1017 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1017 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef BT_SIMD__QUATERNION_H_
 | |
| #define BT_SIMD__QUATERNION_H_
 | |
| 
 | |
| 
 | |
| #include "btVector3.h"
 | |
| #include "btQuadWord.h"
 | |
| 
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btQuaternionData btQuaternionDoubleData
 | |
| #define btQuaternionDataName "btQuaternionDoubleData"
 | |
| #else
 | |
| #define btQuaternionData btQuaternionFloatData
 | |
| #define btQuaternionDataName "btQuaternionFloatData"
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef BT_USE_SSE
 | |
| 
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
 | |
| #define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(BT_USE_SSE) 
 | |
| 
 | |
| #define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
 | |
| #define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))
 | |
| 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 
 | |
| const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
 | |
| const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
 | |
| class btQuaternion : public btQuadWord {
 | |
| public:
 | |
|   /**@brief No initialization constructor */
 | |
| 	btQuaternion() {}
 | |
| 
 | |
| #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON) 
 | |
| 	// Set Vector 
 | |
| 	SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
 | |
| 	{
 | |
| 		mVec128 = vec;
 | |
| 	}
 | |
| 
 | |
| 	// Copy constructor
 | |
| 	SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
 | |
| 	{
 | |
| 		mVec128 = rhs.mVec128;
 | |
| 	}
 | |
| 
 | |
| 	// Assignment Operator
 | |
| 	SIMD_FORCE_INLINE btQuaternion& 
 | |
| 	operator=(const btQuaternion& v) 
 | |
| 	{
 | |
| 		mVec128 = v.mVec128;
 | |
| 		
 | |
| 		return *this;
 | |
| 	}
 | |
| 	
 | |
| #endif
 | |
| 
 | |
| 	//		template <typename btScalar>
 | |
| 	//		explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
 | |
|   /**@brief Constructor from scalars */
 | |
| 	btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) 
 | |
| 		: btQuadWord(_x, _y, _z, _w) 
 | |
| 	{}
 | |
|   /**@brief Axis angle Constructor
 | |
|    * @param axis The axis which the rotation is around
 | |
|    * @param angle The magnitude of the rotation around the angle (Radians) */
 | |
| 	btQuaternion(const btVector3& _axis, const btScalar& _angle) 
 | |
| 	{ 
 | |
| 		setRotation(_axis, _angle); 
 | |
| 	}
 | |
|   /**@brief Constructor from Euler angles
 | |
|    * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
 | |
|    * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
 | |
|    * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
 | |
| 	btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
 | |
| 	{ 
 | |
| #ifndef BT_EULER_DEFAULT_ZYX
 | |
| 		setEuler(yaw, pitch, roll); 
 | |
| #else
 | |
| 		setEulerZYX(yaw, pitch, roll); 
 | |
| #endif 
 | |
| 	}
 | |
|   /**@brief Set the rotation using axis angle notation 
 | |
|    * @param axis The axis around which to rotate
 | |
|    * @param angle The magnitude of the rotation in Radians */
 | |
| 	void setRotation(const btVector3& axis, const btScalar& _angle)
 | |
| 	{
 | |
| 		btScalar d = axis.length();
 | |
| 		btAssert(d != btScalar(0.0));
 | |
| 		btScalar s = btSin(_angle * btScalar(0.5)) / d;
 | |
| 		setValue(axis.x() * s, axis.y() * s, axis.z() * s, 
 | |
| 			btCos(_angle * btScalar(0.5)));
 | |
| 	}
 | |
|   /**@brief Set the quaternion using Euler angles
 | |
|    * @param yaw Angle around Y
 | |
|    * @param pitch Angle around X
 | |
|    * @param roll Angle around Z */
 | |
| 	void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
 | |
| 	{
 | |
| 		btScalar halfYaw = btScalar(yaw) * btScalar(0.5);  
 | |
| 		btScalar halfPitch = btScalar(pitch) * btScalar(0.5);  
 | |
| 		btScalar halfRoll = btScalar(roll) * btScalar(0.5);  
 | |
| 		btScalar cosYaw = btCos(halfYaw);
 | |
| 		btScalar sinYaw = btSin(halfYaw);
 | |
| 		btScalar cosPitch = btCos(halfPitch);
 | |
| 		btScalar sinPitch = btSin(halfPitch);
 | |
| 		btScalar cosRoll = btCos(halfRoll);
 | |
| 		btScalar sinRoll = btSin(halfRoll);
 | |
