED_FLOAT
 | |
| //      does not use a fast float-to-int trick to accelerate float-to-int on
 | |
| //      most platforms which requires endianness be defined correctly.
 | |
| //#define STB_VORBIS_NO_FAST_SCALED_FLOAT
 | |
| 
 | |
| 
 | |
| // STB_VORBIS_MAX_CHANNELS [number]
 | |
| //     globally define this to the maximum number of channels you need.
 | |
| //     The spec does not put a restriction on channels except that
 | |
| //     the count is stored in a byte, so 255 is the hard limit.
 | |
| //     Reducing this saves about 16 bytes per value, so using 16 saves
 | |
| //     (255-16)*16 or around 4KB. Plus anything other memory usage
 | |
| //     I forgot to account for. Can probably go as low as 8 (7.1 audio),
 | |
| //     6 (5.1 audio), or 2 (stereo only).
 | |
| #ifndef STB_VORBIS_MAX_CHANNELS
 | |
| #define STB_VORBIS_MAX_CHANNELS    16  // enough for anyone?
 | |
| #endif
 | |
| 
 | |
| // STB_VORBIS_PUSHDATA_CRC_COUNT [number]
 | |
| //     after a flush_pushdata(), stb_vorbis begins scanning for the
 | |
| //     next valid page, without backtracking. when it finds something
 | |
| //     that looks like a page, it streams through it and verifies its
 | |
| //     CRC32. Should that validation fail, it keeps scanning. But it's
 | |
| //     possible that _while_ streaming through to check the CRC32 of
 | |
| //     one candidate page, it sees another candidate page. This #define
 | |
| //     determines how many "overlapping" candidate pages it can search
 | |
| //     at once. Note that "real" pages are typically ~4KB to ~8KB, whereas
 | |
| //     garbage pages could be as big as 64KB, but probably average ~16KB.
 | |
| //     So don't hose ourselves by scanning an apparent 64KB page and
 | |
| //     missing a ton of real ones in the interim; so minimum of 2
 | |
| #ifndef STB_VORBIS_PUSHDATA_CRC_COUNT
 | |
| #define STB_VORBIS_PUSHDATA_CRC_COUNT  4
 | |
| #endif
 | |
| 
 | |
| // STB_VORBIS_FAST_HUFFMAN_LENGTH [number]
 | |
| //     sets the log size of the huffman-acceleration table.  Maximum
 | |
| //     supported value is 24. with larger numbers, more decodings are O(1),
 | |
| //     but the table size is larger so worse cache missing, so you'll have
 | |
| //     to probe (and try multiple ogg vorbis files) to find the sweet spot.
 | |
| #ifndef STB_VORBIS_FAST_HUFFMAN_LENGTH
 | |
| #define STB_VORBIS_FAST_HUFFMAN_LENGTH   10
 | |
| #endif
 | |
| 
 | |
| // STB_VORBIS_FAST_BINARY_LENGTH [number]
 | |
| //     sets the log size of the binary-search acceleration table. this
 | |
| //     is used in similar fashion to the fast-huffman size to set initial
 | |
| //     parameters for the binary search
 | |
| 
 | |
| // STB_VORBIS_FAST_HUFFMAN_INT
 | |
| //     The fast huffman tables are much more efficient if they can be
 | |
| //     stored as 16-bit results instead of 32-bit results. This restricts
 | |
| //     the codebooks to having only 65535 possible outcomes, though.
 | |
| //     (At least, accelerated by the huffman table.)
 | |
| #ifndef STB_VORBIS_FAST_HUFFMAN_INT
 | |
| #define STB_VORBIS_FAST_HUFFMAN_SHORT
 | |
| #endif
 | |
| 
 | |
| // STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
 | |
| //     If the 'fast huffman' search doesn't succeed, then stb_vorbis falls
 | |
| //     back on binary searching for the correct one. This requires storing
 | |
| //     extra tables with the huffman codes in sorted order. Defining this
 | |
| //     symbol trades off space for speed by forcing a linear search in the
 | |
| //     non-fast case, except for "sparse" codebooks.
 | |
| // #define STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
 | |
| 
 | |
| // STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
| //     stb_vorbis precomputes the result of the scalar residue decoding
 | |
| //     that would otherwise require a divide per chunk. you can trade off
 | |
| //     space for time by defining this symbol.
 | |
| // #define STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
| 
 | |
| // STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
| //     vorbis VQ codebooks can be encoded two ways: with every case explicitly
 | |
| //     stored, or with all elements being chosen from a small range of values,
 | |
| //     and all values possible in all elements. By default, stb_vorbis expands
 | |
| //     this latter kind out to look like the former kind for ease of decoding,
 | |
| //     because otherwise an integer divide-per-vector-element is required to
 | |
| //     unpack the index. If you define STB_VORBIS_DIVIDES_IN_CODEBOOK, you can
 | |
| //     trade off storage for speed.
 | |
| //#define STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
| 
 | |
| #ifdef STB_VORBIS_CODEBOOK_SHORTS
 | |
| #error "STB_VORBIS_CODEBOOK_SHORTS is no longer supported as it produced incorrect results for some input formats"
 | |
| #endif
 | |
| 
 | |
| // STB_VORBIS_DIVIDE_TABLE
 | |
| //     this replaces small integer divides in the floor decode loop with
 | |
| //     table lookups. made less than 1% difference, so disabled by default.
 | |
| 
 | |
| // STB_VORBIS_NO_INLINE_DECODE
 | |
| //     disables the inlining of the scalar codebook fast-huffman decode.
 | |
| //     might save a little codespace; useful for debugging
 | |
| // #define STB_VORBIS_NO_INLINE_DECODE
 | |
| 
 | |
| // STB_VORBIS_NO_DEFER_FLOOR
 | |
| //     Normally we only decode the floor without synthesizing the actual
 | |
| //     full curve. We can instead synthesize the curve immediately. This
 | |
| //     requires more memory and is very likely slower, so I don't think
 | |
| //     you'd ever want to do it except for debugging.
 | |
| // #define STB_VORBIS_NO_DEFER_FLOOR
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #ifdef STB_VORBIS_NO_PULLDATA_API
 | |
|    #define STB_VORBIS_NO_INTEGER_CONVERSION
 | |
|    #define STB_VORBIS_NO_STDIO
 | |
| #endif
 | |
| 
 | |
| #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO)
 | |
|    #define STB_VORBIS_NO_STDIO 1
 | |
| #endif
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT
 | |
| 
 | |
|    // only need endianness for fast-float-to-int, which we don't
 | |
|    // use for pushdata
 | |
| 
 | |
|    #ifndef STB_VORBIS_BIG_ENDIAN
 | |
|      #define STB_VORBIS_ENDIAN  0
 | |
|    #else
 | |
|      #define STB_VORBIS_ENDIAN  1
 | |
|    #endif
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
| #include <stdio.h>
 | |
| #endif
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_CRT
 | |
|    #include <stdlib.h>
 | |
|    #include <string.h>
 | |
|    #include <assert.h>
 | |
|    #include <math.h>
 | |
| 
 | |
|    // find definition of alloca if it's not in stdlib.h:
 | |
|    #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
|       #include <malloc.h>
 | |
|    #endif
 | |
|    #if defined(__linux__) || defined(__linux) || defined(__EMSCRIPTEN__)
 | |
|       #include <alloca.h>
 | |
|    #endif
 | |
| 
 | |
| #else // STB_VORBIS_NO_CRT
 | |
|    #define NULL 0
 | |
|    #define malloc(s)   0
 | |
|    #define free(s)     ((void) 0)
 | |
|    #define realloc(s)  0
 | |
| #endif // STB_VORBIS_NO_CRT
 | |
| 
 | |
| #include <limits.h>
 | |
| 
 | |
| #ifdef __MINGW32__
 | |
|    // eff you mingw:
 | |
|    //     "fixed":
 | |
|    //         http://sourceforge.net/p/mingw-w64/mailman/message/32882927/
 | |
|    //     "no that broke the build, reverted, who cares about C":
 | |
|    //         http://sourceforge.net/p/mingw-w64/mailman/message/32890381/
 | |
|    #ifdef __forceinline
 | |
|    #undef __forceinline
 | |
|    #endif
 | |
|    #define __forceinline
 | |
|    #define alloca __builtin_alloca
 | |
| #elif !defined(_MSC_VER)
 | |
|    #if __GNUC__
 | |
|       #define __forceinline inline
 | |
|    #else
 | |
|       #define __forceinline
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__FreeBSD__) && !defined(KINC_PS4) && !defined(KINC_PS5)
 | |
|    #ifdef alloca
 | |
|    #undef alloca
 | |
|    #endif
 | |
|    #define alloca allocm
 | |
| #endif
 | |
| 
 | |
| #if STB_VORBIS_MAX_CHANNELS > 256
 | |
| #error "Value of STB_VORBIS_MAX_CHANNELS outside of allowed range"
 | |
| #endif
 | |
| 
 | |
| #if STB_VORBIS_FAST_HUFFMAN_LENGTH > 24
 | |
| #error "Value of STB_VORBIS_FAST_HUFFMAN_LENGTH outside of allowed range"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| #include <crtdbg.h>
 | |
| #define CHECK(f)   _CrtIsValidHeapPointer(f->channel_buffers[1])
 | |
| #else
 | |
| #define CHECK(f)   ((void) 0)
 | |
| #endif
 | |
| 
 | |
| #define MAX_BLOCKSIZE_LOG  13   // from specification
 | |
| #define MAX_BLOCKSIZE      (1 << MAX_BLOCKSIZE_LOG)
 | |
| 
 | |
| 
 | |
| typedef unsigned char  uint8;
 | |
| typedef   signed char   int8;
 | |
| typedef unsigned short uint16;
 | |
| typedef   signed short  int16;
 | |
| typedef unsigned int   uint32;
 | |
| typedef   signed int    int32;
 | |
| 
 | |
| #ifndef TRUE
 | |
| #define TRUE 1
 | |
| #define FALSE 0
 | |
| #endif
 | |
| 
 | |
| typedef float codetype;
 | |
| 
 | |
| // @NOTE
 | |
| //
 | |
| // Some arrays below are tagged "//varies", which means it's actually
 | |
| // a variable-sized piece of data, but rather than malloc I assume it's
 | |
| // small enough it's better to just allocate it all together with the
 | |
| // main thing
 | |
| //
 | |
| // Most of the variables are specified with the smallest size I could pack
 | |
| // them into. It might give better performance to make them all full-sized
 | |
| // integers. It should be safe to freely rearrange the structures or change
 | |
| // the sizes larger--nothing relies on silently truncating etc., nor the
 | |
| // order of variables.
 | |
| 
 | |
| #define FAST_HUFFMAN_TABLE_SIZE   (1 << STB_VORBIS_FAST_HUFFMAN_LENGTH)
 | |
| #define FAST_HUFFMAN_TABLE_MASK   (FAST_HUFFMAN_TABLE_SIZE - 1)
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    int dimensions, entries;
 | |
|    uint8 *codeword_lengths;
 | |
|    float  minimum_value;
 | |
|    float  delta_value;
 | |
|    uint8  value_bits;
 | |
|    uint8  lookup_type;
 | |
|    uint8  sequence_p;
 | |
|    uint8  sparse;
 | |
|    uint32 lookup_values;
 | |
|    codetype *multiplicands;
 | |
|    uint32 *codewords;
 | |
|    #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT
 | |
|     int16  fast_huffman[FAST_HUFFMAN_TABLE_SIZE];
 | |
|    #else
 | |
|     int32  fast_huffman[FAST_HUFFMAN_TABLE_SIZE];
 | |
|    #endif
 | |
|    uint32 *sorted_codewords;
 | |
|    int    *sorted_values;
 | |
|    int     sorted_entries;
 | |
| } Codebook;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint8 order;
 | |
|    uint16 rate;
 | |
|    uint16 bark_map_size;
 | |
|    uint8 amplitude_bits;
 | |
|    uint8 amplitude_offset;
 | |
|    uint8 number_of_books;
 | |
|    uint8 book_list[16]; // varies
 | |
| } Floor0;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint8 partitions;
 | |
|    uint8 partition_class_list[32]; // varies
 | |
|    uint8 class_dimensions[16]; // varies
 | |
|    uint8 class_subclasses[16]; // varies
 | |
|    uint8 class_masterbooks[16]; // varies
 | |
|    int16 subclass_books[16][8]; // varies
 | |
|    uint16 Xlist[31*8+2]; // varies
 | |
|    uint8 sorted_order[31*8+2];
 | |
|    uint8 neighbors[31*8+2][2];
 | |
|    uint8 floor1_multiplier;
 | |
|    uint8 rangebits;
 | |
|    int values;
 | |
| } Floor1;
 | |
| 
 | |
| typedef union
 | |
| {
 | |
|    Floor0 floor0;
 | |
|    Floor1 floor1;
 | |
| } Floor;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint32 begin, end;
 | |
|    uint32 part_size;
 | |
|    uint8 classifications;
 | |
|    uint8 classbook;
 | |
|    uint8 **classdata;
 | |
|    int16 (*residue_books)[8];
 | |
| } Residue;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint8 magnitude;
 | |
|    uint8 angle;
 | |
|    uint8 mux;
 | |
| } MappingChannel;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint16 coupling_steps;
 | |
|    MappingChannel *chan;
 | |
|    uint8  submaps;
 | |
|    uint8  submap_floor[15]; // varies
 | |
|    uint8  submap_residue[15]; // varies
 | |
| } Mapping;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint8 blockflag;
 | |
|    uint8 mapping;
 | |
|    uint16 windowtype;
 | |
|    uint16 transformtype;
 | |
| } Mode;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint32  goal_crc;    // expected crc if match
 | |
|    int     bytes_left;  // bytes left in packet
 | |
|    uint32  crc_so_far;  // running crc
 | |
|    int     bytes_done;  // bytes processed in _current_ chunk
 | |
|    uint32  sample_loc;  // granule pos encoded in page
 | |
| } CRCscan;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|    uint32 page_start, page_end;
 | |
|    uint32 last_decoded_sample;
 | |
| } ProbedPage;
 | |
| 
 | |
| struct stb_vorbis
 | |
| {
 | |
|   // user-accessible info
 | |
|    unsigned int sample_rate;
 | |
|    int channels;
 | |
| 
 | |
|    unsigned int setup_memory_required;
 | |
|    unsigned int temp_memory_required;
 | |
|    unsigned int setup_temp_memory_required;
 | |
| 
 | |
|   // input config
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
|    FILE *f;
 | |
|    uint32 f_start;
 | |
|    int close_on_free;
 | |
| #endif
 | |
| 
 | |
|    uint8 *stream;
 | |
|    uint8 *stream_start;
 | |
|    uint8 *stream_end;
 | |
| 
 | |
|    uint32 stream_len;
 | |
| 
 | |
|    uint8  push_mode;
 | |
| 
 | |
|    uint32 first_audio_page_offset;
 | |
| 
 | |
|    ProbedPage p_first, p_last;
 | |
| 
 | |
|   // memory management
 | |
|    stb_vorbis_alloc alloc;
 | |
|    int setup_offset;
 | |
|    int temp_offset;
 | |
| 
 | |
|   // run-time results
 | |
|    int eof;
 | |
|    enum STBVorbisError error;
 | |
| 
 | |
|   // user-useful data
 | |
| 
 | |
|   // header info
 | |
|    int blocksize[2];
 | |
|    int blocksize_0, blocksize_1;
 | |
|    int codebook_count;
 | |
|    Codebook *codebooks;
 | |
|    int floor_count;
 | |
|    uint16 floor_types[64]; // varies
 | |
|    Floor *floor_config;
 | |
|    int residue_count;
 | |
|    uint16 residue_types[64]; // varies
 | |
|    Residue *residue_config;
 | |
|    int mapping_count;
 | |
|    Mapping *mapping;
 | |
|    int mode_count;
 | |
|    Mode mode_config[64];  // varies
 | |
| 
 | |
|    uint32 total_samples;
 | |
| 
 | |
|   // decode buffer
 | |
|    float *channel_buffers[STB_VORBIS_MAX_CHANNELS];
 | |
|    float *outputs        [STB_VORBIS_MAX_CHANNELS];
 | |
| 
 | |
|    float *previous_window[STB_VORBIS_MAX_CHANNELS];
 | |
|    int previous_length;
 | |
| 
 | |
|    #ifndef STB_VORBIS_NO_DEFER_FLOOR
 | |
|    int16 *finalY[STB_VORBIS_MAX_CHANNELS];
 | |
|    #else
 | |
|    float *floor_buffers[STB_VORBIS_MAX_CHANNELS];
 | |
|    #endif
 | |
| 
 | |
|    uint32 current_loc; // sample location of next frame to decode
 | |
|    int    current_loc_valid;
 | |
| 
 | |
|   // per-blocksize precomputed data
 | |
|    
 | |
|    // twiddle factors
 | |
|    float *A[2],*B[2],*C[2];
 | |
|    float *window[2];
 | |
|    uint16 *bit_reverse[2];
 | |
| 
 | |
|   // current page/packet/segment streaming info
 | |
|    uint32 serial; // stream serial number for verification
 | |
|    int last_page;
 | |
|    int segment_count;
 | |
|    uint8 segments[255];
 | |
|    uint8 page_flag;
 | |
|    uint8 bytes_in_seg;
 | |
|    uint8 first_decode;
 | |
|    int next_seg;
 | |
|    int last_seg;  // flag that we're on the last segment
 | |
|    int last_seg_which; // what was the segment number of the last seg?
 | |
|    uint32 acc;
 | |
|    int valid_bits;
 | |
|    int packet_bytes;
 | |
|    int end_seg_with_known_loc;
 | |
|    uint32 known_loc_for_packet;
 | |
|    int discard_samples_deferred;
 | |
|    uint32 samples_output;
 | |
| 
 | |
|   // push mode scanning
 | |
|    int page_crc_tests; // only in push_mode: number of tests active; -1 if not searching
 | |
| #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
|    CRCscan scan[STB_VORBIS_PUSHDATA_CRC_COUNT];
 | |
| #endif
 | |
| 
 | |
|   // sample-access
 | |
|    int channel_buffer_start;
 | |
|    int channel_buffer_end;
 | |
| };
 | |
| 
 | |
| #if defined(STB_VORBIS_NO_PUSHDATA_API)
 | |
|    #define IS_PUSH_MODE(f)   FALSE
 | |
| #elif defined(STB_VORBIS_NO_PULLDATA_API)
 | |
|    #define IS_PUSH_MODE(f)   TRUE
 | |
| #else
 | |
|    #define IS_PUSH_MODE(f)   ((f)->push_mode)
 | |
| #endif
 | |
| 
 | |
| typedef struct stb_vorbis vorb;
 | |
| 
 | |
| static int error(vorb *f, enum STBVorbisError e)
 | |
| {
 | |
|    f->error = e;
 | |
|    if (!f->eof && e != VORBIS_need_more_data) {
 | |
|       f->error=e; // breakpoint for debugging
 | |
|    }
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // these functions are used for allocating temporary memory
 | |
| // while decoding. if you can afford the stack space, use
 | |
| // alloca(); otherwise, provide a temp buffer and it will
 | |
| // allocate out of those.
 | |
| 
 | |
| #define array_size_required(count,size)  (count*(sizeof(void *)+(size)))
 | |
| 
 | |
| #define temp_alloc(f,size)              (f->alloc.alloc_buffer ? setup_temp_malloc(f,size) : alloca(size))
 | |
| #define temp_free(f,p)                  0
 | |
| #define temp_alloc_save(f)              ((f)->temp_offset)
 | |
| #define temp_alloc_restore(f,p)         ((f)->temp_offset = (p))
 | |
| 
 | |
| #define temp_block_array(f,count,size)  make_block_array(temp_alloc(f,array_size_required(count,size)), count, size)
 | |
| 
 | |
| // given a sufficiently large block of memory, make an array of pointers to subblocks of it
 | |
| static void *make_block_array(void *mem, int count, int size)
 | |
| {
 | |
|    int i;
 | |
|    void ** p = (void **) mem;
 | |
|    char *q = (char *) (p + count);
 | |
|    for (i=0; i < count; ++i) {
 | |
|       p[i] = q;
 | |
|       q += size;
 | |
|    }
 | |
|    return p;
 | |
| }
 | |
| 
 | |
| static void *setup_malloc(vorb *f, int sz)
 | |
| {
 | |
|    sz = (sz+3) & ~3;
 | |
|    f->setup_memory_required += sz;
 | |
|    if (f->alloc.alloc_buffer) {
 | |
|       void *p = (char *) f->alloc.alloc_buffer + f->setup_offset;
 | |
|       if (f->setup_offset + sz > f->temp_offset) return NULL;
 | |
|       f->setup_offset += sz;
 | |
|       return p;
 | |
|    }
 | |
|    return sz ? malloc(sz) : NULL;
 | |
| }
 | |
| 
 | |
| static void setup_free(vorb *f, void *p)
 | |
| {
 | |
|    if (f->alloc.alloc_buffer) return; // do nothing; setup mem is a stack
 | |
|    free(p);
 | |
| }
 | |
| 
 | |
| static void *setup_temp_malloc(vorb *f, int sz)
 | |
| {
 | |
|    sz = (sz+3) & ~3;
 | |
|    if (f->alloc.alloc_buffer) {
 | |
|       if (f->temp_offset - sz < f->setup_offset) return NULL;
 | |
|       f->temp_offset -= sz;
 | |
|       return (char *) f->alloc.alloc_buffer + f->temp_offset;
 | |
|    }
 | |
|    return malloc(sz);
 | |
| }
 | |
| 
 | |
| static void setup_temp_free(vorb *f, void *p, int sz)
 | |
| {
 | |
|    if (f->alloc.alloc_buffer) {
 | |
|       f->temp_offset += (sz+3)&~3;
 | |
|       return;
 | |
|    }
 | |
|    free(p);
 | |
| }
 | |
| 
 | |
| #define CRC32_POLY    0x04c11db7   // from spec
 | |
| 
 | |
| static uint32 crc_table[256];
 | |
| static void crc32_init(void)
 | |
| {
 | |
|    int i,j;
 | |
|    uint32 s;
 | |
|    for(i=0; i < 256; i++) {
 | |
|       for (s=(uint32) i << 24, j=0; j < 8; ++j)
 | |
|          s = (s << 1) ^ (s >= (1U<<31) ? CRC32_POLY : 0);
 | |
|       crc_table[i] = s;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static __forceinline uint32 crc32_update(uint32 crc, uint8 byte)
 | |
| {
 | |
|    return (crc << 8) ^ crc_table[byte ^ (crc >> 24)];
 | |
| }
 | |
| 
 | |
| 
 | |
| // used in setup, and for huffman that doesn't go fast path
 | |
| static unsigned int bit_reverse(unsigned int n)
 | |
| {
 | |
|   n = ((n & 0xAAAAAAAA) >>  1) | ((n & 0x55555555) << 1);
 | |
|   n = ((n & 0xCCCCCCCC) >>  2) | ((n & 0x33333333) << 2);
 | |
|   n = ((n & 0xF0F0F0F0) >>  4) | ((n & 0x0F0F0F0F) << 4);
 | |
|   n = ((n & 0xFF00FF00) >>  8) | ((n & 0x00FF00FF) << 8);
 | |
|   return (n >> 16) | (n << 16);
 | |
| }
 | |
| 
 | |
| static float square(float x)
 | |
| {
 | |
|    return x*x;
 | |
| }
 | |
| 
 | |
| // this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3
 | |
| // as required by the specification. fast(?) implementation from stb.h
 | |
| // @OPTIMIZE: called multiple times per-packet with "constants"; move to setup
 | |
| static int ilog(int32 n)
 | |
| {
 | |
|    static signed char log2_4[16] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 };
 | |
| 
 | |
|    if (n < 0) return 0; // signed n returns 0
 | |
| 
 | |
|    // 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29)
 | |
|    if (n < (1 << 14))
 | |
|         if (n < (1 <<  4))            return  0 + log2_4[n      ];
 | |
|         else if (n < (1 <<  9))       return  5 + log2_4[n >>  5];
 | |
|              else                     return 10 + log2_4[n >> 10];
 | |
|    else if (n < (1 << 24))
 | |
|              if (n < (1 << 19))       return 15 + log2_4[n >> 15];
 | |
|              else                     return 20 + log2_4[n >> 20];
 | |
|         else if (n < (1 << 29))       return 25 + log2_4[n >> 25];
 | |
|              else                     return 30 + log2_4[n >> 30];
 | |
| }
 | |
| 
 | |
| #ifndef M_PI
 | |
|   #define M_PI  3.14159265358979323846264f  // from CRC
 | |
| #endif
 | |
| 
 | |
| // code length assigned to a value with no huffman encoding
 | |
| #define NO_CODE   255
 | |
| 
 | |
| /////////////////////// LEAF SETUP FUNCTIONS //////////////////////////
 | |
| //
 | |
| // these functions are only called at setup, and only a few times
 | |
| // per file
 | |
| 
 | |
| static float float32_unpack(uint32 x)
 | |
| {
 | |
|    // from the specification
 | |
|    uint32 mantissa = x & 0x1fffff;
 | |
|    uint32 sign = x & 0x80000000;
 | |
|    uint32 exp = (x & 0x7fe00000) >> 21;
 | |
|    double res = sign ? -(double)mantissa : (double)mantissa;
 | |
|    return (float) ldexp((float)res, exp-788);
 | |
| }
 | |
| 
 | |
| 
 | |
| // zlib & jpeg huffman tables assume that the output symbols
 | |
| // can either be arbitrarily arranged, or have monotonically
 | |
| // increasing frequencies--they rely on the lengths being sorted;
 | |
| // this makes for a very simple generation algorithm.
 | |
| // vorbis allows a huffman table with non-sorted lengths. This
 | |
| // requires a more sophisticated construction, since symbols in
 | |
| // order do not map to huffman codes "in order".
 | |
| static void add_entry(Codebook *c, uint32 huff_code, int symbol, int count, int len, uint32 *values)
 | |
| {
 | |
|    if (!c->sparse) {
 | |
|       c->codewords      [symbol] = huff_code;
 | |
|    } else {
 | |
|       c->codewords       [count] = huff_code;
 | |
|       c->codeword_lengths[count] = len;
 | |
|       values             [count] = symbol;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static int compute_codewords(Codebook *c, uint8 *len, int n, uint32 *values)
 | |
| {
 | |
|    int i,k,m=0;
 | |
|    uint32 available[32];
 | |
| 
 | |
|    memset(available, 0, sizeof(available));
 | |
|    // find the first entry
 | |
|    for (k=0; k < n; ++k) if (len[k] < NO_CODE) break;
 | |
|    if (k == n) { assert(c->sorted_entries == 0); return TRUE; }
 | |
|    // add to the list
 | |
|    add_entry(c, 0, k, m++, len[k], values);
 | |
|    // add all available leaves
 | |
|    for (i=1; i <= len[k]; ++i)
 | |
|       available[i] = 1U << (32-i);
 | |
|    // note that the above code treats the first case specially,
 | |
|    // but it's really the same as the following code, so they
 | |
|    // could probably be combined (except the initial code is 0,
 | |
|    // and I use 0 in available[] to mean 'empty')
 | |
|    for (i=k+1; i < n; ++i) {
 | |
|       uint32 res;
 | |
|       int z = len[i], y;
 | |
|       if (z == NO_CODE) continue;
 | |
|       // find lowest available leaf (should always be earliest,
 | |
|       // which is what the specification calls for)
 | |
|       // note that this property, and the fact we can never have
 | |
|       // more than one free leaf at a given level, isn't totally
 | |
|       // trivial to prove, but it seems true and the assert never
 | |
|       // fires, so!
 | |
|       while (z > 0 && !available[z]) --z;
 | |
|       if (z == 0) { return FALSE; }
 | |
|       res = available[z];
 | |
|       assert(z >= 0 && z < 32);
 | |
|       available[z] = 0;
 | |
|       add_entry(c, bit_reverse(res), i, m++, len[i], values);
 | |
|       // propagate availability up the tree
 | |
|       if (z != len[i]) {
 | |
|          assert(len[i] >= 0 && len[i] < 32);
 | |
|          for (y=len[i]; y > z; --y) {
 | |
|             assert(available[y] == 0);
 | |
|             available[y] = res + (1 << (32-y));
 | |
|          }
 | |
|       }
 | |
|    }
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| // accelerated huffman table allows fast O(1) match of all symbols
 | |
| // of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH
 | |
| static void compute_accelerated_huffman(Codebook *c)
 | |
| {
 | |
|    int i, len;
 | |
|    for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i)
 | |
|       c->fast_huffman[i] = -1;
 | |
| 
 | |
|    len = c->sparse ? c->sorted_entries : c->entries;
 | |
|    #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT
 | |
|    if (len > 32767) len = 32767; // largest possible value we can encode!
 | |
|    #endif
 | |
|    for (i=0; i < len; ++i) {
 | |
|       if (c->codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) {
 | |
|          uint32 z = c->sparse ? bit_reverse(c->sorted_codewords[i]) : c->codewords[i];
 | |
|          // set table entries for all bit combinations in the higher bits
 | |
|          while (z < FAST_HUFFMAN_TABLE_SIZE) {
 | |
|              c->fast_huffman[z] = i;
 | |
|              z += 1 << c->codeword_lengths[i];
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #define STBV_CDECL __cdecl
 | |
| #else
 | |
| #define STBV_CDECL
 | |
| #endif
 | |
| 
 | |
| static int STBV_CDECL uint32_compare(const void *p, const void *q)
 | |
| {
 | |
|    uint32 x = * (uint32 *) p;
 | |
|    uint32 y = * (uint32 *) q;
 | |
|    return x < y ? -1 : x > y;
 | |
| }
 | |
| 
 | |
| static int include_in_sort(Codebook *c, uint8 len)
 | |
| {
 | |
|    if (c->sparse) { assert(len != NO_CODE); return TRUE; }
 | |
|    if (len == NO_CODE) return FALSE;
 | |
|    if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return TRUE;
 | |
|    return FALSE;
 | |
| }
 | |
| 
 | |
| // if the fast table above doesn't work, we want to binary
 | |
| // search them... need to reverse the bits
 | |
| static void compute_sorted_huffman(Codebook *c, uint8 *lengths, uint32 *values)
 | |
| {
 | |
|    int i, len;
 | |
|    // build a list of all the entries
 | |
|    // OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN.
 | |
|    // this is kind of a frivolous optimization--I don't see any performance improvement,
 | |
|    // but it's like 4 extra lines of code, so.
 | |
|    if (!c->sparse) {
 | |
|       int k = 0;
 | |
|       for (i=0; i < c->entries; ++i)
 | |
|          if (include_in_sort(c, lengths[i])) 
 | |
|             c->sorted_codewords[k++] = bit_reverse(c->codewords[i]);
 | |
|       assert(k == c->sorted_entries);
 | |
|    } else {
 | |
|       for (i=0; i < c->sorted_entries; ++i)
 | |
|          c->sorted_codewords[i] = bit_reverse(c->codewords[i]);
 | |
|    }
 | |
| 
 | |
|    qsort(c->sorted_codewords, c->sorted_entries, sizeof(c->sorted_codewords[0]), uint32_compare);
 | |
|    c->sorted_codewords[c->sorted_entries] = 0xffffffff;
 | |
| 
 | |
|    len = c->sparse ? c->sorted_entries : c->entries;
 | |
|    // now we need to indicate how they correspond; we could either
 | |
|    //   #1: sort a different data structure that says who they correspond to
 | |
|    //   #2: for each sorted entry, search the original list to find who corresponds
 | |
|    //   #3: for each original entry, find the sorted entry
 | |
|    // #1 requires extra storage, #2 is slow, #3 can use binary search!
 | |
|    for (i=0; i < len; ++i) {
 | |
|       int huff_len = c->sparse ? lengths[values[i]] : lengths[i];
 | |
|       if (include_in_sort(c,huff_len)) {
 | |
|          uint32 code = bit_reverse(c->codewords[i]);
 | |
|          int x=0, n=c->sorted_entries;
 | |
|          while (n > 1) {
 | |
|             // invariant: sc[x] <= code < sc[x+n]
 | |
|             int m = x + (n >> 1);
 | |
|             if (c->sorted_codewords[m] <= code) {
 | |
|                x = m;
 | |
|                n -= (n>>1);
 | |
|             } else {
 | |
|                n >>= 1;
 | |
|             }
 | |
|          }
 | |
|          assert(c->sorted_codewords[x] == code);
 | |
|          if (c->sparse) {
 | |
|             c->sorted_values[x] = values[i];
 | |
|             c->codeword_lengths[x] = huff_len;
 | |
|          } else {
 | |
|             c->sorted_values[x] = i;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| // only run while parsing the header (3 times)
 | |
| static int vorbis_validate(uint8 *data)
 | |
| {
 | |
|    static uint8 vorbis[6] = { 'v', 'o', 'r', 'b', 'i', 's' };
 | |
|    return memcmp(data, vorbis, 6) == 0;
 | |
| }
 | |
| 
 | |
| // called from setup only, once per code book
 | |
| // (formula implied by specification)
 | |
| static int lookup1_values(int entries, int dim)
 | |
| {
 | |
|    int r = (int) floor(exp((float) log((float) entries) / dim));
 | |
|    if ((int) floor(pow((float) r+1, dim)) <= entries)   // (int) cast for MinGW warning;
 | |
|       ++r;                                              // floor() to avoid _ftol() when non-CRT
 | |
|    if (pow((float) r+1, dim) <= entries)
 | |
|       return -1;
 | |
|    if ((int) floor(pow((float) r, dim)) > entries)
 | |
|       return -1;
 | |
|    return r;
 | |
| }
 | |
| 
 | |
| // called twice per file
 | |
| static void compute_twiddle_factors(int n, float *A, float *B, float *C)
 | |
| {
 | |
|    int n4 = n >> 2, n8 = n >> 3;
 | |
|    int k,k2;
 | |
| 
 | |
|    for (k=k2=0; k < n4; ++k,k2+=2) {
 | |
|       A[k2  ] = (float)  cos(4*k*M_PI/n);
 | |
|       A[k2+1] = (float) -sin(4*k*M_PI/n);
 | |
|       B[k2  ] = (float)  cos((k2+1)*M_PI/n/2) * 0.5f;
 | |
|       B[k2+1] = (float)  sin((k2+1)*M_PI/n/2) * 0.5f;
 | |
|    }
 | |
|    for (k=k2=0; k < n8; ++k,k2+=2) {
 | |
|       C[k2  ] = (float)  cos(2*(k2+1)*M_PI/n);
 | |
|       C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n);
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void compute_window(int n, float *window)
 | |
| {
 | |
|    int n2 = n >> 1, i;
 | |
|    for (i=0; i < n2; ++i)
 | |
|       window[i] = (float) sin(0.5 * M_PI * square((float) sin((i - 0 + 0.5) / n2 * 0.5 * M_PI)));
 | |
| }
 | |
| 
 | |
| static void compute_bitreverse(int n, uint16 *rev)
 | |
| {
 | |
|    int ld = ilog(n) - 1; // ilog is off-by-one from normal definitions
 | |
|    int i, n8 = n >> 3;
 | |
|    for (i=0; i < n8; ++i)
 | |
|       rev[i] = (bit_reverse(i) >> (32-ld+3)) << 2;
 | |
| }
 | |
| 
 | |
| static int init_blocksize(vorb *f, int b, int n)
 | |
| {
 | |
|    int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3;
 | |
|    f->A[b] = (float *) setup_malloc(f, sizeof(float) * n2);
 | |
|    f->B[b] = (float *) setup_malloc(f, sizeof(float) * n2);
 | |
|    f->C[b] = (float *) setup_malloc(f, sizeof(float) * n4);
 | |
|    if (!f->A[b] || !f->B[b] || !f->C[b]) return error(f, VORBIS_outofmem);
 | |
|    compute_twiddle_factors(n, f->A[b], f->B[b], f->C[b]);
 | |
|    f->window[b] = (float *) setup_malloc(f, sizeof(float) * n2);
 | |
|    if (!f->window[b]) return error(f, VORBIS_outofmem);
 | |
|    compute_window(n, f->window[b]);
 | |
|    f->bit_reverse[b] = (uint16 *) setup_malloc(f, sizeof(uint16) * n8);
 | |
|    if (!f->bit_reverse[b]) return error(f, VORBIS_outofmem);
 | |
|    compute_bitreverse(n, f->bit_reverse[b]);
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static void neighbors(uint16 *x, int n, int *plow, int *phigh)
 | |
| {
 | |
|    int low = -1;
 | |
|    int high = 65536;
 | |
|    int i;
 | |
|    for (i=0; i < n; ++i) {
 | |
|       if (x[i] > low  && x[i] < x[n]) { *plow  = i; low = x[i]; }
 | |
|       if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; }
 | |
|    }
 | |
| }
 | |
| 
 | |
| // this has been repurposed so y is now the original index instead of y
 | |
| typedef struct
 | |
| {
 | |
|    uint16 x,id;
 | |
| } stbv__floor_ordering;
 | |
| 
 | |
| static int STBV_CDECL point_compare(const void *p, const void *q)
 | |
| {
 | |
|    stbv__floor_ordering *a = (stbv__floor_ordering *) p;
 | |
|    stbv__floor_ordering *b = (stbv__floor_ordering *) q;
 | |
|    return a->x < b->x ? -1 : a->x > b->x;
 | |
| }
 | |
| 
 | |
| //
 | |
| /////////////////////// END LEAF SETUP FUNCTIONS //////////////////////////
 | |
| 
 | |
| 
 | |
| #if defined(STB_VORBIS_NO_STDIO)
 | |
|    #define USE_MEMORY(z)    TRUE
 | |
| #else
 | |
|    #define USE_MEMORY(z)    ((z)->stream)
 | |
| #endif
 | |
| 
 | |
| static uint8 get8(vorb *z)
 | |
| {
 | |
|    if (USE_MEMORY(z)) {
 | |
|       if (z->stream >= z->stream_end) { z->eof = TRUE; return 0; }
 | |
|       return *z->stream++;
 | |
|    }
 | |
| 
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    {
 | |
|    int c = fgetc(z->f);
 | |
|    if (c == EOF) { z->eof = TRUE; return 0; }
 | |
|    return c;
 | |
|    }
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| static uint32 get32(vorb *f)
 | |
| {
 | |
|    uint32 x;
 | |
|    x = get8(f);
 | |
|    x += get8(f) << 8;
 | |
|    x += get8(f) << 16;
 | |
|    x += (uint32) get8(f) << 24;
 | |
|    return x;
 | |
| }
 | |
| 
 | |
| static int getn(vorb *z, uint8 *data, int n)
 | |
| {
 | |
|    if (USE_MEMORY(z)) {
 | |
|       if (z->stream+n > z->stream_end) { z->eof = 1; return 0; }
 | |
|       memcpy(data, z->stream, n);
 | |
|       z->stream += n;
 | |
|       return 1;
 | |
|    }
 | |
| 
 | |
|    #ifndef STB_VORBIS_NO_STDIO   
 | |
|    if (fread(data, n, 1, z->f) == 1)
 | |
|       return 1;
 | |
|    else {
 | |
|       z->eof = 1;
 | |
|       return 0;
 | |
|    }
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| static void skip(vorb *z, int n)
 | |
| {
 | |
|    if (USE_MEMORY(z)) {
 | |
|       z->stream += n;
 | |
|       if (z->stream >= z->stream_end) z->eof = 1;
 | |
|       return;
 | |
|    }
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    {
 | |
|       long x = ftell(z->f);
 | |
|       fseek(z->f, x+n, SEEK_SET);
 | |
|    }
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| static int set_file_offset(stb_vorbis *f, unsigned int loc)
 | |
| {
 | |
|    #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
|    if (f->push_mode) return 0;
 | |
|    #endif
 | |
|    f->eof = 0;
 | |
|    if (USE_MEMORY(f)) {
 | |
|       if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
 | |
|          f->stream = f->stream_end;
 | |
|          f->eof = 1;
 | |
|          return 0;
 | |
|       } else {
 | |
|          f->stream = f->stream_start + loc;
 | |
|          return 1;
 | |
|       }
 | |
|    }
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    if (loc + f->f_start < loc || loc >= 0x80000000) {
 | |
|       loc = 0x7fffffff;
 | |
|       f->eof = 1;
 | |
|    } else {
 | |
|       loc += f->f_start;
 | |
|    }
 | |
|    if (!fseek(f->f, loc, SEEK_SET))
 | |
|       return 1;
 | |
|    f->eof = 1;
 | |
|    fseek(f->f, f->f_start, SEEK_END);
 | |
|    return 0;
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint8 ogg_page_header[4] = { 0x4f, 0x67, 0x67, 0x53 };
 | |
| 
 | |
| static int capture_pattern(vorb *f)
 | |
| {
 | |
|    if (0x4f != get8(f)) return FALSE;
 | |
|    if (0x67 != get8(f)) return FALSE;
 | |
|    if (0x67 != get8(f)) return FALSE;
 | |
|    if (0x53 != get8(f)) return FALSE;
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| #define PAGEFLAG_continued_packet   1
 | |
| #define PAGEFLAG_first_page         2
 | |
| #define PAGEFLAG_last_page          4
 | |
| 
 | |
| static int start_page_no_capturepattern(vorb *f)
 | |
| {
 | |
|    uint32 loc0,loc1,n;
 | |
|    // stream structure version
 | |
|    if (0 != get8(f)) return error(f, VORBIS_invalid_stream_structure_version);
 | |
|    // header flag
 | |
|    f->page_flag = get8(f);
 | |
|    // absolute granule position
 | |
|    loc0 = get32(f); 
 | |
|    loc1 = get32(f);
 | |
|    // @TODO: validate loc0,loc1 as valid positions?
 | |
|    // stream serial number -- vorbis doesn't interleave, so discard
 | |
|    get32(f);
 | |
|    //if (f->serial != get32(f)) return error(f, VORBIS_incorrect_stream_serial_number);
 | |
|    // page sequence number
 | |
|    n = get32(f);
 | |
|    f->last_page = n;
 | |
|    // CRC32
 | |
|    get32(f);
 | |
|    // page_segments
 | |
|    f->segment_count = get8(f);
 | |
|    if (!getn(f, f->segments, f->segment_count))
 | |
|       return error(f, VORBIS_unexpected_eof);
 | |
|    // assume we _don't_ know any the sample position of any segments
 | |
|    f->end_seg_with_known_loc = -2;
 | |
|    if (loc0 != ~0U || loc1 != ~0U) {
 | |
|       int i;
 | |
|       // determine which packet is the last one that will complete
 | |
|       for (i=f->segment_count-1; i >= 0; --i)
 | |
|          if (f->segments[i] < 255)
 | |
|             break;
 | |
|       // 'i' is now the index of the _last_ segment of a packet that ends
 | |
|       if (i >= 0) {
 | |
|          f->end_seg_with_known_loc = i;
 | |
|          f->known_loc_for_packet   = loc0;
 | |
|       }
 | |
|    }
 | |
|    if (f->first_decode) {
 | |
|       int i,len;
 | |
|       ProbedPage p;
 | |
|       len = 0;
 | |
|       for (i=0; i < f->segment_count; ++i)
 | |
|          len += f->segments[i];
 | |
|       len += 27 + f->segment_count;
 | |
|       p.page_start = f->first_audio_page_offset;
 | |
|       p.page_end = p.page_start + len;
 | |
|       p.last_decoded_sample = loc0;
 | |
|       f->p_first = p;
 | |
|    }
 | |
|    f->next_seg = 0;
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int start_page(vorb *f)
 | |
| {
 | |
|    if (!capture_pattern(f)) return error(f, VORBIS_missing_capture_pattern);
 | |
|    return start_page_no_capturepattern(f);
 | |
| }
 | |
| 
 | |
| static int start_packet(vorb *f)
 | |
| {
 | |
|    while (f->next_seg == -1) {
 | |
|       if (!start_page(f)) return FALSE;
 | |
|       if (f->page_flag & PAGEFLAG_continued_packet)
 | |
|          return error(f, VORBIS_continued_packet_flag_invalid);
 | |
|    }
 | |
|    f->last_seg = FALSE;
 | |
|    f->valid_bits = 0;
 | |
|    f->packet_bytes = 0;
 | |
|    f->bytes_in_seg = 0;
 | |
|    // f->next_seg is now valid
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int maybe_start_packet(vorb *f)
 | |
| {
 | |
|    if (f->next_seg == -1) {
 | |
|       int x = get8(f);
 | |
|       if (f->eof) return FALSE; // EOF at page boundary is not an error!
 | |
|       if (0x4f != x      ) return error(f, VORBIS_missing_capture_pattern);
 | |
|       if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
 | |
|       if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
 | |
|       if (0x53 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
 | |
|       if (!start_page_no_capturepattern(f)) return FALSE;
 | |
|       if (f->page_flag & PAGEFLAG_continued_packet) {
 | |
|          // set up enough state that we can read this packet if we want,
 | |
|          // e.g. during recovery
 | |
|          f->last_seg = FALSE;
 | |
|          f->bytes_in_seg = 0;
 | |
|          return error(f, VORBIS_continued_packet_flag_invalid);
 | |
|       }
 | |
|    }
 | |
|    return start_packet(f);
 | |
| }
 | |
| 
 | |
| static int next_segment(vorb *f)
 | |
| {
 | |
|    int len;
 | |
|    if (f->last_seg) return 0;
 | |
|    if (f->next_seg == -1) {
 | |
|       f->last_seg_which = f->segment_count-1; // in case start_page fails
 | |
|       if (!start_page(f)) { f->last_seg = 1; return 0; }
 | |
|       if (!(f->page_flag & PAGEFLAG_continued_packet)) return error(f, VORBIS_continued_packet_flag_invalid);
 | |
|    }
 | |
|    len = f->segments[f->next_seg++];
 | |
|    if (len < 255) {
 | |
|       f->last_seg = TRUE;
 | |
|       f->last_seg_which = f->next_seg-1;
 | |
|    }
 | |
|    if (f->next_seg >= f->segment_count)
 | |
|       f->next_seg = -1;
 | |
|    assert(f->bytes_in_seg == 0);
 | |
|    f->bytes_in_seg = len;
 | |
|    return len;
 | |
| }
 | |
| 
 | |
| #define EOP    (-1)
 | |
| #define INVALID_BITS  (-1)
 | |
| 
 | |
| static int get8_packet_raw(vorb *f)
 | |
| {
 | |
|    if (!f->bytes_in_seg) {  // CLANG!
 | |
|       if (f->last_seg) return EOP;
 | |
|       else if (!next_segment(f)) return EOP;
 | |
|    }
 | |
|    assert(f->bytes_in_seg > 0);
 | |
|    --f->bytes_in_seg;
 | |
|    ++f->packet_bytes;
 | |
|    return get8(f);
 | |
| }
 | |
| 
 | |
| static int get8_packet(vorb *f)
 | |
| {
 | |
|    int x = get8_packet_raw(f);
 | |
|    f->valid_bits = 0;
 | |
|    return x;
 | |
| }
 | |
| 
 | |
| static void flush_packet(vorb *f)
 | |
| {
 | |
|    while (get8_packet_raw(f) != EOP);
 | |
| }
 | |
| 
 | |
| // @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important
 | |
| // as the huffman decoder?
 | |
| static uint32 get_bits(vorb *f, int n)
 | |
| {
 | |
|    uint32 z;
 | |
| 
 | |
|    if (f->valid_bits < 0) return 0;
 | |
|    if (f->valid_bits < n) {
 | |
|       if (n > 24) {
 | |
|          // the accumulator technique below would not work correctly in this case
 | |
|          z = get_bits(f, 24);
 | |
|          z += get_bits(f, n-24) << 24;
 | |
|          return z;
 | |
|       }
 | |
|       if (f->valid_bits == 0) f->acc = 0;
 | |
|       while (f->valid_bits < n) {
 | |
|          int z = get8_packet_raw(f);
 | |
|          if (z == EOP) {
 | |
|             f->valid_bits = INVALID_BITS;
 | |
|             return 0;
 | |
|          }
 | |
|          f->acc += z << f->valid_bits;
 | |
|          f->valid_bits += 8;
 | |
|       }
 | |
|    }
 | |
|    if (f->valid_bits < 0) return 0;
 | |
|    z = f->acc & ((1 << n)-1);
 | |
|    f->acc >>= n;
 | |
|    f->valid_bits -= n;
 | |
|    return z;
 | |
| }
 | |
| 
 | |
| // @OPTIMIZE: primary accumulator for huffman
 | |
| // expand the buffer to as many bits as possible without reading off end of packet
 | |
| // it might be nice to allow f->valid_bits and f->acc to be stored in registers,
 | |
| // e.g. cache them locally and decode locally
 | |
| static __forceinline void prep_huffman(vorb *f)
 | |
| {
 | |
|    if (f->valid_bits <= 24) {
 | |
|       if (f->valid_bits == 0) f->acc = 0;
 | |
|       do {
 | |
|          int z;
 | |
|          if (f->last_seg && !f->bytes_in_seg) return;
 | |
|          z = get8_packet_raw(f);
 | |
|          if (z == EOP) return;
 | |
|          f->acc += (unsigned) z << f->valid_bits;
 | |
|          f->valid_bits += 8;
 | |
|       } while (f->valid_bits <= 24);
 | |
|    }
 | |
| }
 | |
| 
 | |
| enum
 | |
| {
 | |
|    VORBIS_packet_id = 1,
 | |
|    VORBIS_packet_comment = 3,
 | |
|    VORBIS_packet_setup = 5
 | |
| };
 | |
| 
 | |
| static int codebook_decode_scalar_raw(vorb *f, Codebook *c)
 | |
| {
 | |
|    int i;
 | |
|    prep_huffman(f);
 | |
| 
 | |
|    if (c->codewords == NULL && c->sorted_codewords == NULL)
 | |
|       return -1;
 | |
| 
 | |
|    // cases to use binary search: sorted_codewords && !c->codewords
 | |
|    //                             sorted_codewords && c->entries > 8
 | |
|    if (c->entries > 8 ? c->sorted_codewords!=NULL : !c->codewords) {
 | |
|       // binary search
 | |
|       uint32 code = bit_reverse(f->acc);
 | |
|       int x=0, n=c->sorted_entries, len;
 | |
| 
 | |
|       while (n > 1) {
 | |
|          // invariant: sc[x] <= code < sc[x+n]
 | |
|          int m = x + (n >> 1);
 | |
|          if (c->sorted_codewords[m] <= code) {
 | |
|             x = m;
 | |
|             n -= (n>>1);
 | |
|          } else {
 | |
|             n >>= 1;
 | |
|          }
 | |
|       }
 | |
|       // x is now the sorted index
 | |
|       if (!c->sparse) x = c->sorted_values[x];
 | |
|       // x is now sorted index if sparse, or symbol otherwise
 | |
|       len = c->codeword_lengths[x];
 | |
|       if (f->valid_bits >= len) {
 | |
|          f->acc >>= len;
 | |
|          f->valid_bits -= len;
 | |
|          return x;
 | |
|       }
 | |
| 
 | |
|       f->valid_bits = 0;
 | |
|       return -1;
 | |
|    }
 | |
| 
 | |
|    // if small, linear search
 | |
|    assert(!c->sparse);
 | |
|    for (i=0; i < c->entries; ++i) {
 | |
|       if (c->codeword_lengths[i] == NO_CODE) continue;
 | |
|       if (c->codewords[i] == (f->acc & ((1 << c->codeword_lengths[i])-1))) {
 | |
|          if (f->valid_bits >= c->codeword_lengths[i]) {
 | |
|             f->acc >>= c->codeword_lengths[i];
 | |
|             f->valid_bits -= c->codeword_lengths[i];
 | |
|             return i;
 | |
|          }
 | |
|          f->valid_bits = 0;
 | |
|          return -1;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    error(f, VORBIS_invalid_stream);
 | |
|    f->valid_bits = 0;
 | |
|    return -1;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_INLINE_DECODE
 | |
| 
 | |
| #define DECODE_RAW(var, f,c)                                  \
 | |
|    if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH)        \
 | |
|       prep_huffman(f);                                        \
 | |
|    var = f->acc & FAST_HUFFMAN_TABLE_MASK;                    \
 | |
|    var = c->fast_huffman[var];                                \
 | |
|    if (var >= 0) {                                            \
 | |
|       int n = c->codeword_lengths[var];                       \
 | |
|       f->acc >>= n;                                           \
 | |
|       f->valid_bits -= n;                                     \
 | |
|       if (f->valid_bits < 0) { f->valid_bits = 0; var = -1; } \
 | |
|    } else {                                                   \
 | |
|       var = codebook_decode_scalar_raw(f,c);                  \
 | |
|    }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int codebook_decode_scalar(vorb *f, Codebook *c)
 | |
| {
 | |
|    int i;
 | |
|    if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH)
 | |
|       prep_huffman(f);
 | |
|    // fast huffman table lookup
 | |
|    i = f->acc & FAST_HUFFMAN_TABLE_MASK;
 | |
|    i = c->fast_huffman[i];
 | |
|    if (i >= 0) {
 | |
|       f->acc >>= c->codeword_lengths[i];
 | |
|       f->valid_bits -= c->codeword_lengths[i];
 | |
|       if (f->valid_bits < 0) { f->valid_bits = 0; return -1; }
 | |
|       return i;
 | |
|    }
 | |
|    return codebook_decode_scalar_raw(f,c);
 | |
| }
 | |
| 
 | |
| #define DECODE_RAW(var,f,c)    var = codebook_decode_scalar(f,c);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define DECODE(var,f,c)                                       \
 | |
|    DECODE_RAW(var,f,c)                                        \
 | |
|    if (c->sparse) var = c->sorted_values[var];
 | |
| 
 | |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|   #define DECODE_VQ(var,f,c)   DECODE_RAW(var,f,c)
 | |
| #else
 | |
|   #define DECODE_VQ(var,f,c)   DECODE(var,f,c)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| // CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case
 | |
| // where we avoid one addition
 | |
| #define CODEBOOK_ELEMENT(c,off)          (c->multiplicands[off])
 | |
| #define CODEBOOK_ELEMENT_FAST(c,off)     (c->multiplicands[off])
 | |
| #define CODEBOOK_ELEMENT_BASE(c)         (0)
 | |
| 
 | |
| static int codebook_decode_start(vorb *f, Codebook *c)
 | |
| {
 | |
|    int z = -1;
 | |
| 
 | |
|    // type 0 is only legal in a scalar context
 | |
|    if (c->lookup_type == 0)
 | |
|       error(f, VORBIS_invalid_stream);
 | |
|    else {
 | |
|       DECODE_VQ(z,f,c);
 | |
|       if (c->sparse) assert(z < c->sorted_entries);
 | |
|       if (z < 0) {  // check for EOP
 | |
|          if (!f->bytes_in_seg)
 | |
|             if (f->last_seg)
 | |
|                return z;
 | |
|          error(f, VORBIS_invalid_stream);
 | |
|       }
 | |
|    }
 | |
|    return z;
 | |
| }
 | |
| 
 | |
| static int codebook_decode(vorb *f, Codebook *c, float *output, int len)
 | |
| {
 | |
|    int i,z = codebook_decode_start(f,c);
 | |
|    if (z < 0) return FALSE;
 | |
|    if (len > c->dimensions) len = c->dimensions;
 | |
| 
 | |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|    if (c->lookup_type == 1) {
 | |
|       float last = CODEBOOK_ELEMENT_BASE(c);
 | |
|       int div = 1;
 | |
|       for (i=0; i < len; ++i) {
 | |
|          int off = (z / div) % c->lookup_values;
 | |
|          float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
 | |
|          output[i] += val;
 | |
|          if (c->sequence_p) last = val + c->minimum_value;
 | |
|          div *= c->lookup_values;
 | |
|       }
 | |
|       return TRUE;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    z *= c->dimensions;
 | |
|    if (c->sequence_p) {
 | |
|       float last = CODEBOOK_ELEMENT_BASE(c);
 | |
|       for (i=0; i < len; ++i) {
 | |
|          float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
 | |
|          output[i] += val;
 | |
|          last = val + c->minimum_value;
 | |
|       }
 | |
|    } else {
 | |
|       float last = CODEBOOK_ELEMENT_BASE(c);
 | |
|       for (i=0; i < len; ++i) {
 | |
|          output[i] += CODEBOOK_ELEMENT_FAST(c,z+i) + last;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int codebook_decode_step(vorb *f, Codebook *c, float *output, int len, int step)
 | |
| {
 | |
|    int i,z = codebook_decode_start(f,c);
 | |
|    float last = CODEBOOK_ELEMENT_BASE(c);
 | |
|    if (z < 0) return FALSE;
 | |
|    if (len > c->dimensions) len = c->dimensions;
 | |
| 
 | |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|    if (c->lookup_type == 1) {
 | |
|       int div = 1;
 | |
|       for (i=0; i < len; ++i) {
 | |
|          int off = (z / div) % c->lookup_values;
 | |
|          float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
 | |
|          output[i*step] += val;
 | |
|          if (c->sequence_p) last = val;
 | |
|          div *= c->lookup_values;
 | |
|       }
 | |
|       return TRUE;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    z *= c->dimensions;
 | |
|    for (i=0; i < len; ++i) {
 | |
|       float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
 | |
|       output[i*step] += val;
 | |
|       if (c->sequence_p) last = val;
 | |
|    }
 | |
| 
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int codebook_decode_deinterleave_repeat(vorb *f, Codebook *c, float **outputs, int ch, int *c_inter_p, int *p_inter_p, int len, int total_decode)
 | |
| {
 | |
|    int c_inter = *c_inter_p;
 | |
|    int p_inter = *p_inter_p;
 | |
|    int i,z, effective = c->dimensions;
 | |
| 
 | |
|    // type 0 is only legal in a scalar context
 | |
|    if (c->lookup_type == 0)   return error(f, VORBIS_invalid_stream);
 | |
| 
 | |
|    while (total_decode > 0) {
 | |
|       float last = CODEBOOK_ELEMENT_BASE(c);
 | |
|       DECODE_VQ(z,f,c);
 | |
|       #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|       assert(!c->sparse || z < c->sorted_entries);
 | |
|       #endif
 | |
|       if (z < 0) {
 | |
|          if (!f->bytes_in_seg)
 | |
|             if (f->last_seg) return FALSE;
 | |
|          return error(f, VORBIS_invalid_stream);
 | |
|       }
 | |
| 
 | |
|       // if this will take us off the end of the buffers, stop short!