| 		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
 | |
| 			cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
 | |
| 			sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
 | |
| 			cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
 | |
| 	}
 | |
|   /**@brief Set the quaternion using euler angles 
 | |
|    * @param yaw Angle around Z
 | |
|    * @param pitch Angle around Y
 | |
|    * @param roll Angle around X */
 | |
| 	void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX)
 | |
| 	{
 | |
| 		btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);  
 | |
| 		btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);  
 | |
| 		btScalar halfRoll = btScalar(rollX) * btScalar(0.5);  
 | |
| 		btScalar cosYaw = btCos(halfYaw);
 | |
| 		btScalar sinYaw = btSin(halfYaw);
 | |
| 		btScalar cosPitch = btCos(halfPitch);
 | |
| 		btScalar sinPitch = btSin(halfPitch);
 | |
| 		btScalar cosRoll = btCos(halfRoll);
 | |
| 		btScalar sinRoll = btSin(halfRoll);
 | |
| 		setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
 | |
|                          cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
 | |
|                          cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
 | |
|                          cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
 | |
| 	}
 | |
| 
 | |
| 	  /**@brief Get the euler angles from this quaternion
 | |
| 	   * @param yaw Angle around Z
 | |
| 	   * @param pitch Angle around Y
 | |
| 	   * @param roll Angle around X */
 | |
| 	void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const
 | |
| 	{
 | |
| 		btScalar squ;
 | |
| 		btScalar sqx;
 | |
| 		btScalar sqy;
 | |
| 		btScalar sqz;
 | |
| 		btScalar sarg;
 | |
| 		sqx = m_floats[0] * m_floats[0];
 | |
| 		sqy = m_floats[1] * m_floats[1];
 | |
| 		sqz = m_floats[2] * m_floats[2];
 | |
| 		squ = m_floats[3] * m_floats[3];
 | |
| 		rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
 | |
| 		sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
 | |
| 		pitchY = sarg <= btScalar(-1.0) ? btScalar(-0.5) * SIMD_PI: (sarg >= btScalar(1.0) ? btScalar(0.5) * SIMD_PI : btAsin(sarg));
 | |
| 		yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Add two quaternions
 | |
|    * @param q The quaternion to add to this one */
 | |
| 	SIMD_FORCE_INLINE	btQuaternion& operator+=(const btQuaternion& q)
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_add_ps(mVec128, q.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vaddq_f32(mVec128, q.mVec128);
 | |
| #else	
 | |
| 		m_floats[0] += q.x(); 
 | |
|         m_floats[1] += q.y(); 
 | |
|         m_floats[2] += q.z(); 
 | |
|         m_floats[3] += q.m_floats[3];
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Subtract out a quaternion
 | |
|    * @param q The quaternion to subtract from this one */
 | |
| 	btQuaternion& operator-=(const btQuaternion& q) 
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_sub_ps(mVec128, q.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vsubq_f32(mVec128, q.mVec128);
 | |
| #else	
 | |
| 		m_floats[0] -= q.x(); 
 | |
|         m_floats[1] -= q.y(); 
 | |
|         m_floats[2] -= q.z(); 
 | |
|         m_floats[3] -= q.m_floats[3];
 | |
| #endif
 | |
|         return *this;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Scale this quaternion
 | |
|    * @param s The scalar to scale by */
 | |
| 	btQuaternion& operator*=(const btScalar& s)
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
 | |
| 		vs = bt_pshufd_ps(vs, 0);	//	(S S S S)
 | |
| 		mVec128 = _mm_mul_ps(mVec128, vs);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vmulq_n_f32(mVec128, s);
 | |
| #else
 | |
| 		m_floats[0] *= s; 
 | |
|         m_floats[1] *= s; 
 | |
|         m_floats[2] *= s; 
 | |
|         m_floats[3] *= s;
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Multiply this quaternion by q on the right
 | |
|    * @param q The other quaternion 
 | |
|    * Equivilant to this = this * q */
 | |
| 	btQuaternion& operator*=(const btQuaternion& q)
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128 vQ2 = q.get128();
 | |
| 		
 | |