 | |
|       // we check by computing the length of the virtual interleaved
 | |
|       // buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter),
 | |
|       // and the length we'll be using (effective)
 | |
|       if (c_inter + p_inter*ch + effective > len * ch) {
 | |
|          effective = len*ch - (p_inter*ch - c_inter);
 | |
|       }
 | |
| 
 | |
|    #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|       if (c->lookup_type == 1) {
 | |
|          int div = 1;
 | |
|          for (i=0; i < effective; ++i) {
 | |
|             int off = (z / div) % c->lookup_values;
 | |
|             float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
 | |
|             if (outputs[c_inter])
 | |
|                outputs[c_inter][p_inter] += val;
 | |
|             if (++c_inter == ch) { c_inter = 0; ++p_inter; }
 | |
|             if (c->sequence_p) last = val;
 | |
|             div *= c->lookup_values;
 | |
|          }
 | |
|       } else
 | |
|    #endif
 | |
|       {
 | |
|          z *= c->dimensions;
 | |
|          if (c->sequence_p) {
 | |
|             for (i=0; i < effective; ++i) {
 | |
|                float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
 | |
|                if (outputs[c_inter])
 | |
|                   outputs[c_inter][p_inter] += val;
 | |
|                if (++c_inter == ch) { c_inter = 0; ++p_inter; }
 | |
|                last = val;
 | |
|             }
 | |
|          } else {
 | |
|             for (i=0; i < effective; ++i) {
 | |
|                float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
 | |
|                if (outputs[c_inter])
 | |
|                   outputs[c_inter][p_inter] += val;
 | |
|                if (++c_inter == ch) { c_inter = 0; ++p_inter; }
 | |
|             }
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       total_decode -= effective;
 | |
|    }
 | |
|    *c_inter_p = c_inter;
 | |
|    *p_inter_p = p_inter;
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int predict_point(int x, int x0, int x1, int y0, int y1)
 | |
| {
 | |
|    int dy = y1 - y0;
 | |
|    int adx = x1 - x0;
 | |
|    // @OPTIMIZE: force int division to round in the right direction... is this necessary on x86?
 | |
|    int err = abs(dy) * (x - x0);
 | |
|    int off = err / adx;
 | |
|    return dy < 0 ? y0 - off : y0 + off;
 | |
| }
 | |
| 
 | |
| // the following table is block-copied from the specification
 | |
| static float inverse_db_table[256] =
 | |
| {
 | |
|   1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f, 
 | |
|   1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f, 
 | |
|   1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f, 
 | |
|   2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f, 
 | |
|   2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f, 
 | |
|   3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f, 
 | |
|   4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f, 
 | |
|   6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f, 
 | |
|   7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f, 
 | |
|   1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f, 
 | |
|   1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f, 
 | |
|   1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f, 
 | |
|   2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f, 
 | |
|   2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f, 
 | |
|   3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f, 
 | |
|   4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f, 
 | |
|   5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f, 
 | |
|   7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f, 
 | |
|   9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f, 
 | |
|   1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f, 
 | |
|   1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f, 
 | |
|   2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f, 
 | |
|   2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f, 
 | |
|   3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f, 
 | |
|   4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f, 
 | |
|   5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f, 
 | |
|   7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f, 
 | |
|   9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f, 
 | |
|   0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f, 
 | |
|   0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f, 
 | |
|   0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f, 
 | |
|   0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f, 
 | |
|   0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f, 
 | |
|   0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f, 
 | |
|   0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f, 
 | |
|   0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f, 
 | |
|   0.00092223983f, 0.00098217216f, 0.0010459992f,  0.0011139742f, 
 | |
|   0.0011863665f,  0.0012634633f,  0.0013455702f,  0.0014330129f, 
 | |
|   0.0015261382f,  0.0016253153f,  0.0017309374f,  0.0018434235f, 
 | |
|   0.0019632195f,  0.0020908006f,  0.0022266726f,  0.0023713743f, 
 | |
|   0.0025254795f,  0.0026895994f,  0.0028643847f,  0.0030505286f, 
 | |
|   0.0032487691f,  0.0034598925f,  0.0036847358f,  0.0039241906f, 
 | |
|   0.0041792066f,  0.0044507950f,  0.0047400328f,  0.0050480668f, 
 | |
|   0.0053761186f,  0.0057254891f,  0.0060975636f,  0.0064938176f, 
 | |
|   0.0069158225f,  0.0073652516f,  0.0078438871f,  0.0083536271f, 
 | |
|   0.0088964928f,  0.009474637f,   0.010090352f,   0.010746080f, 
 | |
|   0.011444421f,   0.012188144f,   0.012980198f,   0.013823725f, 
 | |
|   0.014722068f,   0.015678791f,   0.016697687f,   0.017782797f, 
 | |
|   0.018938423f,   0.020169149f,   0.021479854f,   0.022875735f, 
 | |
|   0.024362330f,   0.025945531f,   0.027631618f,   0.029427276f, 
 | |
|   0.031339626f,   0.033376252f,   0.035545228f,   0.037855157f, 
 | |
|   0.040315199f,   0.042935108f,   0.045725273f,   0.048696758f, 
 | |
|   0.051861348f,   0.055231591f,   0.058820850f,   0.062643361f, 
 | |
|   0.066714279f,   0.071049749f,   0.075666962f,   0.080584227f, 
 | |
|   0.085821044f,   0.091398179f,   0.097337747f,   0.10366330f, 
 | |
|   0.11039993f,    0.11757434f,    0.12521498f,    0.13335215f, 
 | |
|   0.14201813f,    0.15124727f,    0.16107617f,    0.17154380f, 
 | |
|   0.18269168f,    0.19456402f,    0.20720788f,    0.22067342f, 
 | |
|   0.23501402f,    0.25028656f,    0.26655159f,    0.28387361f, 
 | |
|   0.30232132f,    0.32196786f,    0.34289114f,    0.36517414f, 
 | |
|   0.38890521f,    0.41417847f,    0.44109412f,    0.46975890f, 
 | |
|   0.50028648f,    0.53279791f,    0.56742212f,    0.60429640f, 
 | |
|   0.64356699f,    0.68538959f,    0.72993007f,    0.77736504f, 
 | |
|   0.82788260f,    0.88168307f,    0.9389798f,     1.0f
 | |
| };
 | |
| 
 | |
| 
 | |
| // @OPTIMIZE: if you want to replace this bresenham line-drawing routine,
 | |
| // note that you must produce bit-identical output to decode correctly;
 | |
| // this specific sequence of operations is specified in the spec (it's
 | |
| // drawing integer-quantized frequency-space lines that the encoder
 | |
| // expects to be exactly the same)
 | |
| //     ... also, isn't the whole point of Bresenham's algorithm to NOT
 | |
| // have to divide in the setup? sigh.
 | |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR
 | |
| #define LINE_OP(a,b)   a *= b
 | |
| #else
 | |
| #define LINE_OP(a,b)   a = b
 | |
| #endif
 | |
| 
 | |
| #ifdef STB_VORBIS_DIVIDE_TABLE
 | |
| #define DIVTAB_NUMER   32
 | |
| #define DIVTAB_DENOM   64
 | |
| int8 integer_divide_table[DIVTAB_NUMER][DIVTAB_DENOM]; // 2KB
 | |
| #endif
 | |
| 
 | |
| static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n)
 | |
| {
 | |
|    int dy = y1 - y0;
 | |
|    int adx = x1 - x0;
 | |
|    int ady = abs(dy);
 | |
|    int base;
 | |
|    int x=x0,y=y0;
 | |
|    int err = 0;
 | |
|    int sy;
 | |
| 
 | |
| #ifdef STB_VORBIS_DIVIDE_TABLE
 | |
|    if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) {
 | |
|       if (dy < 0) {
 | |
|          base = -integer_divide_table[ady][adx];
 | |
|          sy = base-1;
 | |
|       } else {
 | |
|          base =  integer_divide_table[ady][adx];
 | |
|          sy = base+1;
 | |
|       }
 | |
|    } else {
 | |
|       base = dy / adx;
 | |
|       if (dy < 0)
 | |
|          sy = base - 1;
 | |
|       else
 | |
|          sy = base+1;
 | |
|    }
 | |
| #else
 | |
|    base = dy / adx;
 | |
|    if (dy < 0)
 | |
|       sy = base - 1;
 | |
|    else
 | |
|       sy = base+1;
 | |
| #endif
 | |
|    ady -= abs(base) * adx;
 | |
|    if (x1 > n) x1 = n;
 | |
|    if (x < x1) {
 | |
|       LINE_OP(output[x], inverse_db_table[y&255]);
 | |
|       for (++x; x < x1; ++x) {
 | |
|          err += ady;
 | |
|          if (err >= adx) {
 | |
|             err -= adx;
 | |
|             y += sy;
 | |
|          } else
 | |
|             y += base;
 | |
|          LINE_OP(output[x], inverse_db_table[y&255]);
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| static int residue_decode(vorb *f, Codebook *book, float *target, int offset, int n, int rtype)
 | |
| {
 | |
|    int k;
 | |
|    if (rtype == 0) {
 | |
|       int step = n / book->dimensions;
 | |
|       for (k=0; k < step; ++k)
 | |
|          if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step))
 | |
|             return FALSE;
 | |
|    } else {
 | |
|       for (k=0; k < n; ) {
 | |
|          if (!codebook_decode(f, book, target+offset, n-k))
 | |
|             return FALSE;
 | |
|          k += book->dimensions;
 | |
|          offset += book->dimensions;
 | |
|       }
 | |
|    }
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| // n is 1/2 of the blocksize --
 | |
| // specification: "Correct per-vector decode length is [n]/2"
 | |
| static void decode_residue(vorb *f, float *residue_buffers[], int ch, int n, int rn, uint8 *do_not_decode)
 | |
| {
 | |
|    int i,j,pass;
 | |
|    Residue *r = f->residue_config + rn;
 | |
|    int rtype = f->residue_types[rn];
 | |
|    int c = r->classbook;
 | |
|    int classwords = f->codebooks[c].dimensions;
 | |
|    unsigned int actual_size = rtype == 2 ? n*2 : n;
 | |
|    unsigned int limit_r_begin = (r->begin < actual_size ? r->begin : actual_size);
 | |
|    unsigned int limit_r_end   = (r->end   < actual_size ? r->end   : actual_size);
 | |
|    int n_read = limit_r_end - limit_r_begin;
 | |
|    int part_read = n_read / r->part_size;
 | |
|    int temp_alloc_point = temp_alloc_save(f);
 | |
|    #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|    uint8 ***part_classdata = (uint8 ***) temp_block_array(f,f->channels, part_read * sizeof(**part_classdata));
 | |
|    #else
 | |
|    int **classifications = (int **) temp_block_array(f,f->channels, part_read * sizeof(**classifications));
 | |
|    #endif
 | |
| 
 | |
|    CHECK(f);
 | |
| 
 | |
|    for (i=0; i < ch; ++i)
 | |
|       if (!do_not_decode[i])
 | |
|          memset(residue_buffers[i], 0, sizeof(float) * n);
 | |
| 
 | |
|    if (rtype == 2 && ch != 1) {
 | |
|       for (j=0; j < ch; ++j)
 | |
|          if (!do_not_decode[j])
 | |
|             break;
 | |
|       if (j == ch)
 | |
|          goto done;
 | |
| 
 | |
|       for (pass=0; pass < 8; ++pass) {
 | |
|          int pcount = 0, class_set = 0;
 | |
|          if (ch == 2) {
 | |
|             while (pcount < part_read) {
 | |
|                int z = r->begin + pcount*r->part_size;
 | |
|                int c_inter = (z & 1), p_inter = z>>1;
 | |
|                if (pass == 0) {
 | |
|                   Codebook *c = f->codebooks+r->classbook;
 | |
|                   int q;
 | |
|                   DECODE(q,f,c);
 | |
|                   if (q == EOP) goto done;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   part_classdata[0][class_set] = r->classdata[q];
 | |
|                   #else
 | |
|                   for (i=classwords-1; i >= 0; --i) {
 | |
|                      classifications[0][i+pcount] = q % r->classifications;
 | |
|                      q /= r->classifications;
 | |
|                   }
 | |
|                   #endif
 | |
|                }
 | |
|                for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
 | |
|                   int z = r->begin + pcount*r->part_size;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   int c = part_classdata[0][class_set][i];
 | |
|                   #else
 | |
|                   int c = classifications[0][pcount];
 | |
|                   #endif
 | |
|                   int b = r->residue_books[c][pass];
 | |
|                   if (b >= 0) {
 | |
|                      Codebook *book = f->codebooks + b;
 | |
|                      #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|                      if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
 | |
|                         goto done;
 | |
|                      #else
 | |
|                      // saves 1%
 | |
|                      if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
 | |
|                         goto done;
 | |
|                      #endif
 | |
|                   } else {
 | |
|                      z += r->part_size;
 | |
|                      c_inter = z & 1;
 | |
|                      p_inter = z >> 1;
 | |
|                   }
 | |
|                }
 | |
|                #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                ++class_set;
 | |
|                #endif
 | |
|             }
 | |
|          } else if (ch == 1) {
 | |
|             while (pcount < part_read) {
 | |
|                int z = r->begin + pcount*r->part_size;
 | |
|                int c_inter = 0, p_inter = z;
 | |
|                if (pass == 0) {
 | |
|                   Codebook *c = f->codebooks+r->classbook;
 | |
|                   int q;
 | |
|                   DECODE(q,f,c);
 | |
|                   if (q == EOP) goto done;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   part_classdata[0][class_set] = r->classdata[q];
 | |
|                   #else
 | |
|                   for (i=classwords-1; i >= 0; --i) {
 | |
|                      classifications[0][i+pcount] = q % r->classifications;
 | |
|                      q /= r->classifications;
 | |
|                   }
 | |
|                   #endif
 | |
|                }
 | |
|                for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
 | |
|                   int z = r->begin + pcount*r->part_size;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   int c = part_classdata[0][class_set][i];
 | |
|                   #else
 | |
|                   int c = classifications[0][pcount];
 | |
|                   #endif
 | |
|                   int b = r->residue_books[c][pass];
 | |
|                   if (b >= 0) {
 | |
|                      Codebook *book = f->codebooks + b;
 | |
|                      if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
 | |
|                         goto done;
 | |
|                   } else {
 | |
|                      z += r->part_size;
 | |
|                      c_inter = 0;
 | |
|                      p_inter = z;
 | |
|                   }
 | |
|                }
 | |
|                #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                ++class_set;
 | |
|                #endif
 | |
|             }
 | |
|          } else {
 | |
|             while (pcount < part_read) {
 | |
|                int z = r->begin + pcount*r->part_size;
 | |
|                int c_inter = z % ch, p_inter = z/ch;
 | |
|                if (pass == 0) {
 | |
|                   Codebook *c = f->codebooks+r->classbook;
 | |
|                   int q;
 | |
|                   DECODE(q,f,c);
 | |
|                   if (q == EOP) goto done;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   part_classdata[0][class_set] = r->classdata[q];
 | |
|                   #else
 | |
|                   for (i=classwords-1; i >= 0; --i) {
 | |
|                      classifications[0][i+pcount] = q % r->classifications;
 | |
|                      q /= r->classifications;
 | |
|                   }
 | |
|                   #endif
 | |
|                }
 | |
|                for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
 | |
|                   int z = r->begin + pcount*r->part_size;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   int c = part_classdata[0][class_set][i];
 | |
|                   #else
 | |
|                   int c = classifications[0][pcount];
 | |
|                   #endif
 | |
|                   int b = r->residue_books[c][pass];
 | |
|                   if (b >= 0) {
 | |
|                      Codebook *book = f->codebooks + b;
 | |
|                      if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
 | |
|                         goto done;
 | |
|                   } else {
 | |
|                      z += r->part_size;
 | |
|                      c_inter = z % ch;
 | |
|                      p_inter = z / ch;
 | |
|                   }
 | |
|                }
 | |
|                #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                ++class_set;
 | |
|                #endif
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       goto done;
 | |
|    }
 | |
|    CHECK(f);
 | |
| 
 | |
|    for (pass=0; pass < 8; ++pass) {
 | |
|       int pcount = 0, class_set=0;
 | |
|       while (pcount < part_read) {
 | |
|          if (pass == 0) {
 | |
|             for (j=0; j < ch; ++j) {
 | |
|                if (!do_not_decode[j]) {
 | |
|                   Codebook *c = f->codebooks+r->classbook;
 | |
|                   int temp;
 | |
|                   DECODE(temp,f,c);
 | |
|                   if (temp == EOP) goto done;
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   part_classdata[j][class_set] = r->classdata[temp];
 | |
|                   #else
 | |
|                   for (i=classwords-1; i >= 0; --i) {
 | |
|                      classifications[j][i+pcount] = temp % r->classifications;
 | |
|                      temp /= r->classifications;
 | |
|                   }
 | |
|                   #endif
 | |
|                }
 | |
|             }
 | |
|          }
 | |
|          for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
 | |
|             for (j=0; j < ch; ++j) {
 | |
|                if (!do_not_decode[j]) {
 | |
|                   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|                   int c = part_classdata[j][class_set][i];
 | |
|                   #else
 | |
|                   int c = classifications[j][pcount];
 | |
|                   #endif
 | |
|                   int b = r->residue_books[c][pass];
 | |
|                   if (b >= 0) {
 | |
|                      float *target = residue_buffers[j];
 | |
|                      int offset = r->begin + pcount * r->part_size;
 | |
|                      int n = r->part_size;
 | |
|                      Codebook *book = f->codebooks + b;
 | |
|                      if (!residue_decode(f, book, target, offset, n, rtype))
 | |
|                         goto done;
 | |
|                   }
 | |
|                }
 | |
|             }
 | |
|          }
 | |
|          #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|          ++class_set;
 | |
|          #endif
 | |
|       }
 | |
|    }
 | |
|   done:
 | |
|    CHECK(f);
 | |
|    #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|    temp_free(f,part_classdata);
 | |
|    #else
 | |
|    temp_free(f,classifications);
 | |
|    #endif
 | |
|    temp_alloc_restore(f,temp_alloc_point);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| // slow way for debugging
 | |
| void inverse_mdct_slow(float *buffer, int n)
 | |
| {
 | |
|    int i,j;
 | |
|    int n2 = n >> 1;
 | |
|    float *x = (float *) malloc(sizeof(*x) * n2);
 | |
|    memcpy(x, buffer, sizeof(*x) * n2);
 | |
|    for (i=0; i < n; ++i) {
 | |
|       float acc = 0;
 | |
|       for (j=0; j < n2; ++j)
 | |
|          // formula from paper:
 | |
|          //acc += n/4.0f * x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1));
 | |
|          // formula from wikipedia
 | |
|          //acc += 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5));
 | |
|          // these are equivalent, except the formula from the paper inverts the multiplier!
 | |
|          // however, what actually works is NO MULTIPLIER!?!
 | |
|          //acc += 64 * 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5));
 | |
|          acc += x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1));
 | |
|       buffer[i] = acc;
 | |
|    }
 | |
|    free(x);
 | |
| }
 | |
| #elif 0
 | |
| // same as above, but just barely able to run in real time on modern machines
 | |
| void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype)
 | |
| {
 | |
|    float mcos[16384];
 | |
|    int i,j;
 | |
|    int n2 = n >> 1, nmask = (n << 2) -1;
 | |
|    float *x = (float *) malloc(sizeof(*x) * n2);
 | |
|    memcpy(x, buffer, sizeof(*x) * n2);
 | |
|    for (i=0; i < 4*n; ++i)
 | |
|       mcos[i] = (float) cos(M_PI / 2 * i / n);
 | |
| 
 | |
|    for (i=0; i < n; ++i) {
 | |
|       float acc = 0;
 | |
|       for (j=0; j < n2; ++j)
 | |
|          acc += x[j] * mcos[(2 * i + 1 + n2)*(2*j+1) & nmask];
 | |
|       buffer[i] = acc;
 | |
|    }
 | |
|    free(x);
 | |
| }
 | |
| #elif 0
 | |
| // transform to use a slow dct-iv; this is STILL basically trivial,
 | |
| // but only requires half as many ops
 | |
| void dct_iv_slow(float *buffer, int n)
 | |
| {
 | |
|    float mcos[16384];
 | |
|    float x[2048];
 | |
|    int i,j;
 | |
|    int n2 = n >> 1, nmask = (n << 3) - 1;
 | |
|    memcpy(x, buffer, sizeof(*x) * n);
 | |
|    for (i=0; i < 8*n; ++i)
 | |
|       mcos[i] = (float) cos(M_PI / 4 * i / n);
 | |
|    for (i=0; i < n; ++i) {
 | |
|       float acc = 0;
 | |
|       for (j=0; j < n; ++j)
 | |
|          acc += x[j] * mcos[((2 * i + 1)*(2*j+1)) & nmask];
 | |
|       buffer[i] = acc;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype)
 | |
| {
 | |
|    int i, n4 = n >> 2, n2 = n >> 1, n3_4 = n - n4;
 | |
|    float temp[4096];
 | |
| 
 | |
|    memcpy(temp, buffer, n2 * sizeof(float));
 | |
|    dct_iv_slow(temp, n2);  // returns -c'-d, a-b'
 | |
| 
 | |
|    for (i=0; i < n4  ; ++i) buffer[i] = temp[i+n4];            // a-b'
 | |
|    for (   ; i < n3_4; ++i) buffer[i] = -temp[n3_4 - i - 1];   // b-a', c+d'
 | |
|    for (   ; i < n   ; ++i) buffer[i] = -temp[i - n3_4];       // c'+d
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef LIBVORBIS_MDCT
 | |
| #define LIBVORBIS_MDCT 0
 | |
| #endif
 | |
| 
 | |
| #if LIBVORBIS_MDCT
 | |
| // directly call the vorbis MDCT using an interface documented
 | |
| // by Jeff Roberts... useful for performance comparison
 | |
| typedef struct 
 | |
| {
 | |
|   int n;
 | |
|   int log2n;
 | |
|   
 | |
|   float *trig;
 | |
|   int   *bitrev;
 | |
| 
 | |
|   float scale;
 | |
| } mdct_lookup;
 | |
| 
 | |
| extern void mdct_init(mdct_lookup *lookup, int n);
 | |
| extern void mdct_clear(mdct_lookup *l);
 | |
| extern void mdct_backward(mdct_lookup *init, float *in, float *out);
 | |
| 
 | |
| mdct_lookup M1,M2;
 | |
| 
 | |
| void inverse_mdct(float *buffer, int n, vorb *f, int blocktype)
 | |
| {
 | |
|    mdct_lookup *M;
 | |
|    if (M1.n == n) M = &M1;
 | |
|    else if (M2.n == n) M = &M2;
 | |
|    else if (M1.n == 0) { mdct_init(&M1, n); M = &M1; }
 | |
|    else { 
 | |
|       if (M2.n) __asm int 3;
 | |
|       mdct_init(&M2, n);
 | |
|       M = &M2;
 | |
|    }
 | |
| 
 | |
|    mdct_backward(M, buffer, buffer);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // the following were split out into separate functions while optimizing;
 | |
| // they could be pushed back up but eh. __forceinline showed no change;
 | |
| // they're probably already being inlined.