| 		__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
 | |
| 		__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
 | |
| 		
 | |
| 		A1 = A1 * B1;
 | |
| 		
 | |
| 		__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
 | |
| 		__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
 | |
| 		
 | |
| 		A2 = A2 * B2;
 | |
| 		
 | |
| 		B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
 | |
| 		B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
 | |
| 		
 | |
| 		B1 = B1 * B2;	//	A3 *= B3
 | |
| 		
 | |
| 		mVec128 = bt_splat_ps(mVec128, 3);	//	A0
 | |
| 		mVec128 = mVec128 * vQ2;	//	A0 * B0
 | |
| 		
 | |
| 		A1 = A1 + A2;	//	AB12
 | |
| 		mVec128 = mVec128 - B1;	//	AB03 = AB0 - AB3 
 | |
| 		A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
 | |
| 		mVec128 = mVec128+ A1;	//	AB03 + AB12
 | |
| 
 | |
| #elif defined(BT_USE_NEON)     
 | |
| 
 | |
|         float32x4_t vQ1 = mVec128;
 | |
|         float32x4_t vQ2 = q.get128();
 | |
|         float32x4_t A0, A1, B1, A2, B2, A3, B3;
 | |
|         float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | |
|         
 | |
|         {
 | |
|         float32x2x2_t tmp;
 | |
|         tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
 | |
|         vQ1zx = tmp.val[0];
 | |
| 
 | |
|         tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
 | |
|         vQ2zx = tmp.val[0];
 | |
|         }
 | |
|         vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 
 | |
| 
 | |
|         vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | |
| 
 | |
|         vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | |
|         vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | |
| 
 | |
|         A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
 | |
|         B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 
 | |
| 
 | |
|         A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | |
|         B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | |
| 
 | |
|         A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
 | |
|         B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z
 | |
| 
 | |
|         A1 = vmulq_f32(A1, B1);
 | |
|         A2 = vmulq_f32(A2, B2);
 | |
|         A3 = vmulq_f32(A3, B3);	//	A3 *= B3
 | |
|         A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); //	A0 * B0
 | |
| 
 | |
|         A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
 | |
|         A0 = vsubq_f32(A0, A3);	//	AB03 = AB0 - AB3 
 | |
|         
 | |
|         //	change the sign of the last element
 | |
|         A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
 | |
|         A0 = vaddq_f32(A0, A1);	//	AB03 + AB12
 | |
|         
 | |
|         mVec128 = A0;
 | |
| #else
 | |
| 		setValue(
 | |
|             m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
 | |
| 			m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
 | |
| 			m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
 | |
| 			m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
|   /**@brief Return the dot product between this quaternion and another
 | |
|    * @param q The other quaternion */
 | |
| 	btScalar dot(const btQuaternion& q) const
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vd;
 | |
| 		
 | |
| 		vd = _mm_mul_ps(mVec128, q.mVec128);
 | |
| 		
 | |
|         __m128 t = _mm_movehl_ps(vd, vd);
 | |
| 		vd = _mm_add_ps(vd, t);
 | |
| 		t = _mm_shuffle_ps(vd, vd, 0x55);
 | |
| 		vd = _mm_add_ss(vd, t);
 | |
| 		
 | |
|         return _mm_cvtss_f32(vd);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
 | |
| 		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));  
 | |
| 		x = vpadd_f32(x, x);
 | |
| 		return vget_lane_f32(x, 0);
 | |
| #else    
 | |
| 		return  m_floats[0] * q.x() + 
 | |
|                 m_floats[1] * q.y() + 
 | |
|                 m_floats[2] * q.z() + 
 | |
|                 m_floats[3] * q.m_floats[3];
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the length squared of the quaternion */
 | |
| 	btScalar length2() const
 | |
| 	{
 | |
| 		return dot(*this);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the length of the quaternion */
 | |
| 	btScalar length() const
 | |
| 	{
 | |
| 		return btSqrt(length2());
 | |
| 	}
 | |
| 	btQuaternion& safeNormalize()
 | |
| 	{
 | |
| 		btScalar l2 = length2();
 | |
| 		if (l2>SIMD_EPSILON)
 | |
| 		{
 | |
| 			normalize();
 | |
| 		}
 | |
| 		return *this;
 | |
| 	}
 | |
|   /**@brief Normalize the quaternion 
 | |
|    * Such that x^2 + y^2 + z^2 +w^2 = 1 */
 | |
| 	btQuaternion& normalize() 
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vd;
 | |
| 		
 | |
| 		vd = _mm_mul_ps(mVec128, mVec128);
 | |
| 		
 | |
|         __m128 t = _mm_movehl_ps(vd, vd);
 | |
| 		vd = _mm_add_ps(vd, t);
 | |
| 		t = _mm_shuffle_ps(vd, vd, 0x55);
 | |
| 		vd = _mm_add_ss(vd, t);
 | |
| 
 | |
| 		vd = _mm_sqrt_ss(vd);
 | |
| 		vd = _mm_div_ss(vOnes, vd);
 | |
|         vd = bt_pshufd_ps(vd, 0); // splat
 | |
| 		mVec128 = _mm_mul_ps(mVec128, vd);
 | |
|     
 | |
| 		return *this;
 | |
| #else    
 | |
| 		return *this /= length();
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return a scaled version of this quaternion
 | |
|    * @param s The scale factor */
 | |
| 	SIMD_FORCE_INLINE btQuaternion
 | |
| 	operator*(const btScalar& s) const
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
 | |
| 		vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)
 | |
| 		
 | |
| 		return btQuaternion(_mm_mul_ps(mVec128, vs));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		return btQuaternion(vmulq_n_f32(mVec128, s));
 | |
| #else
 | |
| 		return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return an inversely scaled versionof this quaternion
 | |
|    * @param s The inverse scale factor */
 | |
| 	btQuaternion operator/(const btScalar& s) const
 | |
| 	{
 | |
| 		btAssert(s != btScalar(0.0));
 | |
| 		return *this * (btScalar(1.0) / s);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Inversely scale this quaternion
 | |
|    * @param s The scale factor */
 | |
| 	btQuaternion& operator/=(const btScalar& s) 
 | |
| 	{
 | |
| 		btAssert(s != btScalar(0.0));
 | |
| 		return *this *= btScalar(1.0) / s;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return a normalized version of this quaternion */
 | |
| 	btQuaternion normalized() const 
 | |
| 	{
 | |
| 		return *this / length();
 | |
| 	} 
 | |
| 	/**@brief Return the ***half*** angle between this quaternion and the other
 | |
|    * @param q The other quaternion */
 | |
| 	btScalar angle(const btQuaternion& q) const 
 | |
| 	{
 | |
| 		btScalar s = btSqrt(length2() * q.length2());
 | |
| 		btAssert(s != btScalar(0.0));
 | |
| 		return btAcos(dot(q) / s);
 | |
| 	}
 | |
| 	
 | |
| 	/**@brief Return the angle between this quaternion and the other along the shortest path
 | |
| 	* @param q The other quaternion */
 | |
| 	btScalar angleShortestPath(const btQuaternion& q) const 
 | |
| 	{
 | |
| 		btScalar s = btSqrt(length2() * q.length2());
 | |
| 		btAssert(s != btScalar(0.0));
 | |
| 		if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
 | |
| 			return btAcos(dot(-q) / s) * btScalar(2.0);
 | |
| 		else 
 | |
| 			return btAcos(dot(q) / s) * btScalar(2.0);
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
 | |
| 	btScalar getAngle() const 
 | |
| 	{
 | |
| 		btScalar s = btScalar(2.) * btAcos(m_floats[3]);
 | |
| 		return s;
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */
 | |
| 	btScalar getAngleShortestPath() const 
 | |
| 	{
 | |
| 		btScalar s;
 | |
| 		if (m_floats[3] >= 0)
 | |
| 			s = btScalar(2.) * btAcos(m_floats[3]);
 | |
| 		else
 | |
| 			s = btScalar(2.) * btAcos(-m_floats[3]);
 | |
| 		return s;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**@brief Return the axis of the rotation represented by this quaternion */
 | |
| 	btVector3 getAxis() const
 | |
| 	{
 | |
| 		btScalar s_squared = 1.f-m_floats[3]*m_floats[3];
 | |
| 		
 | |
| 		if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
 | |
| 			return btVector3(1.0, 0.0, 0.0);  // Arbitrary
 | |
| 		btScalar s = 1.f/btSqrt(s_squared);
 | |
| 		return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the inverse of this quaternion */
 | |
| 	btQuaternion inverse() const