 | |
| static void imdct_step3_iter0_loop(int n, float *e, int i_off, int k_off, float *A)
 | |
| {
 | |
|    float *ee0 = e + i_off;
 | |
|    float *ee2 = ee0 + k_off;
 | |
|    int i;
 | |
| 
 | |
|    assert((n & 3) == 0);
 | |
|    for (i=(n>>2); i > 0; --i) {
 | |
|       float k00_20, k01_21;
 | |
|       k00_20  = ee0[ 0] - ee2[ 0];
 | |
|       k01_21  = ee0[-1] - ee2[-1];
 | |
|       ee0[ 0] += ee2[ 0];//ee0[ 0] = ee0[ 0] + ee2[ 0];
 | |
|       ee0[-1] += ee2[-1];//ee0[-1] = ee0[-1] + ee2[-1];
 | |
|       ee2[ 0] = k00_20 * A[0] - k01_21 * A[1];
 | |
|       ee2[-1] = k01_21 * A[0] + k00_20 * A[1];
 | |
|       A += 8;
 | |
| 
 | |
|       k00_20  = ee0[-2] - ee2[-2];
 | |
|       k01_21  = ee0[-3] - ee2[-3];
 | |
|       ee0[-2] += ee2[-2];//ee0[-2] = ee0[-2] + ee2[-2];
 | |
|       ee0[-3] += ee2[-3];//ee0[-3] = ee0[-3] + ee2[-3];
 | |
|       ee2[-2] = k00_20 * A[0] - k01_21 * A[1];
 | |
|       ee2[-3] = k01_21 * A[0] + k00_20 * A[1];
 | |
|       A += 8;
 | |
| 
 | |
|       k00_20  = ee0[-4] - ee2[-4];
 | |
|       k01_21  = ee0[-5] - ee2[-5];
 | |
|       ee0[-4] += ee2[-4];//ee0[-4] = ee0[-4] + ee2[-4];
 | |
|       ee0[-5] += ee2[-5];//ee0[-5] = ee0[-5] + ee2[-5];
 | |
|       ee2[-4] = k00_20 * A[0] - k01_21 * A[1];
 | |
|       ee2[-5] = k01_21 * A[0] + k00_20 * A[1];
 | |
|       A += 8;
 | |
| 
 | |
|       k00_20  = ee0[-6] - ee2[-6];
 | |
|       k01_21  = ee0[-7] - ee2[-7];
 | |
|       ee0[-6] += ee2[-6];//ee0[-6] = ee0[-6] + ee2[-6];
 | |
|       ee0[-7] += ee2[-7];//ee0[-7] = ee0[-7] + ee2[-7];
 | |
|       ee2[-6] = k00_20 * A[0] - k01_21 * A[1];
 | |
|       ee2[-7] = k01_21 * A[0] + k00_20 * A[1];
 | |
|       A += 8;
 | |
|       ee0 -= 8;
 | |
|       ee2 -= 8;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void imdct_step3_inner_r_loop(int lim, float *e, int d0, int k_off, float *A, int k1)
 | |
| {
 | |
|    int i;
 | |
|    float k00_20, k01_21;
 | |
| 
 | |
|    float *e0 = e + d0;
 | |
|    float *e2 = e0 + k_off;
 | |
| 
 | |
|    for (i=lim >> 2; i > 0; --i) {
 | |
|       k00_20 = e0[-0] - e2[-0];
 | |
|       k01_21 = e0[-1] - e2[-1];
 | |
|       e0[-0] += e2[-0];//e0[-0] = e0[-0] + e2[-0];
 | |
|       e0[-1] += e2[-1];//e0[-1] = e0[-1] + e2[-1];
 | |
|       e2[-0] = (k00_20)*A[0] - (k01_21) * A[1];
 | |
|       e2[-1] = (k01_21)*A[0] + (k00_20) * A[1];
 | |
| 
 | |
|       A += k1;
 | |
| 
 | |
|       k00_20 = e0[-2] - e2[-2];
 | |
|       k01_21 = e0[-3] - e2[-3];
 | |
|       e0[-2] += e2[-2];//e0[-2] = e0[-2] + e2[-2];
 | |
|       e0[-3] += e2[-3];//e0[-3] = e0[-3] + e2[-3];
 | |
|       e2[-2] = (k00_20)*A[0] - (k01_21) * A[1];
 | |
|       e2[-3] = (k01_21)*A[0] + (k00_20) * A[1];
 | |
| 
 | |
|       A += k1;
 | |
| 
 | |
|       k00_20 = e0[-4] - e2[-4];
 | |
|       k01_21 = e0[-5] - e2[-5];
 | |
|       e0[-4] += e2[-4];//e0[-4] = e0[-4] + e2[-4];
 | |
|       e0[-5] += e2[-5];//e0[-5] = e0[-5] + e2[-5];
 | |
|       e2[-4] = (k00_20)*A[0] - (k01_21) * A[1];
 | |
|       e2[-5] = (k01_21)*A[0] + (k00_20) * A[1];
 | |
| 
 | |
|       A += k1;
 | |
| 
 | |
|       k00_20 = e0[-6] - e2[-6];
 | |
|       k01_21 = e0[-7] - e2[-7];
 | |
|       e0[-6] += e2[-6];//e0[-6] = e0[-6] + e2[-6];
 | |
|       e0[-7] += e2[-7];//e0[-7] = e0[-7] + e2[-7];
 | |
|       e2[-6] = (k00_20)*A[0] - (k01_21) * A[1];
 | |
|       e2[-7] = (k01_21)*A[0] + (k00_20) * A[1];
 | |
| 
 | |
|       e0 -= 8;
 | |
|       e2 -= 8;
 | |
| 
 | |
|       A += k1;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void imdct_step3_inner_s_loop(int n, float *e, int i_off, int k_off, float *A, int a_off, int k0)
 | |
| {
 | |
|    int i;
 | |
|    float A0 = A[0];
 | |
|    float A1 = A[0+1];
 | |
|    float A2 = A[0+a_off];
 | |
|    float A3 = A[0+a_off+1];
 | |
|    float A4 = A[0+a_off*2+0];
 | |
|    float A5 = A[0+a_off*2+1];
 | |
|    float A6 = A[0+a_off*3+0];
 | |
|    float A7 = A[0+a_off*3+1];
 | |
| 
 | |
|    float k00,k11;
 | |
| 
 | |
|    float *ee0 = e  +i_off;
 | |
|    float *ee2 = ee0+k_off;
 | |
| 
 | |
|    for (i=n; i > 0; --i) {
 | |
|       k00     = ee0[ 0] - ee2[ 0];
 | |
|       k11     = ee0[-1] - ee2[-1];
 | |
|       ee0[ 0] =  ee0[ 0] + ee2[ 0];
 | |
|       ee0[-1] =  ee0[-1] + ee2[-1];
 | |
|       ee2[ 0] = (k00) * A0 - (k11) * A1;
 | |
|       ee2[-1] = (k11) * A0 + (k00) * A1;
 | |
| 
 | |
|       k00     = ee0[-2] - ee2[-2];
 | |
|       k11     = ee0[-3] - ee2[-3];
 | |
|       ee0[-2] =  ee0[-2] + ee2[-2];
 | |
|       ee0[-3] =  ee0[-3] + ee2[-3];
 | |
|       ee2[-2] = (k00) * A2 - (k11) * A3;
 | |
|       ee2[-3] = (k11) * A2 + (k00) * A3;
 | |
| 
 | |
|       k00     = ee0[-4] - ee2[-4];
 | |
|       k11     = ee0[-5] - ee2[-5];
 | |
|       ee0[-4] =  ee0[-4] + ee2[-4];
 | |
|       ee0[-5] =  ee0[-5] + ee2[-5];
 | |
|       ee2[-4] = (k00) * A4 - (k11) * A5;
 | |
|       ee2[-5] = (k11) * A4 + (k00) * A5;
 | |
| 
 | |
|       k00     = ee0[-6] - ee2[-6];
 | |
|       k11     = ee0[-7] - ee2[-7];
 | |
|       ee0[-6] =  ee0[-6] + ee2[-6];
 | |
|       ee0[-7] =  ee0[-7] + ee2[-7];
 | |
|       ee2[-6] = (k00) * A6 - (k11) * A7;
 | |
|       ee2[-7] = (k11) * A6 + (k00) * A7;
 | |
| 
 | |
|       ee0 -= k0;
 | |
|       ee2 -= k0;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static __forceinline void iter_54(float *z)
 | |
| {
 | |
|    float k00,k11,k22,k33;
 | |
|    float y0,y1,y2,y3;
 | |
| 
 | |
|    k00  = z[ 0] - z[-4];
 | |
|    y0   = z[ 0] + z[-4];
 | |
|    y2   = z[-2] + z[-6];
 | |
|    k22  = z[-2] - z[-6];
 | |
| 
 | |
|    z[-0] = y0 + y2;      // z0 + z4 + z2 + z6
 | |
|    z[-2] = y0 - y2;      // z0 + z4 - z2 - z6
 | |
| 
 | |
|    // done with y0,y2
 | |
| 
 | |
|    k33  = z[-3] - z[-7];
 | |
| 
 | |
|    z[-4] = k00 + k33;    // z0 - z4 + z3 - z7
 | |
|    z[-6] = k00 - k33;    // z0 - z4 - z3 + z7
 | |
| 
 | |
|    // done with k33
 | |
| 
 | |
|    k11  = z[-1] - z[-5];
 | |
|    y1   = z[-1] + z[-5];
 | |
|    y3   = z[-3] + z[-7];
 | |
| 
 | |
|    z[-1] = y1 + y3;      // z1 + z5 + z3 + z7
 | |
|    z[-3] = y1 - y3;      // z1 + z5 - z3 - z7
 | |
|    z[-5] = k11 - k22;    // z1 - z5 + z2 - z6
 | |
|    z[-7] = k11 + k22;    // z1 - z5 - z2 + z6
 | |
| }
 | |
| 
 | |
| static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n)
 | |
| {
 | |
|    int a_off = base_n >> 3;
 | |
|    float A2 = A[0+a_off];
 | |
|    float *z = e + i_off;
 | |
|    float *base = z - 16 * n;
 | |
| 
 | |
|    while (z > base) {
 | |
|       float k00,k11;
 | |
| 
 | |
|       k00   = z[-0] - z[-8];
 | |
|       k11   = z[-1] - z[-9];
 | |
|       z[-0] = z[-0] + z[-8];
 | |
|       z[-1] = z[-1] + z[-9];
 | |
|       z[-8] =  k00;
 | |
|       z[-9] =  k11 ;
 | |
| 
 | |
|       k00    = z[ -2] - z[-10];
 | |
|       k11    = z[ -3] - z[-11];
 | |
|       z[ -2] = z[ -2] + z[-10];
 | |
|       z[ -3] = z[ -3] + z[-11];
 | |
|       z[-10] = (k00+k11) * A2;
 | |
|       z[-11] = (k11-k00) * A2;
 | |
| 
 | |
|       k00    = z[-12] - z[ -4];  // reverse to avoid a unary negation
 | |
|       k11    = z[ -5] - z[-13];
 | |
|       z[ -4] = z[ -4] + z[-12];
 | |
|       z[ -5] = z[ -5] + z[-13];
 | |
|       z[-12] = k11;
 | |
|       z[-13] = k00;
 | |
| 
 | |
|       k00    = z[-14] - z[ -6];  // reverse to avoid a unary negation
 | |
|       k11    = z[ -7] - z[-15];
 | |
|       z[ -6] = z[ -6] + z[-14];
 | |
|       z[ -7] = z[ -7] + z[-15];
 | |
|       z[-14] = (k00+k11) * A2;
 | |
|       z[-15] = (k00-k11) * A2;
 | |
| 
 | |
|       iter_54(z);
 | |
|       iter_54(z-8);
 | |
|       z -= 16;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void inverse_mdct(float *buffer, int n, vorb *f, int blocktype)
 | |
| {
 | |
|    int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l;
 | |
|    int ld;
 | |
|    // @OPTIMIZE: reduce register pressure by using fewer variables?
 | |
|    int save_point = temp_alloc_save(f);
 | |
|    float *buf2 = (float *) temp_alloc(f, n2 * sizeof(*buf2));
 | |
|    float *u=NULL,*v=NULL;
 | |
|    // twiddle factors
 | |
|    float *A = f->A[blocktype];
 | |
| 
 | |
|    // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio"
 | |
|    // See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function.
 | |
| 
 | |
|    // kernel from paper
 | |
| 
 | |
| 
 | |
|    // merged:
 | |
|    //   copy and reflect spectral data
 | |
|    //   step 0
 | |
| 
 | |
|    // note that it turns out that the items added together during
 | |
|    // this step are, in fact, being added to themselves (as reflected
 | |
|    // by step 0). inexplicable inefficiency! this became obvious
 | |
|    // once I combined the passes.
 | |
| 
 | |
|    // so there's a missing 'times 2' here (for adding X to itself).
 | |
|    // this propagates through linearly to the end, where the numbers
 | |
|    // are 1/2 too small, and need to be compensated for.
 | |
| 
 | |
|    {
 | |
|       float *d,*e, *AA, *e_stop;
 | |
|       d = &buf2[n2-2];
 | |
|       AA = A;
 | |
|       e = &buffer[0];
 | |
|       e_stop = &buffer[n2];
 | |
|       while (e != e_stop) {
 | |
|          d[1] = (e[0] * AA[0] - e[2]*AA[1]);
 | |
|          d[0] = (e[0] * AA[1] + e[2]*AA[0]);
 | |
|          d -= 2;
 | |
|          AA += 2;
 | |
|          e += 4;
 | |
|       }
 | |
| 
 | |
|       e = &buffer[n2-3];
 | |
|       while (d >= buf2) {
 | |
|          d[1] = (-e[2] * AA[0] - -e[0]*AA[1]);
 | |
|          d[0] = (-e[2] * AA[1] + -e[0]*AA[0]);
 | |
|          d -= 2;
 | |
|          AA += 2;
 | |
|          e -= 4;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // now we use symbolic names for these, so that we can
 | |
|    // possibly swap their meaning as we change which operations
 | |
|    // are in place
 | |
| 
 | |
|    u = buffer;
 | |
|    v = buf2;
 | |
| 
 | |
|    // step 2    (paper output is w, now u)
 | |
|    // this could be in place, but the data ends up in the wrong
 | |
|    // place... _somebody_'s got to swap it, so this is nominated
 | |
|    {
 | |
|       float *AA = &A[n2-8];
 | |
|       float *d0,*d1, *e0, *e1;
 | |
| 
 | |
|       e0 = &v[n4];
 | |
|       e1 = &v[0];
 | |
| 
 | |
|       d0 = &u[n4];
 | |
|       d1 = &u[0];
 | |
| 
 | |
|       while (AA >= A) {
 | |
|          float v40_20, v41_21;
 | |
| 
 | |
|          v41_21 = e0[1] - e1[1];
 | |
|          v40_20 = e0[0] - e1[0];
 | |
|          d0[1]  = e0[1] + e1[1];
 | |
|          d0[0]  = e0[0] + e1[0];
 | |
|          d1[1]  = v41_21*AA[4] - v40_20*AA[5];
 | |
|          d1[0]  = v40_20*AA[4] + v41_21*AA[5];
 | |
| 
 | |
|          v41_21 = e0[3] - e1[3];
 | |
|          v40_20 = e0[2] - e1[2];
 | |
|          d0[3]  = e0[3] + e1[3];
 | |
|          d0[2]  = e0[2] + e1[2];
 | |
|          d1[3]  = v41_21*AA[0] - v40_20*AA[1];
 | |
|          d1[2]  = v40_20*AA[0] + v41_21*AA[1];
 | |
| 
 | |
|          AA -= 8;
 | |
| 
 | |
|          d0 += 4;
 | |
|          d1 += 4;
 | |
|          e0 += 4;
 | |
|          e1 += 4;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // step 3
 | |
|    ld = ilog(n) - 1; // ilog is off-by-one from normal definitions
 | |
| 
 | |
|    // optimized step 3:
 | |
| 
 | |
|    // the original step3 loop can be nested r inside s or s inside r;
 | |
|    // it's written originally as s inside r, but this is dumb when r
 | |
|    // iterates many times, and s few. So I have two copies of it and
 | |
|    // switch between them halfway.
 | |
| 
 | |
|    // this is iteration 0 of step 3
 | |
|    imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*0, -(n >> 3), A);
 | |
|    imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*1, -(n >> 3), A);
 | |
| 
 | |
|    // this is iteration 1 of step 3
 | |
|    imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*0, -(n >> 4), A, 16);
 | |
|    imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*1, -(n >> 4), A, 16);
 | |
|    imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*2, -(n >> 4), A, 16);
 | |
|    imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*3, -(n >> 4), A, 16);
 | |
| 
 | |
|    l=2;
 | |
|    for (; l < (ld-3)>>1; ++l) {
 | |
|       int k0 = n >> (l+2), k0_2 = k0>>1;
 | |
|       int lim = 1 << (l+1);
 | |
|       int i;
 | |
|       for (i=0; i < lim; ++i)
 | |
|          imdct_step3_inner_r_loop(n >> (l+4), u, n2-1 - k0*i, -k0_2, A, 1 << (l+3));
 | |
|    }
 | |
| 
 | |
|    for (; l < ld-6; ++l) {
 | |
|       int k0 = n >> (l+2), k1 = 1 << (l+3), k0_2 = k0>>1;
 | |
|       int rlim = n >> (l+6), r;
 | |
|       int lim = 1 << (l+1);
 | |
|       int i_off;
 | |
|       float *A0 = A;
 | |
|       i_off = n2-1;
 | |
|       for (r=rlim; r > 0; --r) {
 | |
|          imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0);
 | |
|          A0 += k1*4;
 | |
|          i_off -= 8;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // iterations with count:
 | |
|    //   ld-6,-5,-4 all interleaved together
 | |
|    //       the big win comes from getting rid of needless flops
 | |
|    //         due to the constants on pass 5 & 4 being all 1 and 0;
 | |
|    //       combining them to be simultaneous to improve cache made little difference
 | |
|    imdct_step3_inner_s_loop_ld654(n >> 5, u, n2-1, A, n);
 | |
| 
 | |
|    // output is u
 | |
| 
 | |
|    // step 4, 5, and 6
 | |
|    // cannot be in-place because of step 5
 | |
|    {
 | |
|       uint16 *bitrev = f->bit_reverse[blocktype];
 | |
|       // weirdly, I'd have thought reading sequentially and writing
 | |
|       // erratically would have been better than vice-versa, but in
 | |
|       // fact that's not what my testing showed. (That is, with
 | |
|       // j = bitreverse(i), do you read i and write j, or read j and write i.)
 | |
| 
 | |
|       float *d0 = &v[n4-4];
 | |
|       float *d1 = &v[n2-4];
 | |
|       while (d0 >= v) {
 | |
|          int k4;
 | |
| 
 | |
|          k4 = bitrev[0];
 | |
|          d1[3] = u[k4+0];
 | |
|          d1[2] = u[k4+1];
 | |
|          d0[3] = u[k4+2];
 | |
|          d0[2] = u[k4+3];
 | |
| 
 | |
|          k4 = bitrev[1];
 | |
|          d1[1] = u[k4+0];
 | |
|          d1[0] = u[k4+1];
 | |
|          d0[1] = u[k4+2];
 | |
|          d0[0] = u[k4+3];
 | |
|          
 | |
|          d0 -= 4;
 | |
|          d1 -= 4;
 | |
|          bitrev += 2;
 | |
|       }
 | |
|    }
 | |
|    // (paper output is u, now v)
 | |
| 
 | |
| 
 | |
|    // data must be in buf2
 | |
|    assert(v == buf2);
 | |
| 
 | |
|    // step 7   (paper output is v, now v)
 | |
|    // this is now in place
 | |
|    {
 | |
|       float *C = f->C[blocktype];
 | |
|       float *d, *e;
 | |
| 
 | |
|       d = v;
 | |
|       e = v + n2 - 4;
 | |
| 
 | |
|       while (d < e) {
 | |
|          float a02,a11,b0,b1,b2,b3;
 | |
| 
 | |
|          a02 = d[0] - e[2];
 | |
|          a11 = d[1] + e[3];
 | |
| 
 | |
|          b0 = C[1]*a02 + C[0]*a11;
 | |
|          b1 = C[1]*a11 - C[0]*a02;
 | |
| 
 | |
|          b2 = d[0] + e[ 2];
 | |
|          b3 = d[1] - e[ 3];
 | |
| 
 | |
|          d[0] = b2 + b0;
 | |
|          d[1] = b3 + b1;
 | |
|          e[2] = b2 - b0;
 | |
|          e[3] = b1 - b3;
 | |
| 
 | |
|          a02 = d[2] - e[0];
 | |
|          a11 = d[3] + e[1];
 | |
| 
 | |
|          b0 = C[3]*a02 + C[2]*a11;
 | |
|          b1 = C[3]*a11 - C[2]*a02;
 | |
| 
 | |
|          b2 = d[2] + e[ 0];
 | |
|          b3 = d[3] - e[ 1];
 | |
| 
 | |
|          d[2] = b2 + b0;
 | |
|          d[3] = b3 + b1;
 | |
|          e[0] = b2 - b0;
 | |
|          e[1] = b1 - b3;
 | |
| 
 | |
|          C += 4;
 | |
|          d += 4;
 | |
|          e -= 4;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // data must be in buf2
 | |
| 
 | |
| 
 | |
|    // step 8+decode   (paper output is X, now buffer)
 | |
|    // this generates pairs of data a la 8 and pushes them directly through
 | |
|    // the decode kernel (pushing rather than pulling) to avoid having
 | |
|    // to make another pass later
 | |
| 
 | |
|    // this cannot POSSIBLY be in place, so we refer to the buffers directly
 | |
| 
 | |
|    {
 | |
|       float *d0,*d1,*d2,*d3;
 | |
| 
 | |
|       float *B = f->B[blocktype] + n2 - 8;
 | |
|       float *e = buf2 + n2 - 8;
 | |
|       d0 = &buffer[0];
 | |
|       d1 = &buffer[n2-4];
 | |
|       d2 = &buffer[n2];
 | |
|       d3 = &buffer[n-4];
 | |
|       while (e >= v) {
 | |
|          float p0,p1,p2,p3;
 | |
| 
 | |
|          p3 =  e[6]*B[7] - e[7]*B[6];
 | |
|          p2 = -e[6]*B[6] - e[7]*B[7]; 
 | |
| 
 | |
|          d0[0] =   p3;
 | |
|          d1[3] = - p3;
 | |
|          d2[0] =   p2;
 | |
|          d3[3] =   p2;
 | |
| 
 | |
|          p1 =  e[4]*B[5] - e[5]*B[4];
 | |
|          p0 = -e[4]*B[4] - e[5]*B[5]; 
 | |
| 
 | |
|          d0[1] =   p1;
 | |
|          d1[2] = - p1;
 | |
|          d2[1] =   p0;
 | |
|          d3[2] =   p0;
 | |
| 
 | |
|          p3 =  e[2]*B[3] - e[3]*B[2];
 | |
|          p2 = -e[2]*B[2] - e[3]*B[3]; 
 | |
| 
 | |
|          d0[2] =   p3;
 | |
|          d1[1] = - p3;
 | |
|          d2[2] =   p2;
 | |
|          d3[1] =   p2;
 | |
| 
 | |
|          p1 =  e[0]*B[1] - e[1]*B[0];
 | |
|          p0 = -e[0]*B[0] - e[1]*B[1]; 
 | |
| 
 | |
|          d0[3] =   p1;
 | |
|          d1[0] = - p1;
 | |
|          d2[3] =   p0;
 | |
|          d3[0] =   p0;
 | |
| 
 | |
|          B -= 8;
 | |
|          e -= 8;
 | |
|          d0 += 4;
 | |
|          d2 += 4;
 | |
|          d1 -= 4;
 | |
|          d3 -= 4;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    temp_free(f,buf2);
 | |
|    temp_alloc_restore(f,save_point);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| // this is the original version of the above code, if you want to optimize it from scratch
 | |
| void inverse_mdct_naive(float *buffer, int n)
 | |
| {
 | |
|    float s;
 | |
|    float A[1 << 12], B[1 << 12], C[1 << 11];
 | |
|    int i,k,k2,k4, n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l;
 | |
|    int n3_4 = n - n4, ld;
 | |
|    // how can they claim this only uses N words?!
 | |
|    // oh, because they're only used sparsely, whoops
 | |
|    float u[1 << 13], X[1 << 13], v[1 << 13], w[1 << 13];
 | |
|    // set up twiddle factors
 | |
| 
 | |
|    for (k=k2=0; k < n4; ++k,k2+=2) {
 | |
|       A[k2  ] = (float)  cos(4*k*M_PI/n);
 | |
|       A[k2+1] = (float) -sin(4*k*M_PI/n);
 | |
|       B[k2  ] = (float)  cos((k2+1)*M_PI/n/2);
 | |
|       B[k2+1] = (float)  sin((k2+1)*M_PI/n/2);
 | |
|    }
 | |
|    for (k=k2=0; k < n8; ++k,k2+=2) {
 | |
|       C[k2  ] = (float)  cos(2*(k2+1)*M_PI/n);
 | |
|       C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n);
 | |
|    }
 | |
| 
 | |
|    // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio"
 | |
|    // Note there are bugs in that pseudocode, presumably due to them attempting
 | |
|    // to rename the arrays nicely rather than representing the way their actual
 | |
|    // implementation bounces buffers back and forth. As a result, even in the
 | |
|    // "some formulars corrected" version, a direct implementation fails. These
 | |
|    // are noted below as "paper bug".
 | |
| 
 | |
|    // copy and reflect spectral data
 | |
|    for (k=0; k < n2; ++k) u[k] = buffer[k];
 | |
|    for (   ; k < n ; ++k) u[k] = -buffer[n - k - 1];
 | |
|    // kernel from paper
 | |
|    // step 1
 | |
|    for (k=k2=k4=0; k < n4; k+=1, k2+=2, k4+=4) {
 | |
|       v[n-k4-1] = (u[k4] - u[n-k4-1]) * A[k2]   - (u[k4+2] - u[n-k4-3])*A[k2+1];
 | |
|       v[n-k4-3] = (u[k4] - u[n-k4-1]) * A[k2+1] + (u[k4+2] - u[n-k4-3])*A[k2];
 | |
|    }
 | |
|    // step 2
 | |
|    for (k=k4=0; k < n8; k+=1, k4+=4) {
 | |
|       w[n2+3+k4] = v[n2+3+k4] + v[k4+3];
 | |
|       w[n2+1+k4] = v[n2+1+k4] + v[k4+1];
 | |
|       w[k4+3]    = (v[n2+3+k4] - v[k4+3])*A[n2-4-k4] - (v[n2+1+k4]-v[k4+1])*A[n2-3-k4];
 | |
|       w[k4+1]    = (v[n2+1+k4] - v[k4+1])*A[n2-4-k4] + (v[n2+3+k4]-v[k4+3])*A[n2-3-k4];
 | |
|    }
 | |
|    // step 3
 | |
|    ld = ilog(n) - 1; // ilog is off-by-one from normal definitions
 | |
|    for (l=0; l < ld-3; ++l) {
 | |
|       int k0 = n >> (l+2), k1 = 1 << (l+3);
 | |
|       int rlim = n >> (l+4), r4, r;
 | |
|       int s2lim = 1 << (l+2), s2;
 | |
|       for (r=r4=0; r < rlim; r4+=4,++r) {
 | |
|          for (s2=0; s2 < s2lim; s2+=2) {
 | |
|             u[n-1-k0*s2-r4] = w[n-1-k0*s2-r4] + w[n-1-k0*(s2+1)-r4];
 | |
|             u[n-3-k0*s2-r4] = w[n-3-k0*s2-r4] + w[n-3-k0*(s2+1)-r4];
 | |
|             u[n-1-k0*(s2+1)-r4] = (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1]
 | |
|                                 - (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1+1];
 | |
|             u[n-3-k0*(s2+1)-r4] = (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1]
 | |
|                                 + (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1+1];
 | |
|          }
 | |
|       }
 | |
|       if (l+1 < ld-3) {
 | |
|          // paper bug: ping-ponging of u&w here is omitted
 | |
|          memcpy(w, u, sizeof(u));
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // step 4
 | |
|    for (i=0; i < n8; ++i) {
 | |
|       int j = bit_reverse(i) >> (32-ld+3);
 | |
|       assert(j < n8);
 | |
|       if (i == j) {
 | |
|          // paper bug: original code probably swapped in place; if copying,
 | |
|          //            need to directly copy in this case
 | |
|          int i8 = i << 3;
 | |
|          v[i8+1] = u[i8+1];
 | |
|          v[i8+3] = u[i8+3];
 | |
|          v[i8+5] = u[i8+5];
 | |
|          v[i8+7] = u[i8+7];
 | |
|       } else if (i < j) {
 | |
|          int i8 = i << 3, j8 = j << 3;
 | |
|          v[j8+1] = u[i8+1], v[i8+1] = u[j8 + 1];
 | |
|          v[j8+3] = u[i8+3], v[i8+3] = u[j8 + 3];
 | |
|          v[j8+5] = u[i8+5], v[i8+5] = u[j8 + 5];
 | |
|          v[j8+7] = u[i8+7], v[i8+7] = u[j8 + 7];
 | |
|       }
 | |
|    }
 | |
|    // step 5
 | |
|    for (k=0; k < n2; ++k) {
 | |
|       w[k] = v[k*2+1];
 | |
|    }
 | |
|    // step 6
 | |
|    for (k=k2=k4=0; k < n8; ++k, k2 += 2, k4 += 4) {
 | |
|       u[n-1-k2] = w[k4];
 | |
|       u[n-2-k2] = w[k4+1];
 | |
|       u[n3_4 - 1 - k2] = w[k4+2];
 | |
|       u[n3_4 - 2 - k2] = w[k4+3];
 | |
|    }
 | |
|    // step 7
 | |
|    for (k=k2=0; k < n8; ++k, k2 += 2) {
 | |
|       v[n2 + k2 ] = ( u[n2 + k2] + u[n-2-k2] + C[k2+1]*(u[n2+k2]-u[n-2-k2]) + C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2;
 | |
|       v[n-2 - k2] = ( u[n2 + k2] + u[n-2-k2] - C[k2+1]*(u[n2+k2]-u[n-2-k2]) - C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2;
 | |
|       v[n2+1+ k2] = ( u[n2+1+k2] - u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2;
 | |
|       v[n-1 - k2] = (-u[n2+1+k2] + u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2;
 | |
|    }
 | |
|    // step 8
 | |
|    for (k=k2=0; k < n4; ++k,k2 += 2) {
 | |
|       X[k]      = v[k2+n2]*B[k2  ] + v[k2+1+n2]*B[k2+1];
 | |
|       X[n2-1-k] = v[k2+n2]*B[k2+1] - v[k2+1+n2]*B[k2  ];
 | |
|    }
 | |
| 
 | |
|    // decode kernel to output
 | |
|    // determined the following value experimentally
 | |
|    // (by first figuring out what made inverse_mdct_slow work); then matching that here
 | |
|    // (probably vorbis encoder premultiplies by n or n/2, to save it on the decoder?)
 | |
|    s = 0.5; // theoretically would be n4
 | |
| 
 | |
|    // [[[ note! the s value of 0.5 is compensated for by the B[] in the current code,
 | |
|    //     so it needs to use the "old" B values to behave correctly, or else
 | |
|    //     set s to 1.0 ]]]
 | |
|    for (i=0; i < n4  ; ++i) buffer[i] = s * X[i+n4];
 | |
|    for (   ; i < n3_4; ++i) buffer[i] = -s * X[n3_4 - i - 1];
 | |
|    for (   ; i < n   ; ++i) buffer[i] = -s * X[i - n3_4];
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static float *get_window(vorb *f, int len)
 | |
| {
 | |
|    len <<= 1;
 | |
|    if (len == f->blocksize_0) return f->window[0];
 | |
|    if (len == f->blocksize_1) return f->window[1];
 | |
|    return NULL;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR
 | |
| typedef int16 YTYPE;
 | |
| #else
 | |
| typedef int YTYPE;
 | |
| #endif
 | |
| static int do_floor(vorb *f, Mapping *map, int i, int n, float *target, YTYPE *finalY, uint8 *step2_flag)
 | |
| {
 | |
|    int n2 = n >> 1;
 | |
|    int s = map->chan[i].mux, floor;
 | |
|    floor = map->submap_floor[s];
 | |
|    if (f->floor_types[floor] == 0) {
 | |
|       return error(f, VORBIS_invalid_stream);
 | |
|    } else {
 | |
|       Floor1 *g = &f->floor_config[floor].floor1;
 | |
|       int j,q;
 | |
|       int lx = 0, ly = finalY[0] * g->floor1_multiplier;
 | |
|       for (q=1; q < g->values; ++q) {
 | |
|          j = g->sorted_order[q];
 | |
|          #ifndef STB_VORBIS_NO_DEFER_FLOOR
 | |
|          if (finalY[j] >= 0)
 | |
|          #else
 | |
|          if (step2_flag[j])
 | |
|          #endif
 | |
|          {
 | |
|             int hy = finalY[j] * g->floor1_multiplier;
 | |
|             int hx = g->Xlist[j];
 | |
|             if (lx != hx)
 | |
|                draw_line(target, lx,ly, hx,hy, n2);
 | |
|             CHECK(f);
 | |
|             lx = hx, ly = hy;
 | |
|          }
 | |
|       }
 | |
|       if (lx < n2) {
 | |
|          // optimization of: draw_line(target, lx,ly, n,ly, n2);
 | |
|          for (j=lx; j < n2; ++j)
 | |
|             LINE_OP(target[j], inverse_db_table[ly]);
 | |
|          CHECK(f);
 | |
|       }
 | |
|    }
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| // The meaning of "left" and "right"
 | |
| //
 | |
| // For a given frame:
 | |
| //     we compute samples from 0..n
 | |
| //     window_center is n/2
 | |
| //     we'll window and mix the samples from left_start to left_end with data from the previous frame
 | |
| //     all of the samples from left_end to right_start can be output without mixing; however,
 | |
| //        this interval is 0-length except when transitioning between short and long frames
 | |
| //     all of the samples from right_start to right_end need to be mixed with the next frame,
 | |
| //        which we don't have, so those get saved in a buffer
 | |
| //     frame N's right_end-right_start, the number of samples to mix with the next frame,
 | |
| //        has to be the same as frame N+1's left_end-left_start (which they are by
 | |
| //        construction)
 | |
| 
 | |
| static int vorbis_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode)
 | |
| {
 | |
|    Mode *m;
 | |
|    int i, n, prev, next, window_center;
 | |
|    f->channel_buffer_start = f->channel_buffer_end = 0;
 | |
| 
 | |
|   retry:
 | |
|    if (f->eof) return FALSE;
 | |
|    if (!maybe_start_packet(f))
 | |
|       return FALSE;
 | |
|    // check packet type
 | |
|    if (get_bits(f,1) != 0) {
 | |
|       if (IS_PUSH_MODE(f))
 | |
|          return error(f,VORBIS_bad_packet_type);
 | |
|       while (EOP != get8_packet(f));
 | |
|       goto retry;
 | |
|    }
 | |
| 
 | |
|    if (f->alloc.alloc_buffer)
 | |
|       assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
 | |
| 
 | |
|    i = get_bits(f, ilog(f->mode_count-1));
 | |
|    if (i == EOP) return FALSE;
 | |
|    if (i >= f->mode_count) return FALSE;
 | |
|    *mode = i;
 | |
|    m = f->mode_config + i;
 | |
|    if (m->blockflag) {
 | |
|       n = f->blocksize_1;
 | |
|       prev = get_bits(f,1);
 | |
|       next = get_bits(f,1);
 | |
|    } else {
 | |
|       prev = next = 0;
 | |
|       n = f->blocksize_0;
 | |
|    }
 | |
| 
 | |
| // WINDOWING
 | |
| 
 | |
|    window_center = n >> 1;
 | |
|    if (m->blockflag && !prev) {
 | |
|       *p_left_start = (n - f->blocksize_0) >> 2;
 | |
|       *p_left_end   = (n + f->blocksize_0) >> 2;
 | |
|    } else {
 | |
|       *p_left_start = 0;
 | |
|       *p_left_end   = window_center;
 | |
|    }
 | |
|    if (m->blockflag && !next) {
 | |
|       *p_right_start = (n*3 - f->blocksize_0) >> 2;
 | |
|       *p_right_end   = (n*3 + f->blocksize_0) >> 2;
 | |
|    } else {
 | |
|       *p_right_start = window_center;
 | |
|       *p_right_end   = n;
 | |
|    }
 | |
| 
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int vorbis_decode_packet_rest(vorb *f, int *len, Mode *m, int left_start, int left_end, int right_start, int right_end, int *p_left)
 | |
| {
 | |
|    Mapping *map;
 | |
|    int i,j,k,n,n2;
 | |
|    int zero_channel[256];
 | |
|    int really_zero_channel[256];
 | |
| 
 | |
| // WINDOWING
 | |
| 
 | |
|    n = f->blocksize[m->blockflag];
 | |
|    map = &f->mapping[m->mapping];
 | |
| 
 | |
| // FLOORS
 | |
|    n2 = n >> 1;
 | |
| 
 | |
|    CHECK(f);
 | |
| 
 | |
|    for (i=0; i < f->channels; ++i) {
 | |
|       int s = map->chan[i].mux, floor;
 | |
|       zero_channel[i] = FALSE;
 | |
|       floor = map->submap_floor[s];
 | |
|       if (f->floor_types[floor] == 0) {
 | |
|          return error(f, VORBIS_invalid_stream);
 | |
|       } else {
 | |
|          Floor1 *g = &f->floor_config[floor].floor1;
 | |
|          if (get_bits(f, 1)) {
 | |
|             short *finalY;
 | |
|             uint8 step2_flag[256];
 | |
|             static int range_list[4] = { 256, 128, 86, 64 };
 | |
|             int range = range_list[g->floor1_multiplier-1];
 | |
|             int offset = 2;
 | |
|             finalY = f->finalY[i];
 | |
|             finalY[0] = get_bits(f, ilog(range)-1);
 | |
|             finalY[1] = get_bits(f, ilog(range)-1);
 | |
|             for (j=0; j < g->partitions; ++j) {
 | |
|                int pclass = g->partition_class_list[j];
 | |
|                int cdim = g->class_dimensions[pclass];
 | |
|                int cbits = g->class_subclasses[pclass];
 | |
|                int csub = (1 << cbits)-1;
 | |
|                int cval = 0;
 | |
|                if (cbits) {
 | |
|                   Codebook *c = f->codebooks + g->class_masterbooks[pclass];
 | |
|                   DECODE(cval,f,c);
 | |
|                }
 | |
|                for (k=0; k < cdim; ++k) {
 | |
|                   int book = g->subclass_books[pclass][cval & csub];
 | |
|                   cval = cval >> cbits;
 | |
|                   if (book >= 0) {
 | |
|                      int temp;
 | |
|                      Codebook *c = f->codebooks + book;
 | |
|                      DECODE(temp,f,c);
 | |
|                      finalY[offset++] = temp;
 | |
|                   } else
 | |
|                      finalY[offset++] = 0;
 | |
|                }
 | |
|             }
 | |
|             if (f->valid_bits == INVALID_BITS) goto error; // behavior according to spec
 | |
|             step2_flag[0] = step2_flag[1] = 1;
 | |
|             for (j=2; j < g->values; ++j) {
 | |
|                int low, high, pred, highroom, lowroom, room, val;
 | |
|                low = g->neighbors[j][0];
 | |
|                high = g->neighbors[j][1];
 | |
|                //neighbors(g->Xlist, j, &low, &high);
 | |
|                pred = predict_point(g->Xlist[j], g->Xlist[low], g->Xlist[high], finalY[low], finalY[high]);
 | |
|                val = finalY[j];
 | |
|                highroom = range - pred;
 | |
|                lowroom = pred;
 | |
|                if (highroom < lowroom)
 | |
|                   room = highroom * 2;
 | |
|                else
 | |
|                   room = lowroom * 2;
 | |
|                if (val) {
 | |
|                   step2_flag[low] = step2_flag[high] = 1;
 | |
|                   step2_flag[j] = 1;
 | |
|                   if (val >= room)
 | |
|                      if (highroom > lowroom)
 | |
|                         finalY[j] = val - lowroom + pred;
 | |
|                      else
 | |
|                         finalY[j] = pred - val + highroom - 1;
 | |
|                   else
 | |
|                      if (val & 1)
 | |
|                         finalY[j] = pred - ((val+1)>>1);
 | |
|                      else
 | |
|                         finalY[j] = pred + (val>>1);
 | |
|                } else {
 | |
|                   step2_flag[j] = 0;
 | |
|                   finalY[j] = pred;
 | |
|                }
 | |
|             }
 | |
| 
 | |
| #ifdef STB_VORBIS_NO_DEFER_FLOOR
 | |
|             do_floor(f, map, i, n, f->floor_buffers[i], finalY, step2_flag);
 | |
| #else
 | |
|             // defer final floor computation until _after_ residue
 | |
|             for (j=0; j < g->values; ++j) {
 | |
|                if (!step2_flag[j])
 | |
|                   finalY[j] = -1;
 | |
|             }
 | |
| #endif
 | |
|          } else {
 | |
|            error:
 | |
|             zero_channel[i] = TRUE;
 | |
|          }
 | |
|          // So we just defer everything else to later
 | |
| 
 | |
|          // at this point we've decoded the floor into buffer
 | |
|       }
 | |
|    }
 | |
|    CHECK(f);
 | |
|    // at this point we've decoded all floors
 | |
| 
 | |
|    if (f->alloc.alloc_buffer)
 | |
|       assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
 | |
| 
 | |
|    // re-enable coupled channels if necessary
 | |
|    memcpy(really_zero_channel, zero_channel, sizeof(really_zero_channel[0]) * f->channels);
 | |
|    for (i=0; i < map->coupling_steps; ++i)
 | |
|       if (!zero_channel[map->chan[i].magnitude] || !zero_channel[map->chan[i].angle]) {
 | |
|          zero_channel[map->chan[i].magnitude] = zero_channel[map->chan[i].angle] = FALSE;
 | |
|       }
 | |
| 
 | |
|    CHECK(f);
 | |
| // RESIDUE DECODE
 | |
|    for (i=0; i < map->submaps; ++i) {
 | |
|       float *residue_buffers[STB_VORBIS_MAX_CHANNELS];
 | |
|       int r;
 | |
|       uint8 do_not_decode[256];
 | |
|       int ch = 0;
 | |
|       for (j=0; j < f->channels; ++j) {
 | |
|          if (map->chan[j].mux == i) {
 | |
|             if (zero_channel[j]) {
 | |
|                do_not_decode[ch] = TRUE;
 | |
|                residue_buffers[ch] = NULL;
 | |
|             } else {
 | |
|                do_not_decode[ch] = FALSE;
 | |
|                residue_buffers[ch] = f->channel_buffers[j];
 | |
|             }
 | |
|             ++ch;
 | |
|          }
 | |
|       }
 | |
|       r = map->submap_residue[i];
 | |
|       decode_residue(f, residue_buffers, ch, n2, r, do_not_decode);
 | |
|    }
 | |
| 
 | |
|    if (f->alloc.alloc_buffer)
 | |
|       assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
 | |
|    CHECK(f);
 | |
| 
 | |
| // INVERSE COUPLING
 | |
|    for (i = map->coupling_steps-1; i >= 0; --i) {
 | |
|       int n2 = n >> 1;
 | |
|       float *m = f->channel_buffers[map->chan[i].magnitude];
 | |
|       float *a = f->channel_buffers[map->chan[i].angle    ];
 | |
|       for (j=0; j < n2; ++j) {
 | |
|          float a2,m2;
 | |
|          if (m[j] > 0)
 | |
|             if (a[j] > 0)
 | |
|                m2 = m[j], a2 = m[j] - a[j];
 | |
|             else
 | |
|                a2 = m[j], m2 = m[j] + a[j];
 | |
|          else
 | |
|             if (a[j] > 0)
 | |
|                m2 = m[j], a2 = m[j] + a[j];
 | |
|             else
 | |
|                a2 = m[j], m2 = m[j] - a[j];
 | |
|          m[j] = m2;
 | |
|          a[j] = a2;
 | |
|       }
 | |
|    }
 | |
|    CHECK(f);
 | |
| 
 | |
|    // finish decoding the floors
 | |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR
 | |
|    for (i=0; i < f->channels; ++i) {
 | |
|       if (really_zero_channel[i]) {
 | |
|          memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2);
 | |
|       } else {
 | |
|          do_floor(f, map, i, n, f->channel_buffers[i], f->finalY[i], NULL);
 | |
|       }
 | |
|    }
 | |
| #else
 | |
|    for (i=0; i < f->channels; ++i) {
 | |
|       if (really_zero_channel[i]) {
 | |
|          memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2);
 | |
|       } else {
 | |
|          for (j=0; j < n2; ++j)
 | |
|             f->channel_buffers[i][j] *= f->floor_buffers[i][j];
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| // INVERSE MDCT
 | |
|    CHECK(f);
 | |
|    for (i=0; i < f->channels; ++i)
 | |
|       inverse_mdct(f->channel_buffers[i], n, f, m->blockflag);
 | |
|    CHECK(f);
 | |
| 
 | |
|    // this shouldn't be necessary, unless we exited on an error
 | |
|    // and want to flush to get to the next packet
 | |
|    flush_packet(f);
 | |
| 
 | |
|    if (f->first_decode) {
 | |
|       // assume we start so first non-discarded sample is sample 0
 | |
|       // this isn't to spec, but spec would require us to read ahead
 | |
|       // and decode the size of all current frames--could be done,
 | |
|       // but presumably it's not a commonly used feature
 | |
|       f->current_loc = -n2; // start of first frame is positioned for discard
 | |
|       // we might have to discard samples "from" the next frame too,
 | |
|       // if we're lapping a large block then a small at the start?
 | |
|       f->discard_samples_deferred = n - right_end;
 | |
|       f->current_loc_valid = TRUE;
 | |
|       f->first_decode = FALSE;
 | |
|    } else if (f->discard_samples_deferred) {
 | |
|       if (f->discard_samples_deferred >= right_start - left_start) {
 | |
|          f->discard_samples_deferred -= (right_start - left_start);
 | |
|          left_start = right_start;
 | |
|          *p_left = left_start;
 | |
|       } else {
 | |
|          left_start += f->discard_samples_deferred;
 | |
|          *p_left = left_start;
 | |
|          f->discard_samples_deferred = 0;
 | |
|       }
 | |
|    } else if (f->previous_length == 0 && f->current_loc_valid) {
 | |
|       // we're recovering from a seek... that means we're going to discard
 | |
|       // the samples from this packet even though we know our position from
 | |
|       // the last page header, so we need to update the position based on
 | |
|       // the discarded samples here
 | |
|       // but wait, the code below is going to add this in itself even
 | |
|       // on a discard, so we don't need to do it here...
 | |
|    }
 | |
| 
 | |
|    // check if we have ogg information about the sample # for this packet
 | |
|    if (f->last_seg_which == f->end_seg_with_known_loc) {
 | |
|       // if we have a valid current loc, and this is final:
 | |
|       if (f->current_loc_valid && (f->page_flag & PAGEFLAG_last_page)) {
 | |
|          uint32 current_end = f->known_loc_for_packet;
 | |
|          // then let's infer the size of the (probably) short final frame
 | |
|          if (current_end < f->current_loc + (right_end-left_start)) {
 | |
|             if (current_end < f->current_loc) {
 | |
|                // negative truncation, that's impossible!
 | |
|                *len = 0;
 | |
|             } else {
 | |
|                *len = current_end - f->current_loc;
 | |
|             }
 | |
|             *len += left_start; // this doesn't seem right, but has no ill effect on my test files
 | |
|             if (*len > right_end) *len = right_end; // this should never happen
 | |
|             f->current_loc += *len;
 | |
|             return TRUE;
 | |
|          }
 | |
|       }
 | |
|       // otherwise, just set our sample loc
 | |
|       // guess that the ogg granule pos refers to the _middle_ of the
 | |
|       // last frame?
 | |
|       // set f->current_loc to the position of left_start
 | |
|       f->current_loc = f->known_loc_for_packet - (n2-left_start);
 | |
|       f->current_loc_valid = TRUE;
 | |
|    }
 | |
|    if (f->current_loc_valid)
 | |
|       f->current_loc += (right_start - left_start);
 | |
| 
 | |
|    if (f->alloc.alloc_buffer)
 | |
|       assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
 | |
|    *len = right_end;  // ignore samples after the window goes to 0
 | |
|    CHECK(f);
 | |
| 
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static int vorbis_decode_packet(vorb *f, int *len, int *p_left, int *p_right)
 | |
| {
 | |
|    int mode, left_end, right_end;
 | |
|    if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0;
 | |
|    return vorbis_decode_packet_rest(f, len, f->mode_config + mode, *p_left, left_end, *p_right, right_end, p_left);
 | |
| }
 | |
| 
 | |
| static int vorbis_finish_frame(stb_vorbis *f, int len, int left, int right)
 | |
| {
 | |
|    int prev,i,j;
 | |
|    // we use right&left (the start of the right- and left-window sin()-regions)
 | |
|    // to determine how much to return, rather than inferring from the rules
 | |
|    // (same result, clearer code); 'left' indicates where our sin() window
 | |
|    // starts, therefore where the previous window's right edge starts, and
 | |
|    // therefore where to start mixing from the previous buffer. 'right'
 | |
|    // indicates where our sin() ending-window starts, therefore that's where
 | |
|    // we start saving, and where our returned-data ends.
 | |
| 
 | |
|    // mixin from previous window
 | |
|    if (f->previous_length) {
 | |
|       int i,j, n = f->previous_length;
 | |
|       float *w = get_window(f, n);
 | |
|       if (w == NULL) return 0;
 | |
|       for (i=0; i < f->channels; ++i) {
 | |
|          for (j=0; j < n; ++j)
 | |
|             f->channel_buffers[i][left+j] =
 | |
|                f->channel_buffers[i][left+j]*w[    j] +
 | |
|                f->previous_window[i][     j]*w[n-1-j];
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    prev = f->previous_length;
 | |
| 
 | |
|    // last half of this data becomes previous window
 | |
|    f->previous_length = len - right;
 | |
| 
 | |
|    // @OPTIMIZE: could avoid this copy by double-buffering the
 | |
|    // output (flipping previous_window with channel_buffers), but
 | |
|    // then previous_window would have to be 2x as large, and
 | |
|    // channel_buffers couldn't be temp mem (although they're NOT
 | |
|    // currently temp mem, they could be (unless we want to level
 | |
|    // performance by spreading out the computation))
 | |
|    for (i=0; i < f->channels; ++i)
 | |
|       for (j=0; right+j < len; ++j)
 | |
|          f->previous_window[i][j] = f->channel_buffers[i][right+j];
 | |
| 
 | |
|    if (!prev)
 | |
|       // there was no previous packet, so this data isn't valid...
 | |
|       // this isn't entirely true, only the would-have-overlapped data
 | |
|       // isn't valid, but this seems to be what the spec requires
 | |
|       return 0;
 | |
| 
 | |
|    // truncate a short frame
 | |
|    if (len < right) right = len;
 | |
| 
 | |
|    f->samples_output += right-left;
 | |
| 
 | |
|    return right - left;
 | |
| }
 | |
| 
 | |
| static int vorbis_pump_first_frame(stb_vorbis *f)
 | |
| {
 | |
|    int len, right, left, res;
 | |
|    res = vorbis_decode_packet(f, &len, &left, &right);
 | |
|    if (res)
 | |
|       vorbis_finish_frame(f, len, left, right);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
| static int is_whole_packet_present(stb_vorbis *f, int end_page)
 | |
| {
 | |
|    // make sure that we have the packet available before continuing...
 | |
|    // this requires a full ogg parse, but we know we can fetch from f->stream
 | |
| 
 | |
|    // instead of coding this out explicitly, we could save the current read state,
 | |
|    // read the next packet with get8() until end-of-packet, check f->eof, then
 | |
|    // reset the state? but that would be slower, esp. since we'd have over 256 bytes
 | |
|    // of state to restore (primarily the page segment table)
 | |
| 
 | |
|    int s = f->next_seg, first = TRUE;
 | |
|    uint8 *p = f->stream;
 | |
| 
 | |
|    if (s != -1) { // if we're not starting the packet with a 'continue on next page' flag
 | |
|       for (; s < f->segment_count; ++s) {
 | |
|          p += f->segments[s];
 | |
|          if (f->segments[s] < 255)               // stop at first short segment
 | |
|             break;
 | |
|       }
 | |
|       // either this continues, or it ends it...
 | |
|       if (end_page)
 | |
|          if (s < f->segment_count-1)             return error(f, VORBIS_invalid_stream);
 | |
|       if (s == f->segment_count)
 | |
|          s = -1; // set 'crosses page' flag
 | |
|       if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
 | |
|       first = FALSE;
 | |
|    }
 | |
|    for (; s == -1;) {
 | |
|       uint8 *q; 
 | |
|       int n;
 | |
| 
 | |
|       // check that we have the page header ready
 | |
|       if (p + 26 >= f->stream_end)               return error(f, VORBIS_need_more_data);
 | |
|       // validate the page
 | |
|       if (memcmp(p, ogg_page_header, 4))         return error(f, VORBIS_invalid_stream);
 | |
|       if (p[4] != 0)                             return error(f, VORBIS_invalid_stream);
 | |
|       if (first) { // the first segment must NOT have 'continued_packet', later ones MUST
 | |
|          if (f->previous_length)
 | |
|             if ((p[5] & PAGEFLAG_continued_packet))  return error(f, VORBIS_invalid_stream);
 | |
|          // if no previous length, we're resynching, so we can come in on a continued-packet,
 | |
|          // which we'll just drop
 | |
|       } else {
 | |
|          if (!(p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream);
 | |
|       }
 | |
|       n = p[26]; // segment counts
 | |
|       q = p+27;  // q points to segment table
 | |
|       p = q + n; // advance past header
 | |
|       // make sure we've read the segment table
 | |
|       if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
 | |
|       for (s=0; s < n; ++s) {
 | |
|          p += q[s];
 | |
|          if (q[s] < 255)
 | |
|             break;
 | |
|       }
 | |
|       if (end_page)
 | |
|          if (s < n-1)                            return error(f, VORBIS_invalid_stream);
 | |
|       if (s == n)
 | |
|          s = -1; // set 'crosses page' flag
 | |
|       if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
 | |
|       first = FALSE;
 | |
|    }
 | |
|    return TRUE;
 | |
| }
 | |
| #endif // !STB_VORBIS_NO_PUSHDATA_API
 | |
| 
 | |
| static int start_decoder(vorb *f)
 | |
| {
 | |
|    uint8 header[6], x,y;
 | |
|    int len,i,j,k, max_submaps = 0;
 | |
|    int longest_floorlist=0;
 | |
| 
 | |
|    // first page, first packet
 | |
| 
 | |
|    if (!start_page(f))                              return FALSE;
 | |
|    // validate page flag
 | |
|    if (!(f->page_flag & PAGEFLAG_first_page))       return error(f, VORBIS_invalid_first_page);
 | |
|    if (f->page_flag & PAGEFLAG_last_page)           return error(f, VORBIS_invalid_first_page);
 | |
|    if (f->page_flag & PAGEFLAG_continued_packet)    return error(f, VORBIS_invalid_first_page);
 | |
|    // check for expected packet length
 | |
|    if (f->segment_count != 1)                       return error(f, VORBIS_invalid_first_page);
 | |
|    if (f->segments[0] != 30) {
 | |
|       // check for the Ogg skeleton fishead identifying header to refine our error
 | |
|       if (f->segments[0] == 64 &&
 | |
|           getn(f, header, 6) &&
 | |
|           header[0] == 'f' &&
 | |
|           header[1] == 'i' &&
 | |
|           header[2] == 's' &&
 | |
|           header[3] == 'h' &&
 | |
|           header[4] == 'e' &&
 | |
|           header[5] == 'a' &&
 | |
|           get8(f)   == 'd' &&
 | |
|           get8(f)   == '\0')                        return error(f, VORBIS_ogg_skeleton_not_supported);
 | |
|       else
 | |
|                                                     return error(f, VORBIS_invalid_first_page);
 | |
|    }
 | |
| 
 | |
|    // read packet
 | |
|    // check packet header
 | |
|    if (get8(f) != VORBIS_packet_id)                 return error(f, VORBIS_invalid_first_page);
 | |
|    if (!getn(f, header, 6))                         return error(f, VORBIS_unexpected_eof);
 | |
|    if (!vorbis_validate(header))                    return error(f, VORBIS_invalid_first_page);
 | |
|    // vorbis_version
 | |
|    if (get32(f) != 0)                               return error(f, VORBIS_invalid_first_page);
 | |
|    f->channels = get8(f); if (!f->channels)         return error(f, VORBIS_invalid_first_page);
 | |
|    if (f->channels > STB_VORBIS_MAX_CHANNELS)       return error(f, VORBIS_too_many_channels);
 | |
|    f->sample_rate = get32(f); if (!f->sample_rate)  return error(f, VORBIS_invalid_first_page);
 | |
|    get32(f); // bitrate_maximum
 | |
|    get32(f); // bitrate_nominal
 | |
|    get32(f); // bitrate_minimum
 | |
|    x = get8(f);
 | |
|    {
 | |
|       int log0,log1;
 | |
|       log0 = x & 15;
 | |
|       log1 = x >> 4;
 | |
|       f->blocksize_0 = 1 << log0;
 | |
|       f->blocksize_1 = 1 << log1;
 | |
|       if (log0 < 6 || log0 > 13)                       return error(f, VORBIS_invalid_setup);
 | |
|       if (log1 < 6 || log1 > 13)                       return error(f, VORBIS_invalid_setup);
 | |
|       if (log0 > log1)                                 return error(f, VORBIS_invalid_setup);
 | |
|    }
 | |
| 
 | |
|    // framing_flag
 | |
|    x = get8(f);
 | |
|    if (!(x & 1))                                    return error(f, VORBIS_invalid_first_page);
 | |
| 
 | |
|    // second packet!
 | |
|    if (!start_page(f))                              return FALSE;
 | |
| 
 | |
|    if (!start_packet(f))                            return FALSE;
 | |
|    do {
 | |
|       len = next_segment(f);
 | |
|       skip(f, len);
 | |
|       f->bytes_in_seg = 0;
 | |
|    } while (len);
 | |
| 
 | |
|    // third packet!
 | |
|    if (!start_packet(f))                            return FALSE;
 | |
| 
 | |
|    #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
|    if (IS_PUSH_MODE(f)) {
 | |
|       if (!is_whole_packet_present(f, TRUE)) {
 | |
|          // convert error in ogg header to write type
 | |
|          if (f->error == VORBIS_invalid_stream)
 | |
|             f->error = VORBIS_invalid_setup;
 | |
|          return FALSE;
 | |
|       }
 | |
|    }
 | |
|    #endif
 | |
| 
 | |
|    crc32_init(); // always init it, to avoid multithread race conditions
 | |
| 
 | |
|    if (get8_packet(f) != VORBIS_packet_setup)       return error(f, VORBIS_invalid_setup);
 | |
|    for (i=0; i < 6; ++i) header[i] = get8_packet(f);
 | |
|    if (!vorbis_validate(header))                    return error(f, VORBIS_invalid_setup);
 | |
| 
 | |
|    // codebooks
 | |
| 
 | |
|    f->codebook_count = get_bits(f,8) + 1;
 | |
|    f->codebooks = (Codebook *) setup_malloc(f, sizeof(*f->codebooks) * f->codebook_count);
 | |
|    if (f->codebooks == NULL)                        return error(f, VORBIS_outofmem);
 | |
|    memset(f->codebooks, 0, sizeof(*f->codebooks) * f->codebook_count);
 | |
|    for (i=0; i < f->codebook_count; ++i) {
 | |
|       uint32 *values;
 | |
|       int ordered, sorted_count;
 | |
|       int total=0;
 | |
|       uint8 *lengths;
 | |
|       Codebook *c = f->codebooks+i;
 | |
|       CHECK(f);
 | |
|       x = get_bits(f, 8); if (x != 0x42)            return error(f, VORBIS_invalid_setup);
 | |
|       x = get_bits(f, 8); if (x != 0x43)            return error(f, VORBIS_invalid_setup);
 | |
|       x = get_bits(f, 8); if (x != 0x56)            return error(f, VORBIS_invalid_setup);
 | |
|       x = get_bits(f, 8);
 | |
|       c->dimensions = (get_bits(f, 8)<<8) + x;
 | |
|       x = get_bits(f, 8);
 | |
|       y = get_bits(f, 8);
 | |
|       c->entries = (get_bits(f, 8)<<16) + (y<<8) + x;
 | |
|       ordered = get_bits(f,1);
 | |
|       c->sparse = ordered ? 0 : get_bits(f,1);
 | |
| 
 | |
|       if (c->dimensions == 0 && c->entries != 0)    return error(f, VORBIS_invalid_setup);
 | |
| 
 | |
|       if (c->sparse)
 | |
|          lengths = (uint8 *) setup_temp_malloc(f, c->entries);
 | |
|       else
 | |
|          lengths = c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries);
 | |
| 
 | |
|       if (!lengths) return error(f, VORBIS_outofmem);
 | |
| 
 | |
|       if (ordered) {
 | |
|          int current_entry = 0;
 | |
|          int current_length = get_bits(f,5) + 1;
 | |
|          while (current_entry < c->entries) {
 | |
|             int limit = c->entries - current_entry;
 | |
|             int n = get_bits(f, ilog(limit));
 | |
|             if (current_length >= 32) return error(f, VORBIS_invalid_setup);
 | |
|             if (current_entry + n > (int) c->entries) { return error(f, VORBIS_invalid_setup); }
 | |
|             memset(lengths + current_entry, current_length, n);
 | |
|             current_entry += n;
 | |
|             ++current_length;
 | |
|          }
 | |
|       } else {
 | |
|          for (j=0; j < c->entries; ++j) {
 | |
|             int present = c->sparse ? get_bits(f,1) : 1;
 | |
|             if (present) {
 | |
|                lengths[j] = get_bits(f, 5) + 1;
 | |
|                ++total;
 | |
|                if (lengths[j] == 32)
 | |
|                   return error(f, VORBIS_invalid_setup);
 | |
|             } else {
 | |
|                lengths[j] = NO_CODE;
 | |
|             }
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       if (c->sparse && total >= c->entries >> 2) {
 | |
|          // convert sparse items to non-sparse!
 | |
|          if (c->entries > (int) f->setup_temp_memory_required)
 | |
|             f->setup_temp_memory_required = c->entries;
 | |
| 
 | |
|          c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries);
 | |
|          if (c->codeword_lengths == NULL) return error(f, VORBIS_outofmem);
 | |
|          memcpy(c->codeword_lengths, lengths, c->entries);
 | |
|          setup_temp_free(f, lengths, c->entries); // note this is only safe if there have been no intervening temp mallocs!
 | |
|          lengths = c->codeword_lengths;
 | |
|          c->sparse = 0;
 | |
|       }
 | |
| 
 | |
|       // compute the size of the sorted tables
 | |
|       if (c->sparse) {
 | |
|          sorted_count = total;
 | |
|       } else {
 | |
|          sorted_count = 0;
 | |
|          #ifndef STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
 | |
|          for (j=0; j < c->entries; ++j)
 | |
|             if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE)
 | |
|                ++sorted_count;
 | |
|          #endif
 | |
|       }
 | |
| 
 | |
|       c->sorted_entries = sorted_count;
 | |
|       values = NULL;
 | |
| 
 | |
|       CHECK(f);
 | |
|       if (!c->sparse) {
 | |
|          c->codewords = (uint32 *) setup_malloc(f, sizeof(c->codewords[0]) * c->entries);
 | |
|          if (!c->codewords)                  return error(f, VORBIS_outofmem);
 | |
|       } else {
 | |
|          unsigned int size;
 | |
|          if (c->sorted_entries) {
 | |
|             c->codeword_lengths = (uint8 *) setup_malloc(f, c->sorted_entries);
 | |
|             if (!c->codeword_lengths)           return error(f, VORBIS_outofmem);
 | |
|             c->codewords = (uint32 *) setup_temp_malloc(f, sizeof(*c->codewords) * c->sorted_entries);
 | |
|             if (!c->codewords)                  return error(f, VORBIS_outofmem);
 | |
|             values = (uint32 *) setup_temp_malloc(f, sizeof(*values) * c->sorted_entries);
 | |
|             if (!values)                        return error(f, VORBIS_outofmem);
 | |
|          }
 | |
|          size = c->entries + (sizeof(*c->codewords) + sizeof(*values)) * c->sorted_entries;
 | |
|          if (size > f->setup_temp_memory_required)
 | |
|             f->setup_temp_memory_required = size;
 | |
|       }
 | |
| 
 | |
|       if (!compute_codewords(c, lengths, c->entries, values)) {
 | |
|          if (c->sparse) setup_temp_free(f, values, 0);
 | |
|          return error(f, VORBIS_invalid_setup);
 | |
|       }
 | |
| 
 | |
|       if (c->sorted_entries) {
 | |
|          // allocate an extra slot for sentinels
 | |
|          c->sorted_codewords = (uint32 *) setup_malloc(f, sizeof(*c->sorted_codewords) * (c->sorted_entries+1));
 | |
|          if (c->sorted_codewords == NULL) return error(f, VORBIS_outofmem);
 | |
|          // allocate an extra slot at the front so that c->sorted_values[-1] is defined
 | |
|          // so that we can catch that case without an extra if
 | |
|          c->sorted_values    = ( int   *) setup_malloc(f, sizeof(*c->sorted_values   ) * (c->sorted_entries+1));
 | |
|          if (c->sorted_values == NULL) return error(f, VORBIS_outofmem);
 | |
|          ++c->sorted_values;
 | |
|          c->sorted_values[-1] = -1;
 | |
|          compute_sorted_huffman(c, lengths, values);
 | |
|       }
 | |
| 
 | |
|       if (c->sparse) {
 | |
|          setup_temp_free(f, values, sizeof(*values)*c->sorted_entries);
 | |
|          setup_temp_free(f, c->codewords, sizeof(*c->codewords)*c->sorted_entries);
 | |
|          setup_temp_free(f, lengths, c->entries);
 | |
|          c->codewords = NULL;
 | |
|       }
 | |
| 
 | |
|       compute_accelerated_huffman(c);
 | |
| 
 | |
|       CHECK(f);
 | |
|       c->lookup_type = get_bits(f, 4);
 | |
|       if (c->lookup_type > 2) return error(f, VORBIS_invalid_setup);
 | |
|       if (c->lookup_type > 0) {
 | |
|          uint16 *mults;
 | |
|          c->minimum_value = float32_unpack(get_bits(f, 32));
 | |
|          c->delta_value = float32_unpack(get_bits(f, 32));
 | |
|          c->value_bits = get_bits(f, 4)+1;
 | |
|          c->sequence_p = get_bits(f,1);
 | |
|          if (c->lookup_type == 1) {
 | |
|             int values = lookup1_values(c->entries, c->dimensions);
 | |
|             if (values < 0) return error(f, VORBIS_invalid_setup);
 | |
|             c->lookup_values = (uint32) values;
 | |
|          } else {
 | |
|             c->lookup_values = c->entries * c->dimensions;
 | |
|          }
 | |
|          if (c->lookup_values == 0) return error(f, VORBIS_invalid_setup);
 | |
|          mults = (uint16 *) setup_temp_malloc(f, sizeof(mults[0]) * c->lookup_values);
 | |
|          if (mults == NULL) return error(f, VORBIS_outofmem);
 | |
|          for (j=0; j < (int) c->lookup_values; ++j) {
 | |
|             int q = get_bits(f, c->value_bits);
 | |
|             if (q == EOP) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); }
 | |
|             mults[j] = q;
 | |
|          }
 | |
| 
 | |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|          if (c->lookup_type == 1) {
 | |
|             int len, sparse = c->sparse;
 | |
|             float last=0;
 | |
|             // pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop
 | |
|             if (sparse) {
 | |
|                if (c->sorted_entries == 0) goto skip;
 | |
|                c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->sorted_entries * c->dimensions);
 | |
|             } else
 | |
|                c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->entries        * c->dimensions);
 | |
|             if (c->multiplicands == NULL) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); }
 | |
|             len = sparse ? c->sorted_entries : c->entries;
 | |
|             for (j=0; j < len; ++j) {
 | |
|                unsigned int z = sparse ? c->sorted_values[j] : j;
 | |
|                unsigned int div=1;
 | |
|                for (k=0; k < c->dimensions; ++k) {
 | |
|                   int off = (z / div) % c->lookup_values;
 | |
|                   float val = mults[off];
 | |
|                   val = mults[off]*c->delta_value + c->minimum_value + last;
 | |
|                   c->multiplicands[j*c->dimensions + k] = val;
 | |
|                   if (c->sequence_p)
 | |
|                      last = val;
 | |
|                   if (k+1 < c->dimensions) {
 | |
|                      if (div > UINT_MAX / (unsigned int) c->lookup_values) {
 | |
|                         setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values);
 | |
|                         return error(f, VORBIS_invalid_setup);
 | |
|                      }
 | |
|                      div *= c->lookup_values;
 | |
|                   }
 | |
|                }
 | |
|             }
 | |
|             c->lookup_type = 2;
 | |
|          }
 | |
|          else
 | |
| #endif
 | |
|          {
 | |
|             float last=0;
 | |
|             CHECK(f);
 | |
|             c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->lookup_values);
 | |
|             if (c->multiplicands == NULL) { setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); }
 | |
|             for (j=0; j < (int) c->lookup_values; ++j) {
 | |
|                float val = mults[j] * c->delta_value + c->minimum_value + last;
 | |
|                c->multiplicands[j] = val;
 | |
|                if (c->sequence_p)
 | |
|                   last = val;
 | |
|             }
 | |
|          }
 | |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
 | |
|         skip:;
 | |
| #endif
 | |
|          setup_temp_free(f, mults, sizeof(mults[0])*c->lookup_values);
 | |
| 
 | |
|          CHECK(f);
 | |
|       }
 | |
|       CHECK(f);
 | |
|    }
 | |
| 
 | |
|    // time domain transfers (notused)
 | |
| 
 | |
|    x = get_bits(f, 6) + 1;
 | |
|    for (i=0; i < x; ++i) {
 | |
|       uint32 z = get_bits(f, 16);
 | |
|       if (z != 0) return error(f, VORBIS_invalid_setup);
 | |
|    }
 | |
| 
 | |
|    // Floors
 | |
|    f->floor_count = get_bits(f, 6)+1;
 | |
|    f->floor_config = (Floor *)  setup_malloc(f, f->floor_count * sizeof(*f->floor_config));
 | |
|    if (f->floor_config == NULL) return error(f, VORBIS_outofmem);
 | |
|    for (i=0; i < f->floor_count; ++i) {
 | |
|       f->floor_types[i] = get_bits(f, 16);
 | |
|       if (f->floor_types[i] > 1) return error(f, VORBIS_invalid_setup);
 | |
|       if (f->floor_types[i] == 0) {
 | |
|          Floor0 *g = &f->floor_config[i].floor0;
 | |
|          g->order = get_bits(f,8);
 | |
|          g->rate = get_bits(f,16);
 | |
|          g->bark_map_size = get_bits(f,16);
 | |
|          g->amplitude_bits = get_bits(f,6);
 | |
|          g->amplitude_offset = get_bits(f,8);
 | |
|          g->number_of_books = get_bits(f,4) + 1;
 | |
|          for (j=0; j < g->number_of_books; ++j)
 | |
|             g->book_list[j] = get_bits(f,8);
 | |
|          return error(f, VORBIS_feature_not_supported);
 | |
|       } else {
 | |
|          stbv__floor_ordering p[31*8+2];
 | |
|          Floor1 *g = &f->floor_config[i].floor1;
 | |
|          int max_class = -1; 
 | |
|          g->partitions = get_bits(f, 5);
 | |
|          for (j=0; j < g->partitions; ++j) {
 | |
|             g->partition_class_list[j] = get_bits(f, 4);
 | |
|             if (g->partition_class_list[j] > max_class)
 | |
|                max_class = g->partition_class_list[j];
 | |
|          }
 | |
|          for (j=0; j <= max_class; ++j) {
 | |
|             g->class_dimensions[j] = get_bits(f, 3)+1;
 | |
|             g->class_subclasses[j] = get_bits(f, 2);
 | |
|             if (g->class_subclasses[j]) {
 | |
|                g->class_masterbooks[j] = get_bits(f, 8);
 | |
|                if (g->class_masterbooks[j] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
 | |
|             }
 | |
|             for (k=0; k < 1 << g->class_subclasses[j]; ++k) {
 | |
|                g->subclass_books[j][k] = get_bits(f,8)-1;
 | |
|                if (g->subclass_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
 | |
|             }
 | |
|          }
 | |
|          g->floor1_multiplier = get_bits(f,2)+1;
 | |
|          g->rangebits = get_bits(f,4);
 | |
|          g->Xlist[0] = 0;
 | |
|          g->Xlist[1] = 1 << g->rangebits;
 | |
|          g->values = 2;
 | |
|          for (j=0; j < g->partitions; ++j) {
 | |
|             int c = g->partition_class_list[j];
 | |
|             for (k=0; k < g->class_dimensions[c]; ++k) {
 | |
|                g->Xlist[g->values] = get_bits(f, g->rangebits);
 | |
|                ++g->values;
 | |
|             }
 | |
|          }
 | |
|          // precompute the sorting
 | |
|          for (j=0; j < g->values; ++j) {
 | |
|             p[j].x = g->Xlist[j];
 | |
|             p[j].id = j;
 | |
|          }
 | |
|          qsort(p, g->values, sizeof(p[0]), point_compare);
 | |
|          for (j=0; j < g->values-1; ++j)
 | |
|             if (p[j].x == p[j+1].x)
 | |
|                return error(f, VORBIS_invalid_setup);
 | |
|          for (j=0; j < g->values; ++j)
 | |
|             g->sorted_order[j] = (uint8) p[j].id;
 | |
|          // precompute the neighbors
 | |
|          for (j=2; j < g->values; ++j) {
 | |
|             int low,hi;
 | |
|             neighbors(g->Xlist, j, &low,&hi);
 | |
|             g->neighbors[j][0] = low;
 | |
|             g->neighbors[j][1] = hi;
 | |
|          }
 | |
| 
 | |
|          if (g->values > longest_floorlist)
 | |
|             longest_floorlist = g->values;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // Residue
 | |
|    f->residue_count = get_bits(f, 6)+1;
 | |
|    f->residue_config = (Residue *) setup_malloc(f, f->residue_count * sizeof(f->residue_config[0]));
 | |
|    if (f->residue_config == NULL) return error(f, VORBIS_outofmem);
 | |
|    memset(f->residue_config, 0, f->residue_count * sizeof(f->residue_config[0]));
 | |
|    for (i=0; i < f->residue_count; ++i) {
 | |
|       uint8 residue_cascade[64];
 | |
|       Residue *r = f->residue_config+i;
 | |
|       f->residue_types[i] = get_bits(f, 16);
 | |
|       if (f->residue_types[i] > 2) return error(f, VORBIS_invalid_setup);
 | |
|       r->begin = get_bits(f, 24);
 | |
|       r->end = get_bits(f, 24);
 | |
|       if (r->end < r->begin) return error(f, VORBIS_invalid_setup);
 | |
|       r->part_size = get_bits(f,24)+1;
 | |
|       r->classifications = get_bits(f,6)+1;
 | |
|       r->classbook = get_bits(f,8);
 | |
|       if (r->classbook >= f->codebook_count) return error(f, VORBIS_invalid_setup);
 | |
|       for (j=0; j < r->classifications; ++j) {
 | |
|          uint8 high_bits=0;
 | |
|          uint8 low_bits=get_bits(f,3);
 | |
|          if (get_bits(f,1))
 | |
|             high_bits = get_bits(f,5);
 | |
|          residue_cascade[j] = high_bits*8 + low_bits;
 | |
|       }
 | |
|       r->residue_books = (short (*)[8]) setup_malloc(f, sizeof(r->residue_books[0]) * r->classifications);
 | |
|       if (r->residue_books == NULL) return error(f, VORBIS_outofmem);
 | |
|       for (j=0; j < r->classifications; ++j) {
 | |
|          for (k=0; k < 8; ++k) {
 | |
|             if (residue_cascade[j] & (1 << k)) {
 | |
|                r->residue_books[j][k] = get_bits(f, 8);
 | |
|                if (r->residue_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
 | |
|             } else {
 | |
|                r->residue_books[j][k] = -1;
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       // precompute the classifications[] array to avoid inner-loop mod/divide
 | |
|       // call it 'classdata' since we already have r->classifications
 | |
|       r->classdata = (uint8 **) setup_malloc(f, sizeof(*r->classdata) * f->codebooks[r->classbook].entries);
 | |
|       if (!r->classdata) return error(f, VORBIS_outofmem);
 | |
|       memset(r->classdata, 0, sizeof(*r->classdata) * f->codebooks[r->classbook].entries);
 | |
|       for (j=0; j < f->codebooks[r->classbook].entries; ++j) {
 | |
|          int classwords = f->codebooks[r->classbook].dimensions;
 | |
|          int temp = j;
 | |
|          r->classdata[j] = (uint8 *) setup_malloc(f, sizeof(r->classdata[j][0]) * classwords);
 | |
|          if (r->classdata[j] == NULL) return error(f, VORBIS_outofmem);
 | |
|          for (k=classwords-1; k >= 0; --k) {
 | |
|             r->classdata[j][k] = temp % r->classifications;
 | |
|             temp /= r->classifications;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    f->mapping_count = get_bits(f,6)+1;
 | |
|    f->mapping = (Mapping *) setup_malloc(f, f->mapping_count * sizeof(*f->mapping));
 | |
|    if (f->mapping == NULL) return error(f, VORBIS_outofmem);
 | |
|    memset(f->mapping, 0, f->mapping_count * sizeof(*f->mapping));
 | |
|    for (i=0; i < f->mapping_count; ++i) {
 | |
|       Mapping *m = f->mapping + i;      
 | |
|       int mapping_type = get_bits(f,16);
 | |
|       if (mapping_type != 0) return error(f, VORBIS_invalid_setup);
 | |
|       m->chan = (MappingChannel *) setup_malloc(f, f->channels * sizeof(*m->chan));
 | |
|       if (m->chan == NULL) return error(f, VORBIS_outofmem);
 | |
|       if (get_bits(f,1))
 | |
|          m->submaps = get_bits(f,4)+1;
 | |
|       else
 | |
|          m->submaps = 1;
 | |
|       if (m->submaps > max_submaps)
 | |
|          max_submaps = m->submaps;
 | |
|       if (get_bits(f,1)) {
 | |
|          m->coupling_steps = get_bits(f,8)+1;
 | |
|          if (m->coupling_steps > f->channels) return error(f, VORBIS_invalid_setup);
 | |
|          for (k=0; k < m->coupling_steps; ++k) {
 | |
|             m->chan[k].magnitude = get_bits(f, ilog(f->channels-1));
 | |
|             m->chan[k].angle = get_bits(f, ilog(f->channels-1));
 | |
|             if (m->chan[k].magnitude >= f->channels)        return error(f, VORBIS_invalid_setup);
 | |
|             if (m->chan[k].angle     >= f->channels)        return error(f, VORBIS_invalid_setup);
 | |
|             if (m->chan[k].magnitude == m->chan[k].angle)   return error(f, VORBIS_invalid_setup);
 | |
|          }
 | |
|       } else
 | |
|          m->coupling_steps = 0;
 | |
| 
 | |
|       // reserved field
 | |
|       if (get_bits(f,2)) return error(f, VORBIS_invalid_setup);
 | |
|       if (m->submaps > 1) {
 | |
|          for (j=0; j < f->channels; ++j) {
 | |
|             m->chan[j].mux = get_bits(f, 4);
 | |
|             if (m->chan[j].mux >= m->submaps)                return error(f, VORBIS_invalid_setup);
 | |
|          }
 | |
|       } else
 | |
|          // @SPECIFICATION: this case is missing from the spec
 | |
|          for (j=0; j < f->channels; ++j)
 | |
|             m->chan[j].mux = 0;
 | |
| 
 | |
|       for (j=0; j < m->submaps; ++j) {
 | |
|          get_bits(f,8); // discard
 | |
|          m->submap_floor[j] = get_bits(f,8);
 | |
|          m->submap_residue[j] = get_bits(f,8);
 | |
|          if (m->submap_floor[j] >= f->floor_count)      return error(f, VORBIS_invalid_setup);
 | |
|          if (m->submap_residue[j] >= f->residue_count)  return error(f, VORBIS_invalid_setup);
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    // Modes
 | |
|    f->mode_count = get_bits(f, 6)+1;
 | |
|    for (i=0; i < f->mode_count; ++i) {
 | |
|       Mode *m = f->mode_config+i;
 | |
|       m->blockflag = get_bits(f,1);
 | |
|       m->windowtype = get_bits(f,16);
 | |
|       m->transformtype = get_bits(f,16);
 | |
|       m->mapping = get_bits(f,8);
 | |
|       if (m->windowtype != 0)                 return error(f, VORBIS_invalid_setup);
 | |
|       if (m->transformtype != 0)              return error(f, VORBIS_invalid_setup);
 | |
|       if (m->mapping >= f->mapping_count)     return error(f, VORBIS_invalid_setup);
 | |
|    }
 | |
| 
 | |
|    flush_packet(f);
 | |
| 
 | |
|    f->previous_length = 0;
 | |
| 
 | |
|    for (i=0; i < f->channels; ++i) {
 | |
|       f->channel_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1);
 | |
|       f->previous_window[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2);
 | |
|       f->finalY[i]          = (int16 *) setup_malloc(f, sizeof(int16) * longest_floorlist);
 | |
|       if (f->channel_buffers[i] == NULL || f->previous_window[i] == NULL || f->finalY[i] == NULL) return error(f, VORBIS_outofmem);
 | |
|       memset(f->channel_buffers[i], 0, sizeof(float) * f->blocksize_1);
 | |
|       #ifdef STB_VORBIS_NO_DEFER_FLOOR
 | |
|       f->floor_buffers[i]   = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2);
 | |
|       if (f->floor_buffers[i] == NULL) return error(f, VORBIS_outofmem);
 | |
|       #endif
 | |
|    }
 | |
| 
 | |
|    if (!init_blocksize(f, 0, f->blocksize_0)) return FALSE;
 | |
|    if (!init_blocksize(f, 1, f->blocksize_1)) return FALSE;
 | |
|    f->blocksize[0] = f->blocksize_0;
 | |
|    f->blocksize[1] = f->blocksize_1;
 | |
| 
 | |
| #ifdef STB_VORBIS_DIVIDE_TABLE
 | |
|    if (integer_divide_table[1][1]==0)
 | |
|       for (i=0; i < DIVTAB_NUMER; ++i)
 | |
|          for (j=1; j < DIVTAB_DENOM; ++j)
 | |
|             integer_divide_table[i][j] = i / j;
 | |
| #endif
 | |
| 
 | |
|    // compute how much temporary memory is needed
 | |
| 
 | |
|    // 1.
 | |
|    {
 | |
|       uint32 imdct_mem = (f->blocksize_1 * sizeof(float) >> 1);
 | |
|       uint32 classify_mem;
 | |
|       int i,max_part_read=0;
 | |
|       for (i=0; i < f->residue_count; ++i) {
 | |
|          Residue *r = f->residue_config + i;
 | |
|          unsigned int actual_size = f->blocksize_1 / 2;
 | |
|          unsigned int limit_r_begin = r->begin < actual_size ? r->begin : actual_size;
 | |
|          unsigned int limit_r_end   = r->end   < actual_size ? r->end   : actual_size;
 | |
|          int n_read = limit_r_end - limit_r_begin;
 | |
|          int part_read = n_read / r->part_size;
 | |
|          if (part_read > max_part_read)
 | |
|             max_part_read = part_read;
 | |
|       }
 | |
|       #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
 | |
|       classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(uint8 *));
 | |
|       #else
 | |
|       classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(int *));
 | |
|       #endif
 | |
| 
 | |
|       // maximum reasonable partition size is f->blocksize_1
 | |
| 
 | |
|       f->temp_memory_required = classify_mem;
 | |
|       if (imdct_mem > f->temp_memory_required)
 | |
|          f->temp_memory_required = imdct_mem;
 | |
|    }
 | |
| 
 | |
|    f->first_decode = TRUE;
 | |
| 
 | |
|    if (f->alloc.alloc_buffer) {
 | |
|       assert(f->temp_offset == f->alloc.alloc_buffer_length_in_bytes);
 | |
|       // check if there's enough temp memory so we don't error later
 | |
|       if (f->setup_offset + sizeof(*f) + f->temp_memory_required > (unsigned) f->temp_offset)
 | |
|          return error(f, VORBIS_outofmem);
 | |
|    }
 | |
| 
 | |
|    f->first_audio_page_offset = stb_vorbis_get_file_offset(f);
 | |
| 
 | |
|    return TRUE;
 | |
| }
 | |
| 
 | |
| static void vorbis_deinit(stb_vorbis *p)
 | |
| {
 | |
|    int i,j;
 | |
|    if (p->residue_config) {
 | |
|       for (i=0; i < p->residue_count; ++i) {
 | |
|          Residue *r = p->residue_config+i;
 | |
|          if (r->classdata) {
 | |
|             for (j=0; j < p->codebooks[r->classbook].entries; ++j)
 | |
|                setup_free(p, r->classdata[j]);
 | |
|             setup_free(p, r->classdata);
 | |
|          }
 | |
|          setup_free(p, r->residue_books);
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    if (p->codebooks) {
 | |
|       CHECK(p);
 | |
|       for (i=0; i < p->codebook_count; ++i) {
 | |
|          Codebook *c = p->codebooks + i;
 | |
|          setup_free(p, c->codeword_lengths);
 | |
|          setup_free(p, c->multiplicands);
 | |
|          setup_free(p, c->codewords);
 | |
|          setup_free(p, c->sorted_codewords);
 | |
|          // c->sorted_values[-1] is the first entry in the array
 | |
|          setup_free(p, c->sorted_values ? c->sorted_values-1 : NULL);
 | |
|       }
 | |
|       setup_free(p, p->codebooks);
 | |
|    }
 | |
|    setup_free(p, p->floor_config);
 | |
|    setup_free(p, p->residue_config);
 | |
|    if (p->mapping) {
 | |
|       for (i=0; i < p->mapping_count; ++i)
 | |
|          setup_free(p, p->mapping[i].chan);
 | |
|       setup_free(p, p->mapping);
 | |
|    }
 | |
|    CHECK(p);
 | |
|    for (i=0; i < p->channels && i < STB_VORBIS_MAX_CHANNELS; ++i) {
 | |
|       setup_free(p, p->channel_buffers[i]);
 | |
|       setup_free(p, p->previous_window[i]);
 | |
|       #ifdef STB_VORBIS_NO_DEFER_FLOOR
 | |
|       setup_free(p, p->floor_buffers[i]);
 | |
|       #endif
 | |
|       setup_free(p, p->finalY[i]);
 | |
|    }
 | |
|    for (i=0; i < 2; ++i) {
 | |
|       setup_free(p, p->A[i]);
 | |
|       setup_free(p, p->B[i]);
 | |
|       setup_free(p, p->C[i]);
 | |
|       setup_free(p, p->window[i]);
 | |
|       setup_free(p, p->bit_reverse[i]);
 | |
|    }
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    if (p->close_on_free) fclose(p->f);
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| void stb_vorbis_close(stb_vorbis *p)
 | |
| {
 | |
|    if (p == NULL) return;
 | |
|    vorbis_deinit(p);
 | |
|    setup_free(p,p);
 | |
| }
 | |
| 
 | |
| static void vorbis_init(stb_vorbis *p, const stb_vorbis_alloc *z)
 | |
| {
 | |
|    memset(p, 0, sizeof(*p)); // NULL out all malloc'd pointers to start
 | |
|    if (z) {
 | |
|       p->alloc = *z;
 | |
|       p->alloc.alloc_buffer_length_in_bytes = (p->alloc.alloc_buffer_length_in_bytes+3) & ~3;
 | |
|       p->temp_offset = p->alloc.alloc_buffer_length_in_bytes;
 | |
|    }
 | |
|    p->eof = 0;
 | |
|    p->error = VORBIS__no_error;
 | |
|    p->stream = NULL;
 | |
|    p->codebooks = NULL;
 | |
|    p->page_crc_tests = -1;
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    p->close_on_free = FALSE;
 | |
|    p->f = NULL;
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_sample_offset(stb_vorbis *f)
 | |
| {
 | |
|    if (f->current_loc_valid)
 | |
|       return f->current_loc;
 | |
|    else
 | |
|       return -1;
 | |
| }
 | |
| 
 | |
| stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f)
 | |
| {
 | |
|    stb_vorbis_info d;
 | |
|    d.channels = f->channels;
 | |
|    d.sample_rate = f->sample_rate;
 | |
|    d.setup_memory_required = f->setup_memory_required;
 | |
|    d.setup_temp_memory_required = f->setup_temp_memory_required;
 | |
|    d.temp_memory_required = f->temp_memory_required;
 | |
|    d.max_frame_size = f->blocksize_1 >> 1;
 | |
|    return d;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_error(stb_vorbis *f)
 | |
| {
 | |
|    int e = f->error;
 | |
|    f->error = VORBIS__no_error;
 | |
|    return e;
 | |
| }
 | |
| 
 | |
| static stb_vorbis * vorbis_alloc(stb_vorbis *f)
 | |
| {
 | |
|    stb_vorbis *p = (stb_vorbis *) setup_malloc(f, sizeof(*p));
 | |
|    return p;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
| 
 | |
| void stb_vorbis_flush_pushdata(stb_vorbis *f)
 | |
| {
 | |
|    f->previous_length = 0;
 | |
|    f->page_crc_tests  = 0;
 | |
|    f->discard_samples_deferred = 0;
 | |
|    f->current_loc_valid = FALSE;
 | |
|    f->first_decode = FALSE;
 | |
|    f->samples_output = 0;
 | |
|    f->channel_buffer_start = 0;
 | |
|    f->channel_buffer_end = 0;
 | |
| }
 | |
| 
 | |
| static int vorbis_search_for_page_pushdata(vorb *f, uint8 *data, int data_len)
 | |
| {
 | |
|    int i,n;
 | |
|    for (i=0; i < f->page_crc_tests; ++i)
 | |
|       f->scan[i].bytes_done = 0;
 | |
| 
 | |
|    // if we have room for more scans, search for them first, because
 | |
|    // they may cause us to stop early if their header is incomplete
 | |
|    if (f->page_crc_tests < STB_VORBIS_PUSHDATA_CRC_COUNT) {
 | |
|       if (data_len < 4) return 0;
 | |
|       data_len -= 3; // need to look for 4-byte sequence, so don't miss
 | |
|                      // one that straddles a boundary
 | |
|       for (i=0; i < data_len; ++i) {
 | |
|          if (data[i] == 0x4f) {
 | |
|             if (0==memcmp(data+i, ogg_page_header, 4)) {
 | |
|                int j,len;
 | |
|                uint32 crc;
 | |
|                // make sure we have the whole page header
 | |
|                if (i+26 >= data_len || i+27+data[i+26] >= data_len) {
 | |
|                   // only read up to this page start, so hopefully we'll
 | |
|                   // have the whole page header start next time
 | |
|                   data_len = i;
 | |
|                   break;
 | |
|                }
 | |
|                // ok, we have it all; compute the length of the page
 | |
|                len = 27 + data[i+26];
 | |
|                for (j=0; j < data[i+26]; ++j)
 | |
|                   len += data[i+27+j];
 | |
|                // scan everything up to the embedded crc (which we must 0)
 | |
|                crc = 0;
 | |
|                for (j=0; j < 22; ++j)
 | |
|                   crc = crc32_update(crc, data[i+j]);
 | |
|                // now process 4 0-bytes
 | |
|                for (   ; j < 26; ++j)
 | |
|                   crc = crc32_update(crc, 0);
 | |
|                // len is the total number of bytes we need to scan
 | |
|                n = f->page_crc_tests++;
 | |
|                f->scan[n].bytes_left = len-j;
 | |
|                f->scan[n].crc_so_far = crc;
 | |
|                f->scan[n].goal_crc = data[i+22] + (data[i+23] << 8) + (data[i+24]<<16) + (data[i+25]<<24);
 | |
|                // if the last frame on a page is continued to the next, then
 | |
|                // we can't recover the sample_loc immediately
 | |
|                if (data[i+27+data[i+26]-1] == 255)
 | |
|                   f->scan[n].sample_loc = ~0;
 | |
|                else
 | |
|                   f->scan[n].sample_loc = data[i+6] + (data[i+7] << 8) + (data[i+ 8]<<16) + (data[i+ 9]<<24);
 | |
|                f->scan[n].bytes_done = i+j;
 | |
|                if (f->page_crc_tests == STB_VORBIS_PUSHDATA_CRC_COUNT)
 | |
|                   break;
 | |
|                // keep going if we still have room for more
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    for (i=0; i < f->page_crc_tests;) {
 | |
|       uint32 crc;
 | |
|       int j;
 | |
|       int n = f->scan[i].bytes_done;
 | |
|       int m = f->scan[i].bytes_left;
 | |
|       if (m > data_len - n) m = data_len - n;
 | |
|       // m is the bytes to scan in the current chunk
 | |
|       crc = f->scan[i].crc_so_far;
 | |
|       for (j=0; j < m; ++j)
 | |
|          crc = crc32_update(crc, data[n+j]);
 | |
|       f->scan[i].bytes_left -= m;
 | |
|       f->scan[i].crc_so_far = crc;
 | |
|       if (f->scan[i].bytes_left == 0) {
 | |
|          // does it match?
 | |
|          if (f->scan[i].crc_so_far == f->scan[i].goal_crc) {
 | |
|             // Houston, we have page
 | |
|             data_len = n+m; // consumption amount is wherever that scan ended
 | |
|             f->page_crc_tests = -1; // drop out of page scan mode
 | |
|             f->previous_length = 0; // decode-but-don't-output one frame
 | |
|             f->next_seg = -1;       // start a new page
 | |
|             f->current_loc = f->scan[i].sample_loc; // set the current sample location
 | |
|                                     // to the amount we'd have decoded had we decoded this page
 | |
|             f->current_loc_valid = f->current_loc != ~0U;
 | |
|             return data_len;
 | |
|          }
 | |
|          // delete entry
 | |
|          f->scan[i] = f->scan[--f->page_crc_tests];
 | |
|       } else {
 | |
|          ++i;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return data_len;
 | |
| }
 | |
| 
 | |
| // return value: number of bytes we used
 | |
| int stb_vorbis_decode_frame_pushdata(
 | |
|          stb_vorbis *f,                   // the file we're decoding
 | |
|          const uint8 *data, int data_len, // the memory available for decoding
 | |
|          int *channels,                   // place to write number of float * buffers
 | |
|          float ***output,                 // place to write float ** array of float * buffers
 | |
|          int *samples                     // place to write number of output samples
 | |
|      )
 | |
| {
 | |
|    int i;
 | |
|    int len,right,left;
 | |
| 
 | |
|    if (!IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);
 | |
| 
 | |
|    if (f->page_crc_tests >= 0) {
 | |
|       *samples = 0;
 | |
|       return vorbis_search_for_page_pushdata(f, (uint8 *) data, data_len);
 | |
|    }
 | |
| 
 | |
|    f->stream     = (uint8 *) data;
 | |
|    f->stream_end = (uint8 *) data + data_len;
 | |
|    f->error      = VORBIS__no_error;
 | |
| 
 | |
|    // check that we have the entire packet in memory
 | |
|    if (!is_whole_packet_present(f, FALSE)) {
 | |
|       *samples = 0;
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    if (!vorbis_decode_packet(f, &len, &left, &right)) {
 | |
|       // save the actual error we encountered
 | |
|       enum STBVorbisError error = f->error;
 | |
|       if (error == VORBIS_bad_packet_type) {
 | |
|          // flush and resynch
 | |
|          f->error = VORBIS__no_error;
 | |
|          while (get8_packet(f) != EOP)
 | |
|             if (f->eof) break;
 | |
|          *samples = 0;
 | |
|          return (int) (f->stream - data);
 | |
|       }
 | |
|       if (error == VORBIS_continued_packet_flag_invalid) {
 | |
|          if (f->previous_length == 0) {
 | |
|             // we may be resynching, in which case it's ok to hit one
 | |
|             // of these; just discard the packet
 | |
|             f->error = VORBIS__no_error;
 | |
|             while (get8_packet(f) != EOP)
 | |
|                if (f->eof) break;
 | |
|             *samples = 0;
 | |
|             return (int) (f->stream - data);
 | |
|          }
 | |
|       }
 | |
|       // if we get an error while parsing, what to do?
 | |
|       // well, it DEFINITELY won't work to continue from where we are!
 | |
|       stb_vorbis_flush_pushdata(f);
 | |
|       // restore the error that actually made us bail
 | |
|       f->error = error;
 | |
|       *samples = 0;
 | |
|       return 1;
 | |
|    }
 | |
| 
 | |
|    // success!
 | |
|    len = vorbis_finish_frame(f, len, left, right);
 | |
|    for (i=0; i < f->channels; ++i)
 | |
|       f->outputs[i] = f->channel_buffers[i] + left;
 | |
| 
 | |
|    if (channels) *channels = f->channels;
 | |
|    *samples = len;
 | |
|    *output = f->outputs;
 | |
|    return (int) (f->stream - data);
 | |
| }
 | |
| 
 | |
| stb_vorbis *stb_vorbis_open_pushdata(
 | |
|          const unsigned char *data, int data_len, // the memory available for decoding
 | |
|          int *data_used,              // only defined if result is not NULL
 | |
|          int *error, const stb_vorbis_alloc *alloc)
 | |
| {
 | |
|    stb_vorbis *f, p;
 | |
|    vorbis_init(&p, alloc);
 | |
|    p.stream     = (uint8 *) data;
 | |
|    p.stream_end = (uint8 *) data + data_len;
 | |
|    p.push_mode  = TRUE;
 | |
|    if (!start_decoder(&p)) {
 | |
|       if (p.eof)
 | |
|          *error = VORBIS_need_more_data;
 | |
|       else
 | |
|          *error = p.error;
 | |
|       return NULL;
 | |
|    }
 | |
|    f = vorbis_alloc(&p);
 | |
|    if (f) {
 | |
|       *f = p;
 | |
|       *data_used = (int) (f->stream - data);
 | |
|       *error = 0;
 | |
|       return f;
 | |
|    } else {
 | |
|       vorbis_deinit(&p);
 | |
|       return NULL;
 | |
|    }
 | |
| }
 | |
| #endif // STB_VORBIS_NO_PUSHDATA_API
 | |
| 
 | |
| unsigned int stb_vorbis_get_file_offset(stb_vorbis *f)
 | |
| {
 | |
|    #ifndef STB_VORBIS_NO_PUSHDATA_API
 | |
|    if (f->push_mode) return 0;
 | |
|    #endif
 | |
|    if (USE_MEMORY(f)) return (unsigned int) (f->stream - f->stream_start);
 | |
|    #ifndef STB_VORBIS_NO_STDIO
 | |
|    return (unsigned int) (ftell(f->f) - f->f_start);
 | |
|    #endif
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_PULLDATA_API
 | |
| //
 | |
| // DATA-PULLING API
 | |
| //
 | |
| 
 | |
| static uint32 vorbis_find_page(stb_vorbis *f, uint32 *end, uint32 *last)
 | |
| {
 | |
|    for(;;) {
 | |
|       int n;
 | |
|       if (f->eof) return 0;
 | |
|       n = get8(f);
 | |
|       if (n == 0x4f) { // page header candidate
 | |
|          unsigned int retry_loc = stb_vorbis_get_file_offset(f);
 | |
|          int i;
 | |
|          // check if we're off the end of a file_section stream
 | |
|          if (retry_loc - 25 > f->stream_len)
 | |
|             return 0;
 | |
|          // check the rest of the header
 | |
|          for (i=1; i < 4; ++i)
 | |
|             if (get8(f) != ogg_page_header[i])
 | |
|                break;
 | |
|          if (f->eof) return 0;
 | |
|          if (i == 4) {
 | |
|             uint8 header[27];
 | |
|             uint32 i, crc, goal, len;
 | |
|             for (i=0; i < 4; ++i)
 | |
|                header[i] = ogg_page_header[i];
 | |
|             for (; i < 27; ++i)
 | |
|                header[i] = get8(f);
 | |
|             if (f->eof) return 0;
 | |
|             if (header[4] != 0) goto invalid;
 | |
|             goal = header[22] + (header[23] << 8) + (header[24]<<16) + (header[25]<<24);
 | |
|             for (i=22; i < 26; ++i)
 | |
|                header[i] = 0;
 | |
|             crc = 0;
 | |
|             for (i=0; i < 27; ++i)
 | |
|                crc = crc32_update(crc, header[i]);
 | |
|             len = 0;
 | |
|             for (i=0; i < header[26]; ++i) {
 | |
|                int s = get8(f);
 | |
|                crc = crc32_update(crc, s);
 | |
|                len += s;
 | |
|             }
 | |
|             if (len && f->eof) return 0;
 | |
|             for (i=0; i < len; ++i)
 | |
|                crc = crc32_update(crc, get8(f));
 | |
|             // finished parsing probable page
 | |
|             if (crc == goal) {
 | |
|                // we could now check that it's either got the last
 | |
|                // page flag set, OR it's followed by the capture
 | |
|                // pattern, but I guess TECHNICALLY you could have
 | |
|                // a file with garbage between each ogg page and recover
 | |
|                // from it automatically? So even though that paranoia
 | |
|                // might decrease the chance of an invalid decode by
 | |
|                // another 2^32, not worth it since it would hose those
 | |
|                // invalid-but-useful files?
 | |
|                if (end)
 | |
|                   *end = stb_vorbis_get_file_offset(f);
 | |
|                if (last) {
 | |
|                   if (header[5] & 0x04)
 | |
|                      *last = 1;
 | |
|                   else
 | |
|                      *last = 0;
 | |
|                }
 | |
|                set_file_offset(f, retry_loc-1);
 | |
|                return 1;
 | |
|             }
 | |
|          }
 | |
|         invalid:
 | |
|          // not a valid page, so rewind and look for next one
 | |
|          set_file_offset(f, retry_loc);
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define SAMPLE_unknown  0xffffffff
 | |
| 
 | |
| // seeking is implemented with a binary search, which narrows down the range to
 | |
| // 64K, before using a linear search (because finding the synchronization
 | |
| // pattern can be expensive, and the chance we'd find the end page again is
 | |
| // relatively high for small ranges)
 | |
| //
 | |
| // two initial interpolation-style probes are used at the start of the search
 | |
| // to try to bound either side of the binary search sensibly, while still
 | |
| // working in O(log n) time if they fail.
 | |
| 
 | |
| static int get_seek_page_info(stb_vorbis *f, ProbedPage *z)
 | |
| {
 | |
|    uint8 header[27], lacing[255];
 | |
|    int i,len;
 | |
| 
 | |
|    // record where the page starts
 | |
|    z->page_start = stb_vorbis_get_file_offset(f);
 | |
| 
 | |
|    // parse the header
 | |
|    getn(f, header, 27);
 | |
|    if (header[0] != 'O' || header[1] != 'g' || header[2] != 'g' || header[3] != 'S')
 | |
|       return 0;
 | |
|    getn(f, lacing, header[26]);
 | |
| 
 | |
|    // determine the length of the payload
 | |
|    len = 0;
 | |
|    for (i=0; i < header[26]; ++i)
 | |
|       len += lacing[i];
 | |
| 
 | |
|    // this implies where the page ends
 | |
|    z->page_end = z->page_start + 27 + header[26] + len;
 | |
| 
 | |
|    // read the last-decoded sample out of the data
 | |
|    z->last_decoded_sample = header[6] + (header[7] << 8) + (header[8] << 16) + (header[9] << 24);
 | |
| 
 | |
|    // restore file state to where we were
 | |
|    set_file_offset(f, z->page_start);
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| // rarely used function to seek back to the preceding page while finding the
 | |
| // start of a packet
 | |
| static int go_to_page_before(stb_vorbis *f, unsigned int limit_offset)
 | |
| {
 | |
|    unsigned int previous_safe, end;
 | |
| 
 | |
|    // now we want to seek back 64K from the limit
 | |
|    if (limit_offset >= 65536 && limit_offset-65536 >= f->first_audio_page_offset)
 | |
|       previous_safe = limit_offset - 65536;
 | |
|    else
 | |
|       previous_safe = f->first_audio_page_offset;
 | |
| 
 | |
|    set_file_offset(f, previous_safe);
 | |
| 
 | |
|    while (vorbis_find_page(f, &end, NULL)) {
 | |
|       if (end >= limit_offset && stb_vorbis_get_file_offset(f) < limit_offset)
 | |
|          return 1;
 | |
|       set_file_offset(f, end);
 | |
|    }
 | |
| 
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic ignored "-Wconditional-uninitialized"
 | |
| #endif
 | |
| 
 | |
| // implements the search logic for finding a page and starting decoding. if
 | |
| // the function succeeds, current_loc_valid will be true and current_loc will
 | |
| // be less than or equal to the provided sample number (the closer the
 | |
| // better).
 | |
| static int seek_to_sample_coarse(stb_vorbis *f, uint32 sample_number)
 | |
| {
 | |
|    ProbedPage left, right, mid;
 | |
|    int i, start_seg_with_known_loc, end_pos, page_start;
 | |
|    uint32 delta, stream_length, padding;
 | |
|    double offset, bytes_per_sample;
 | |
|    int probe = 0;
 | |
| 
 | |
|    // find the last page and validate the target sample
 | |
|    stream_length = stb_vorbis_stream_length_in_samples(f);
 | |
|    if (stream_length == 0)            return error(f, VORBIS_seek_without_length);
 | |
|    if (sample_number > stream_length) return error(f, VORBIS_seek_invalid);
 | |
| 
 | |
|    // this is the maximum difference between the window-center (which is the
 | |
|    // actual granule position value), and the right-start (which the spec
 | |
|    // indicates should be the granule position (give or take one)).
 | |
|    padding = ((f->blocksize_1 - f->blocksize_0) >> 2);
 | |
|    if (sample_number < padding)
 | |
|       sample_number = 0;
 | |
|    else
 | |
|       sample_number -= padding;
 | |
| 
 | |
|    left = f->p_first;
 | |
|    while (left.last_decoded_sample == ~0U) {
 | |
|       // (untested) the first page does not have a 'last_decoded_sample'
 | |
|       set_file_offset(f, left.page_end);
 | |
|       if (!get_seek_page_info(f, &left)) goto error;
 | |
|    }
 | |
| 
 | |
|    right = f->p_last;
 | |
|    assert(right.last_decoded_sample != ~0U);
 | |
| 
 | |
|    // starting from the start is handled differently
 | |
|    if (sample_number <= left.last_decoded_sample) {
 | |
|       if (stb_vorbis_seek_start(f))
 | |
|          return 1;
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    while (left.page_end != right.page_start) {
 | |
|       assert(left.page_end < right.page_start);
 | |
|       // search range in bytes
 | |
|       delta = right.page_start - left.page_end;
 | |
|       if (delta <= 65536) {
 | |
|          // there's only 64K left to search - handle it linearly
 | |
|          set_file_offset(f, left.page_end);
 | |
|       } else {
 | |
|          if (probe < 2) {
 | |
|             if (probe == 0) {
 | |
|                // first probe (interpolate)
 | |
|                double data_bytes = right.page_end - left.page_start;
 | |
|                bytes_per_sample = data_bytes / right.last_decoded_sample;
 | |
|                offset = left.page_start + bytes_per_sample * (sample_number - left.last_decoded_sample);
 | |
|             } else {
 | |
|                // second probe (try to bound the other side)
 | |
|                double error = ((double) sample_number - mid.last_decoded_sample) * bytes_per_sample;
 | |
|                if (error >= 0 && error <  8000) error =  8000;
 | |
|                if (error <  0 && error > -8000) error = -8000;
 | |
|                offset += error * 2;
 | |
|             }
 | |
| 
 | |
|             // ensure the offset is valid
 | |
|             if (offset < left.page_end)
 | |
|                offset = left.page_end;
 | |
|             if (offset > right.page_start - 65536)
 | |
|                offset = right.page_start - 65536;
 | |
| 
 | |
|             set_file_offset(f, (unsigned int) offset);
 | |
|          } else {
 | |
|             // binary search for large ranges (offset by 32K to ensure
 | |
|             // we don't hit the right page)
 | |
|             set_file_offset(f, left.page_end + (delta / 2) - 32768);
 | |
|          }
 | |
| 
 | |
|          if (!vorbis_find_page(f, NULL, NULL)) goto error;
 | |
|       }
 | |
| 
 | |
|       for (;;) {
 | |
|          if (!get_seek_page_info(f, &mid)) goto error;
 | |
|          if (mid.last_decoded_sample != ~0U) break;
 | |
|          // (untested) no frames end on this page
 | |
|          set_file_offset(f, mid.page_end);
 | |
|          assert(mid.page_start < right.page_start);
 | |
|       }
 | |
| 
 | |
|       // if we've just found the last page again then we're in a tricky file,
 | |
|       // and we're close enough.
 | |
|       if (mid.page_start == right.page_start)
 | |
|          break;
 | |
| 
 | |
|       if (sample_number < mid.last_decoded_sample)
 | |
|          right = mid;
 | |
|       else
 | |
|          left = mid;
 | |
| 
 | |
|       ++probe;
 | |
|    }
 | |
| 
 | |
|    // seek back to start of the last packet
 | |
|    page_start = left.page_start;
 | |
|    set_file_offset(f, page_start);
 | |
|    if (!start_page(f)) return error(f, VORBIS_seek_failed);
 | |
|    end_pos = f->end_seg_with_known_loc;
 | |
|    assert(end_pos >= 0);
 | |
| 
 | |
|    for (;;) {
 | |
|       for (i = end_pos; i > 0; --i)
 | |
|          if (f->segments[i-1] != 255)
 | |
|             break;
 | |
| 
 | |
|       start_seg_with_known_loc = i;
 | |
| 
 | |
|       if (start_seg_with_known_loc > 0 || !(f->page_flag & PAGEFLAG_continued_packet))
 | |
|          break;
 | |
| 
 | |
|       // (untested) the final packet begins on an earlier page
 | |
|       if (!go_to_page_before(f, page_start))
 | |
|          goto error;
 | |
| 
 | |
|       page_start = stb_vorbis_get_file_offset(f);
 | |
|       if (!start_page(f)) goto error;
 | |
|       end_pos = f->segment_count - 1;
 | |
|    }
 | |
| 
 | |
|    // prepare to start decoding
 | |
|    f->current_loc_valid = FALSE;
 | |
|    f->last_seg = FALSE;
 | |
|    f->valid_bits = 0;
 | |
|    f->packet_bytes = 0;
 | |
|    f->bytes_in_seg = 0;
 | |
|    f->previous_length = 0;
 | |
|    f->next_seg = start_seg_with_known_loc;
 | |
| 
 | |
|    for (i = 0; i < start_seg_with_known_loc; i++)
 | |
|       skip(f, f->segments[i]);
 | |
| 
 | |
|    // start decoding (optimizable - this frame is generally discarded)
 | |
|    if (!vorbis_pump_first_frame(f))
 | |
|       return 0;
 | |
|    if (f->current_loc > sample_number)
 | |
|       return error(f, VORBIS_seek_failed);
 | |
|    return 1;
 | |
| 
 | |
| error:
 | |
|    // try to restore the file to a valid state
 | |
|    stb_vorbis_seek_start(f);
 | |
|    return error(f, VORBIS_seek_failed);
 | |
| }
 | |
| 
 | |
| // the same as vorbis_decode_initial, but without advancing
 | |
| static int peek_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode)
 | |
| {
 | |
|    int bits_read, bytes_read;
 | |
| 
 | |
|    if (!vorbis_decode_initial(f, p_left_start, p_left_end, p_right_start, p_right_end, mode))
 | |
|       return 0;
 | |
| 
 | |
|    // either 1 or 2 bytes were read, figure out which so we can rewind
 | |
|    bits_read = 1 + ilog(f->mode_count-1);
 | |
|    if (f->mode_config[*mode].blockflag)
 | |
|       bits_read += 2;
 | |
|    bytes_read = (bits_read + 7) / 8;
 | |
| 
 | |
|    f->bytes_in_seg += bytes_read;
 | |
|    f->packet_bytes -= bytes_read;
 | |
|    skip(f, -bytes_read);
 | |
|    if (f->next_seg == -1)
 | |
|       f->next_seg = f->segment_count - 1;
 | |
|    else
 | |
|       f->next_seg--;
 | |
|    f->valid_bits = 0;
 | |
| 
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number)
 | |
| {
 | |
|    uint32 max_frame_samples;
 | |
| 
 | |
|    if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);
 | |
| 
 | |
|    // fast page-level search
 | |
|    if (!seek_to_sample_coarse(f, sample_number))
 | |
|       return 0;
 | |
| 
 | |
|    assert(f->current_loc_valid);
 | |
|    assert(f->current_loc <= sample_number);
 | |
| 
 | |
|    // linear search for the relevant packet
 | |
|    max_frame_samples = (f->blocksize_1*3 - f->blocksize_0) >> 2;
 | |
|    while (f->current_loc < sample_number) {
 | |
|       int left_start, left_end, right_start, right_end, mode, frame_samples;
 | |
|       if (!peek_decode_initial(f, &left_start, &left_end, &right_start, &right_end, &mode))
 | |
|          return error(f, VORBIS_seek_failed);
 | |
|       // calculate the number of samples returned by the next frame
 | |
|       frame_samples = right_start - left_start;
 | |
|       if (f->current_loc + frame_samples > sample_number) {
 | |
|          return 1; // the next frame will contain the sample
 | |
|       } else if (f->current_loc + frame_samples + max_frame_samples > sample_number) {
 | |
|          // there's a chance the frame after this could contain the sample
 | |
|          vorbis_pump_first_frame(f);
 | |
|       } else {
 | |
|          // this frame is too early to be relevant
 | |
|          f->current_loc += frame_samples;
 | |
|          f->previous_length = 0;
 | |
|          maybe_start_packet(f);
 | |
|          flush_packet(f);
 | |
|       }
 | |
|    }
 | |
|    // the next frame will start with the sample
 | |
|    assert(f->current_loc == sample_number);
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number)
 | |
| {
 | |
|    if (!stb_vorbis_seek_frame(f, sample_number))
 | |
|       return 0;
 | |
| 
 | |
|    if (sample_number != f->current_loc) {
 | |
|       int n;
 | |
|       uint32 frame_start = f->current_loc;
 | |
|       stb_vorbis_get_frame_float(f, &n, NULL);
 | |
|       assert(sample_number > frame_start);
 | |
|       assert(f->channel_buffer_start + (int) (sample_number-frame_start) <= f->channel_buffer_end);
 | |
|       f->channel_buffer_start += (sample_number - frame_start);
 | |
|    }
 | |
| 
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_seek_start(stb_vorbis *f)
 | |
| {
 | |
|    if (IS_PUSH_MODE(f)) { return error(f, VORBIS_invalid_api_mixing); }
 | |
|    set_file_offset(f, f->first_audio_page_offset);
 | |
|    f->previous_length = 0;
 | |
|    f->first_decode = TRUE;
 | |
|    f->next_seg = -1;
 | |
|    return vorbis_pump_first_frame(f);
 | |
| }
 | |
| 
 | |
| unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f)
 | |
| {
 | |
|    unsigned int restore_offset, previous_safe;
 | |
|    unsigned int end, last_page_loc;
 | |
| 
 | |
|    if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);
 | |
|    if (!f->total_samples) {
 | |
|       unsigned int last;
 | |
|       uint32 lo,hi;
 | |
|       char header[6];
 | |
| 
 | |
|       // first, store the current decode position so we can restore it
 | |
|       restore_offset = stb_vorbis_get_file_offset(f);
 | |
| 
 | |
|       // now we want to seek back 64K from the end (the last page must
 | |
|       // be at most a little less than 64K, but let's allow a little slop)
 | |
|       if (f->stream_len >= 65536 && f->stream_len-65536 >= f->first_audio_page_offset)
 | |
|          previous_safe = f->stream_len - 65536;
 | |
|       else
 | |
|          previous_safe = f->first_audio_page_offset;
 | |
| 
 | |
|       set_file_offset(f, previous_safe);
 | |
|       // previous_safe is now our candidate 'earliest known place that seeking
 | |
|       // to will lead to the final page'
 | |
| 
 | |
|       if (!vorbis_find_page(f, &end, &last)) {
 | |
|          // if we can't find a page, we're hosed!
 | |
|          f->error = VORBIS_cant_find_last_page;
 | |
|          f->total_samples = 0xffffffff;
 | |
|          goto done;
 | |
|       }
 | |
| 
 | |
|       // check if there are more pages
 | |
|       last_page_loc = stb_vorbis_get_file_offset(f);
 | |
| 
 | |
|       // stop when the last_page flag is set, not when we reach eof;
 | |
|       // this allows us to stop short of a 'file_section' end without
 | |
|       // explicitly checking the length of the section
 | |
|       while (!last) {
 | |
|          set_file_offset(f, end);
 | |
|          if (!vorbis_find_page(f, &end, &last)) {
 | |
|             // the last page we found didn't have the 'last page' flag
 | |
|             // set. whoops!
 | |
|             break;
 | |
|          }
 | |
|          previous_safe = last_page_loc+1;
 | |
|          last_page_loc = stb_vorbis_get_file_offset(f);
 | |
|       }
 | |
| 
 | |
|       set_file_offset(f, last_page_loc);
 | |
| 
 | |
|       // parse the header
 | |
|       getn(f, (unsigned char *)header, 6);
 | |
|       // extract the absolute granule position
 | |
|       lo = get32(f);
 | |
|       hi = get32(f);
 | |
|       if (lo == 0xffffffff && hi == 0xffffffff) {
 | |
|          f->error = VORBIS_cant_find_last_page;
 | |
|          f->total_samples = SAMPLE_unknown;
 | |
|          goto done;
 | |
|       }
 | |
|       if (hi)
 | |
|          lo = 0xfffffffe; // saturate
 | |
|       f->total_samples = lo;
 | |
| 
 | |
|       f->p_last.page_start = last_page_loc;
 | |
|       f->p_last.page_end   = end;
 | |
|       f->p_last.last_decoded_sample = lo;
 | |
| 
 | |
|      done:
 | |
|       set_file_offset(f, restore_offset);
 | |
|    }
 | |
|    return f->total_samples == SAMPLE_unknown ? 0 : f->total_samples;
 | |
| }
 | |
| 
 | |
| float stb_vorbis_stream_length_in_seconds(stb_vorbis *f)
 | |
| {
 | |
|    return stb_vorbis_stream_length_in_samples(f) / (float) f->sample_rate;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output)
 | |
| {
 | |
|    int len, right,left,i;
 | |
|    if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);
 | |
| 
 | |
|    if (!vorbis_decode_packet(f, &len, &left, &right)) {
 | |
|       f->channel_buffer_start = f->channel_buffer_end = 0;
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    len = vorbis_finish_frame(f, len, left, right);
 | |
|    for (i=0; i < f->channels; ++i)
 | |
|       f->outputs[i] = f->channel_buffers[i] + left;
 | |
| 
 | |
|    f->channel_buffer_start = left;
 | |
|    f->channel_buffer_end   = left+len;
 | |
| 
 | |
|    if (channels) *channels = f->channels;
 | |
|    if (output)   *output = f->outputs;
 | |
|    return len;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
| 
 | |
| stb_vorbis * stb_vorbis_open_file_section(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc, unsigned int length)
 | |
| {
 | |
|    stb_vorbis *f, p;
 | |
|    vorbis_init(&p, alloc);
 | |
|    p.f = file;
 | |
|    p.f_start = (uint32) ftell(file);
 | |
|    p.stream_len   = length;
 | |
|    p.close_on_free = close_on_free;
 | |
|    if (start_decoder(&p)) {
 | |
|       f = vorbis_alloc(&p);
 | |
|       if (f) {
 | |
|          *f = p;
 | |
|          vorbis_pump_first_frame(f);
 | |
|          return f;
 | |
|       }
 | |
|    }
 | |
|    if (error) *error = p.error;
 | |
|    vorbis_deinit(&p);
 | |
|    return NULL;
 | |
| }
 | |
| 
 | |
| stb_vorbis * stb_vorbis_open_file(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc)
 | |
| {
 | |
|    unsigned int len, start;
 | |
|    start = (unsigned int) ftell(file);
 | |
|    fseek(file, 0, SEEK_END);
 | |
|    len = (unsigned int) (ftell(file) - start);
 | |
|    fseek(file, start, SEEK_SET);
 | |
|    return stb_vorbis_open_file_section(file, close_on_free, error, alloc, len);
 | |
| }
 | |
| 
 | |
| stb_vorbis * stb_vorbis_open_filename(const char *filename, int *error, const stb_vorbis_alloc *alloc)
 | |
| {
 | |
|    FILE *f;
 | |
| #if defined(_WIN32) && defined(__STDC_WANT_SECURE_LIB__)
 | |
|    if (0 != fopen_s(&f, filename, "rb"))
 | |
|       f = NULL;
 | |
| #else
 | |
|    f = fopen(filename, "rb");
 | |
| #endif
 | |
|    if (f) 
 | |
|       return stb_vorbis_open_file(f, TRUE, error, alloc);
 | |
|    if (error) *error = VORBIS_file_open_failure;
 | |
|    return NULL;
 | |
| }
 | |
| #endif // STB_VORBIS_NO_STDIO
 | |
| 
 | |
| stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, const stb_vorbis_alloc *alloc)
 | |
| {
 | |
|    stb_vorbis *f, p;
 | |
|    if (data == NULL) return NULL;
 | |
|    vorbis_init(&p, alloc);
 | |
|    p.stream = (uint8 *) data;
 | |
|    p.stream_end = (uint8 *) data + len;
 | |
|    p.stream_start = (uint8 *) p.stream;
 | |
|    p.stream_len = len;
 | |
|    p.push_mode = FALSE;
 | |
|    if (start_decoder(&p)) {
 | |
|       f = vorbis_alloc(&p);
 | |
|       if (f) {
 | |
|          *f = p;
 | |
|          vorbis_pump_first_frame(f);
 | |
|          if (error) *error = VORBIS__no_error;
 | |
|          return f;
 | |
|       }
 | |
|    }
 | |
|    if (error) *error = p.error;
 | |
|    vorbis_deinit(&p);
 | |
|    return NULL;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| #define PLAYBACK_MONO     1
 | |
| #define PLAYBACK_LEFT     2
 | |
| #define PLAYBACK_RIGHT    4
 | |
| 
 | |
| #define L  (PLAYBACK_LEFT  | PLAYBACK_MONO)
 | |
| #define C  (PLAYBACK_LEFT  | PLAYBACK_RIGHT | PLAYBACK_MONO)
 | |
| #define R  (PLAYBACK_RIGHT | PLAYBACK_MONO)
 | |
| 
 | |
| static int8 channel_position[7][6] =
 | |
| {
 | |
|    { 0 },
 | |
|    { C },
 | |
|    { L, R },
 | |
|    { L, C, R },
 | |
|    { L, R, L, R },
 | |
|    { L, C, R, L, R },
 | |
|    { L, C, R, L, R, C },
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT
 | |
|    typedef union {
 | |
|       float f;
 | |
|       int i;
 | |
|    } float_conv;
 | |
|    typedef char stb_vorbis_float_size_test[sizeof(float)==4 && sizeof(int) == 4];
 | |
|    #define FASTDEF(x) float_conv x
 | |
|    // add (1<<23) to convert to int, then divide by 2^SHIFT, then add 0.5/2^SHIFT to round
 | |
|    #define MAGIC(SHIFT) (1.5f * (1 << (23-SHIFT)) + 0.5f/(1 << SHIFT))
 | |
|    #define ADDEND(SHIFT) (((150-SHIFT) << 23) + (1 << 22))
 | |
|    #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) (temp.f = (x) + MAGIC(s), temp.i - ADDEND(s))
 | |
|    #define check_endianness()  
 | |
| #else
 | |
|    #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) ((int) ((x) * (1 << (s))))
 | |
|    #define check_endianness()
 | |
|    #define FASTDEF(x)
 | |
| #endif
 | |
| 
 | |
| static void copy_samples(short *dest, float *src, int len)
 | |
| {
 | |
|    int i;
 | |
|    check_endianness();
 | |
|    for (i=0; i < len; ++i) {
 | |
|       FASTDEF(temp);
 | |
|       int v = FAST_SCALED_FLOAT_TO_INT(temp, src[i],15);
 | |
|       if ((unsigned int) (v + 32768) > 65535)
 | |
|          v = v < 0 ? -32768 : 32767;
 | |
|       dest[i] = v;
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void compute_samples(int mask, short *output, int num_c, float **data, int d_offset, int len)
 | |
| {
 | |
|    #define BUFFER_SIZE  32
 | |
|    float buffer[BUFFER_SIZE];
 | |
|    int i,j,o,n = BUFFER_SIZE;
 | |
|    check_endianness();
 | |
|    for (o = 0; o < len; o += BUFFER_SIZE) {
 | |
|       memset(buffer, 0, sizeof(buffer));
 | |
|       if (o + n > len) n = len - o;
 | |
|       for (j=0; j < num_c; ++j) {
 | |
|          if (channel_position[num_c][j] & mask) {
 | |
|             for (i=0; i < n; ++i)
 | |
|                buffer[i] += data[j][d_offset+o+i];
 | |
|          }
 | |
|       }
 | |
|       for (i=0; i < n; ++i) {
 | |
|          FASTDEF(temp);
 | |
|          int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15);
 | |
|          if ((unsigned int) (v + 32768) > 65535)
 | |
|             v = v < 0 ? -32768 : 32767;
 | |
|          output[o+i] = v;
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void compute_stereo_samples(short *output, int num_c, float **data, int d_offset, int len)
 | |
| {
 | |
|    #define BUFFER_SIZE  32
 | |
|    float buffer[BUFFER_SIZE];
 | |
|    int i,j,o,n = BUFFER_SIZE >> 1;
 | |
|    // o is the offset in the source data
 | |
|    check_endianness();
 | |
|    for (o = 0; o < len; o += BUFFER_SIZE >> 1) {
 | |
|       // o2 is the offset in the output data
 | |
|       int o2 = o << 1;
 | |
|       memset(buffer, 0, sizeof(buffer));
 | |
|       if (o + n > len) n = len - o;
 | |
|       for (j=0; j < num_c; ++j) {
 | |
|          int m = channel_position[num_c][j] & (PLAYBACK_LEFT | PLAYBACK_RIGHT);
 | |
|          if (m == (PLAYBACK_LEFT | PLAYBACK_RIGHT)) {
 | |
|             for (i=0; i < n; ++i) {
 | |
|                buffer[i*2+0] += data[j][d_offset+o+i];
 | |
|                buffer[i*2+1] += data[j][d_offset+o+i];
 | |
|             }
 | |
|          } else if (m == PLAYBACK_LEFT) {
 | |
|             for (i=0; i < n; ++i) {
 | |
|                buffer[i*2+0] += data[j][d_offset+o+i];
 | |
|             }
 | |
|          } else if (m == PLAYBACK_RIGHT) {
 | |
|             for (i=0; i < n; ++i) {
 | |
|                buffer[i*2+1] += data[j][d_offset+o+i];
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       for (i=0; i < (n<<1); ++i) {
 | |
|          FASTDEF(temp);
 | |
|          int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15);
 | |
|          if ((unsigned int) (v + 32768) > 65535)
 | |
|             v = v < 0 ? -32768 : 32767;
 | |
|          output[o2+i] = v;
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void convert_samples_short(int buf_c, short **buffer, int b_offset, int data_c, float **data, int d_offset, int samples)
 | |
| {
 | |
|    int i;
 | |
|    if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
 | |
|       static int channel_selector[3][2] = { {0}, {PLAYBACK_MONO}, {PLAYBACK_LEFT, PLAYBACK_RIGHT} };
 | |
|       for (i=0; i < buf_c; ++i)
 | |
|          compute_samples(channel_selector[buf_c][i], buffer[i]+b_offset, data_c, data, d_offset, samples);
 | |
|    } else {
 | |
|       int limit = buf_c < data_c ? buf_c : data_c;
 | |
|       for (i=0; i < limit; ++i)
 | |
|          copy_samples(buffer[i]+b_offset, data[i]+d_offset, samples);
 | |
|       for (   ; i < buf_c; ++i)
 | |
|          memset(buffer[i]+b_offset, 0, sizeof(short) * samples);
 | |
|    }
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_frame_short(stb_vorbis *f, int num_c, short **buffer, int num_samples)
 | |
| {
 | |
|    float **output;
 | |
|    int len = stb_vorbis_get_frame_float(f, NULL, &output);
 | |
|    if (len > num_samples) len = num_samples;
 | |
|    if (len)
 | |
|       convert_samples_short(num_c, buffer, 0, f->channels, output, 0, len);
 | |
|    return len;
 | |
| }
 | |
| 
 | |
| static void convert_channels_short_interleaved(int buf_c, short *buffer, int data_c, float **data, int d_offset, int len)
 | |
| {
 | |
|    int i;
 | |
|    check_endianness();
 | |
|    if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
 | |
|       assert(buf_c == 2);
 | |
|       for (i=0; i < buf_c; ++i)
 | |
|          compute_stereo_samples(buffer, data_c, data, d_offset, len);
 | |
|    } else {
 | |
|       int limit = buf_c < data_c ? buf_c : data_c;
 | |
|       int j;
 | |
|       for (j=0; j < len; ++j) {
 | |
|          for (i=0; i < limit; ++i) {
 | |
|             FASTDEF(temp);
 | |
|             float f = data[i][d_offset+j];
 | |
|             int v = FAST_SCALED_FLOAT_TO_INT(temp, f,15);//data[i][d_offset+j],15);
 | |
|             if ((unsigned int) (v + 32768) > 65535)
 | |
|                v = v < 0 ? -32768 : 32767;
 | |
|             *buffer++ = v;
 | |
|          }
 | |
|          for (   ; i < buf_c; ++i)
 | |
|             *buffer++ = 0;
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts)
 | |
| {
 | |
|    float **output;
 | |
|    int len;
 | |
|    if (num_c == 1) return stb_vorbis_get_frame_short(f,num_c,&buffer, num_shorts);
 | |
|    len = stb_vorbis_get_frame_float(f, NULL, &output);
 | |
|    if (len) {
 | |
|       if (len*num_c > num_shorts) len = num_shorts / num_c;
 | |
|       convert_channels_short_interleaved(num_c, buffer, f->channels, output, 0, len);
 | |
|    }
 | |
|    return len;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts)
 | |
| {
 | |
|    float **outputs;
 | |
|    int len = num_shorts / channels;
 | |
|    int n=0;
 | |
|    int z = f->channels;
 | |
|    if (z > channels) z = channels;
 | |
|    while (n < len) {
 | |
|       int k = f->channel_buffer_end - f->channel_buffer_start;
 | |
|       if (n+k >= len) k = len - n;
 | |
|       if (k)
 | |
|          convert_channels_short_interleaved(channels, buffer, f->channels, f->channel_buffers, f->channel_buffer_start, k);
 | |
|       buffer += k*channels;
 | |
|       n += k;
 | |
|       f->channel_buffer_start += k;
 | |
|       if (n == len) break;
 | |
|       if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break;
 | |
|    }
 | |
|    return n;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int len)
 | |
| {
 | |
|    float **outputs;
 | |
|    int n=0;
 | |
|    int z = f->channels;
 | |
|    if (z > channels) z = channels;
 | |
|    while (n < len) {
 | |
|       int k = f->channel_buffer_end - f->channel_buffer_start;
 | |
|       if (n+k >= len) k = len - n;
 | |
|       if (k)
 | |
|          convert_samples_short(channels, buffer, n, f->channels, f->channel_buffers, f->channel_buffer_start, k);
 | |
|       n += k;
 | |
|       f->channel_buffer_start += k;
 | |
|       if (n == len) break;
 | |
|       if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break;
 | |
|    }
 | |
|    return n;
 | |
| }
 | |
| 
 | |
| #ifndef STB_VORBIS_NO_STDIO
 | |
| int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output)
 | |
| {
 | |
|    int data_len, offset, total, limit, error;
 | |
|    short *data;
 | |
|    stb_vorbis *v = stb_vorbis_open_filename(filename, &error, NULL);
 | |
|    if (v == NULL) return -1;
 | |
|    limit = v->channels * 4096;
 | |
|    *channels = v->channels;
 | |
|    if (sample_rate)
 | |
|       *sample_rate = v->sample_rate;
 | |
|    offset = data_len = 0;
 | |
|    total = limit;
 | |
|    data = (short *) malloc(total * sizeof(*data));
 | |
|    if (data == NULL) {
 | |
|       stb_vorbis_close(v);
 | |
|       return -2;
 | |
|    }
 | |
|    for (;;) {
 | |
|       int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset);
 | |
|       if (n == 0) break;
 | |
|       data_len += n;
 | |
|       offset += n * v->channels;
 | |
|       if (offset + limit > total) {
 | |
|          short *data2;
 | |
|          total *= 2;
 | |
|          data2 = (short *) realloc(data, total * sizeof(*data));
 | |
|          if (data2 == NULL) {
 | |
|             free(data);
 | |
|             stb_vorbis_close(v);
 | |
|             return -2;
 | |
|          }
 | |
|          data = data2;
 | |
|       }
 | |
|    }
 | |
|    *output = data;
 | |
|    stb_vorbis_close(v);
 | |
|    return data_len;
 | |
| }
 | |
| #endif // NO_STDIO
 | |
| 
 | |
| int stb_vorbis_decode_memory(const uint8 *mem, int len, int *channels, int *sample_rate, short **output)
 | |
| {
 | |
|    int data_len, offset, total, limit, error;
 | |
|    short *data;
 | |
|    stb_vorbis *v = stb_vorbis_open_memory(mem, len, &error, NULL);
 | |
|    if (v == NULL) return -1;
 | |
|    limit = v->channels * 4096;
 | |
|    *channels = v->channels;
 | |
|    if (sample_rate)
 | |
|       *sample_rate = v->sample_rate;
 | |
|    offset = data_len = 0;
 | |
|    total = limit;
 | |
|    data = (short *) malloc(total * sizeof(*data));
 | |
|    if (data == NULL) {
 | |
|       stb_vorbis_close(v);
 | |
|       return -2;
 | |
|    }
 | |
|    for (;;) {
 | |
|       int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset);
 | |
|       if (n == 0) break;
 | |
|       data_len += n;
 | |
|       offset += n * v->channels;
 | |
|       if (offset + limit > total) {
 | |
|          short *data2;
 | |
|          total *= 2;
 | |
|          data2 = (short *) realloc(data, total * sizeof(*data));
 | |
|          if (data2 == NULL) {
 | |
|             free(data);
 | |
|             stb_vorbis_close(v);
 | |
|             return -2;
 | |
|          }
 | |
|          data = data2;
 | |
|       }
 | |
|    }
 | |
|    *output = data;
 | |
|    stb_vorbis_close(v);
 | |
|    return data_len;
 | |
| }
 | |
| #endif // STB_VORBIS_NO_INTEGER_CONVERSION
 | |
| 
 | |
| int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats)
 | |
| {
 | |
|    float **outputs;
 | |
|    int len = num_floats / channels;
 | |
|    int n=0;
 | |
|    int z = f->channels;
 | |
|    if (z > channels) z = channels;
 | |
|    while (n < len) {
 | |
|       int i,j;
 | |
|       int k = f->channel_buffer_end - f->channel_buffer_start;
 | |
|       if (n+k >= len) k = len - n;
 | |
|       for (j=0; j < k; ++j) {
 | |
|          for (i=0; i < z; ++i)
 | |
|             *buffer++ = f->channel_buffers[i][f->channel_buffer_start+j];
 | |
|          for (   ; i < channels; ++i)
 | |
|             *buffer++ = 0;
 | |
|       }
 | |
|       n += k;
 | |
|       f->channel_buffer_start += k;
 | |
|       if (n == len)
 | |
|          break;
 | |
|       if (!stb_vorbis_get_frame_float(f, NULL, &outputs))
 | |
|          break;
 | |
|    }
 | |
|    return n;
 | |
| }
 | |
| 
 | |
| int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples)
 | |
| {
 | |
|    float **outputs;
 | |
|    int n=0;
 | |
|    int z = f->channels;
 | |
|    if (z > channels) z = channels;
 | |
|    while (n < num_samples) {
 | |
|       int i;
 | |
|       int k = f->channel_buffer_end - f->channel_buffer_start;
 | |
|       if (n+k >= num_samples) k = num_samples - n;
 | |
|       if (k) {
 | |
|          for (i=0; i < z; ++i)
 | |
|             memcpy(buffer[i]+n, f->channel_buffers[i]+f->channel_buffer_start, sizeof(float)*k);
 | |
|          for (   ; i < channels; ++i)
 | |
|             memset(buffer[i]+n, 0, sizeof(float) * k);
 | |
|       }
 | |
|       n += k;
 | |
|       f->channel_buffer_start += k;
 | |
|       if (n == num_samples)
 | |
|          break;
 | |
|       if (!stb_vorbis_get_frame_float(f, NULL, &outputs))
 | |
|          break;
 | |
|    }
 | |
|    return n;
 | |
| }
 | |
| #endif // STB_VORBIS_NO_PULLDATA_API
 | |
| 
 | |
| /* Version history
 | |
|     1.17    - 2019-07-08 - fix CVE-2019-13217, -13218, -13219, -13220, -13221, -13222, -13223
 | |
|                            found with Mayhem by ForAllSecure
 | |
|     1.16    - 2019-03-04 - fix warnings
 | |
|     1.15    - 2019-02-07 - explicit failure if Ogg Skeleton data is found
 | |
|     1.14    - 2018-02-11 - delete bogus dealloca usage
 | |
|     1.13    - 2018-01-29 - fix truncation of last frame (hopefully)
 | |
|     1.12    - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files
 | |
|     1.11    - 2017-07-23 - fix MinGW compilation 
 | |
|     1.10    - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory
 | |
|     1.09    - 2016-04-04 - back out 'avoid discarding last frame' fix from previous version
 | |
|     1.08    - 2016-04-02 - fixed multiple warnings; fix setup memory leaks;
 | |
|                            avoid discarding last frame of audio data
 | |
|     1.07    - 2015-01-16 - fixed some warnings, fix mingw, const-correct API
 | |
|                            some more crash fixes when out of memory or with corrupt files 
 | |
|     1.06    - 2015-08-31 - full, correct support for seeking API (Dougall Johnson)
 | |
|                            some crash fixes when out of memory or with corrupt files
 | |
|     1.05    - 2015-04-19 - don't define __forceinline if it's redundant
 | |
|     1.04    - 2014-08-27 - fix missing const-correct case in API
 | |
|     1.03    - 2014-08-07 - Warning fixes
 | |
|     1.02    - 2014-07-09 - Declare qsort compare function _cdecl on windows
 | |
|     1.01    - 2014-06-18 - fix stb_vorbis_get_samples_float
 | |
|     1.0     - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in multichannel
 | |
|                            (API change) report sample rate for decode-full-file funcs
 | |
|     0.99996 - bracket #include <malloc.h> for macintosh compilation by Laurent Gomila
 | |
|     0.99995 - use union instead of pointer-cast for fast-float-to-int to avoid alias-optimization problem
 | |
|     0.99994 - change fast-float-to-int to work in single-precision FPU mode, remove endian-dependence
 | |
|     0.99993 - remove assert that fired on legal files with empty tables
 | |
|     0.99992 - rewind-to-start
 | |
|     0.99991 - bugfix to stb_vorbis_get_samples_short by Bernhard Wodo
 | |
|     0.9999 - (should have been 0.99990) fix no-CRT support, compiling as C++
 | |
|     0.9998 - add a full-decode function with a memory source
 | |
|     0.9997 - fix a bug in the read-from-FILE case in 0.9996 addition
 | |
|     0.9996 - query length of vorbis stream in samples/seconds
 | |
|     0.9995 - bugfix to another optimization that only happened in certain files
 | |
|     0.9994 - bugfix to one of the optimizations that caused significant (but inaudible?) errors
 | |
|     0.9993 - performance improvements; runs in 99% to 104% of time of reference implementation
 | |
|     0.9992 - performance improvement of IMDCT; now performs close to reference implementation
 | |
|     0.9991 - performance improvement of IMDCT
 | |
|     0.999 - (should have been 0.9990) performance improvement of IMDCT
 | |
|     0.998 - no-CRT support from Casey Muratori
 | |
|     0.997 - bugfixes for bugs found by Terje Mathisen
 | |
|     0.996 - bugfix: fast-huffman decode initialized incorrectly for sparse codebooks; fixing gives 10% speedup - found by Terje Mathisen
 | |
|     0.995 - bugfix: fix to 'effective' overrun detection - found by Terje Mathisen
 | |
|     0.994 - bugfix: garbage decode on final VQ symbol of a non-multiple - found by Terje Mathisen
 | |
|     0.993 - bugfix: pushdata API required 1 extra byte for empty page (failed to consume final page if empty) - found by Terje Mathisen
 | |
|     0.992 - fixes for MinGW warning
 | |
|     0.991 - turn fast-float-conversion on by default
 | |
|     0.990 - fix push-mode seek recovery if you seek into the headers
 | |
|     0.98b - fix to bad release of 0.98
 | |
|     0.98 - fix push-mode seek recovery; robustify float-to-int and support non-fast mode
 | |
|     0.97 - builds under c++ (typecasting, don't use 'class' keyword)
 | |
|     0.96 - somehow MY 0.95 was right, but the web one was wrong, so here's my 0.95 rereleased as 0.96, fixes a typo in the clamping code
 | |
|     0.95 - clamping code for 16-bit functions
 | |
|     0.94 - not publically released
 | |
|     0.93 - fixed all-zero-floor case (was decoding garbage)
 | |
|     0.92 - fixed a memory leak
 | |
|     0.91 - conditional compiles to omit parts of the API and the infrastructure to support them: STB_VORBIS_NO_PULLDATA_API, STB_VORBIS_NO_PUSHDATA_API, STB_VORBIS_NO_STDIO, STB_VORBIS_NO_INTEGER_CONVERSION
 | |
|     0.90 - first public release
 | |
| */
 | |
| 
 | |
| #endif // STB_VORBIS_HEADER_ONLY
 | |
| 
 | |
| 
 | |
| /*
 | |
| ------------------------------------------------------------------------------
 | |
| This software is available under 2 licenses -- choose whichever you prefer.
 | |
| ------------------------------------------------------------------------------
 | |
| ALTERNATIVE A - MIT License
 | |
| Copyright (c) 2017 Sean Barrett
 | |
| Permission is hereby granted, free of charge, to any person obtaining a copy of 
 | |
| this software and associated documentation files (the "Software"), to deal in 
 | |
| the Software without restriction, including without limitation the rights to 
 | |
| use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies 
 | |
| of the Software, and to permit persons to whom the Software is furnished to do 
 | |
| so, subject to the following conditions:
 | |
| The above copyright notice and this permission notice shall be included in all 
 | |
| copies or substantial portions of the Software.
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
 | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
 | |
| SOFTWARE.
 | |
| ------------------------------------------------------------------------------
 | |
| ALTERNATIVE B - Public Domain (www.unlicense.org)
 | |
| This is free and unencumbered software released into the public domain.
 | |
| Anyone is free to copy, modify, publish, use, compile, sell, or distribute this 
 | |
| software, either in source code form or as a compiled binary, for any purpose, 
 | |
| commercial or non-commercial, and by any means.
 | |
| In jurisdictions that recognize copyright laws, the author or authors of this 
 | |
| software dedicate any and all copyright interest in the software to the public 
 | |
| domain. We make this dedication for the benefit of the public at large and to 
 | |
| the detriment of our heirs and successors. We intend this dedication to be an 
 | |
| overt act of relinquishment in perpetuity of all present and future rights to 
 | |
| this software under copyright law.
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 | |
| AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
 | |
| ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
 | |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| ------------------------------------------------------------------------------
 | |
| */
 |