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		return btQuaternion(_mm_xor_ps(mVec128, vQInv));
 | |
| #elif defined(BT_USE_NEON)
 | |
|         return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
 | |
| #else	
 | |
| 		return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the sum of this quaternion and the other 
 | |
|    * @param q2 The other quaternion */
 | |
| 	SIMD_FORCE_INLINE btQuaternion
 | |
| 	operator+(const btQuaternion& q2) const
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
 | |
| #elif defined(BT_USE_NEON)
 | |
|         return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
 | |
| #else	
 | |
| 		const btQuaternion& q1 = *this;
 | |
| 		return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the difference between this quaternion and the other 
 | |
|    * @param q2 The other quaternion */
 | |
| 	SIMD_FORCE_INLINE btQuaternion
 | |
| 	operator-(const btQuaternion& q2) const
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
 | |
| #elif defined(BT_USE_NEON)
 | |
|         return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
 | |
| #else	
 | |
| 		const btQuaternion& q1 = *this;
 | |
| 		return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the negative of this quaternion 
 | |
|    * This simply negates each element */
 | |
| 	SIMD_FORCE_INLINE btQuaternion operator-() const
 | |
| 	{
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
 | |
| #else	
 | |
| 		const btQuaternion& q2 = *this;
 | |
| 		return btQuaternion( - q2.x(), - q2.y(),  - q2.z(),  - q2.m_floats[3]);
 | |
| #endif
 | |
| 	}
 | |
|   /**@todo document this and it's use */
 | |
| 	SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const 
 | |
| 	{
 | |
| 		btQuaternion diff,sum;
 | |
| 		diff = *this - qd;
 | |
| 		sum = *this + qd;
 | |
| 		if( diff.dot(diff) > sum.dot(sum) )
 | |
| 			return qd;
 | |
| 		return (-qd);
 | |
| 	}
 | |
| 
 | |
| 	/**@todo document this and it's use */
 | |
| 	SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const 
 | |
| 	{
 | |
| 		btQuaternion diff,sum;
 | |
| 		diff = *this - qd;
 | |
| 		sum = *this + qd;
 | |
| 		if( diff.dot(diff) < sum.dot(sum) )
 | |
| 			return qd;
 | |
| 		return (-qd);
 | |
| 	}
 | |
| 
 | |
| 
 | |
|   /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
 | |
|    * @param q The other quaternion to interpolate with 
 | |
|    * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q.
 | |
|    * Slerp interpolates assuming constant velocity.  */
 | |
| 	btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
 | |
| 	{
 | |
| 
 | |
| 		const btScalar magnitude = btSqrt(length2() * q.length2());
 | |
| 		btAssert(magnitude > btScalar(0));
 | |
| 		
 | |
| 		const btScalar product = dot(q) / magnitude;
 | |
| 		const btScalar absproduct = btFabs(product);
 | |
| 		
 | |
| 		if(absproduct < btScalar(1.0 - SIMD_EPSILON))
 | |
| 		{
 | |
| 			// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
 | |
| 			const btScalar theta = btAcos(absproduct);
 | |
| 			const btScalar d = btSin(theta);
 | |
| 			btAssert(d > btScalar(0));
 | |
| 			
 | |
| 			const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
 | |
| 			const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d;
 | |
| 			const btScalar s1 = btSin(sign * t * theta) / d;
 | |
| 			
 | |
| 			return btQuaternion(
 | |
| 				(m_floats[0] * s0 + q.x() * s1),
 | |
| 				(m_floats[1] * s0 + q.y() * s1),
 | |
| 				(m_floats[2] * s0 + q.z() * s1),
 | |
| 				(m_floats[3] * s0 + q.w() * s1));
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			return *this;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	static const btQuaternion&	getIdentity()
 | |
| 	{
 | |
| 		static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
 | |
| 		return identityQuat;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serialize(struct	btQuaternionData& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerialize(const struct	btQuaternionData& dataIn);
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serializeFloat(struct	btQuaternionFloatData& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btQuaternionFloatData& dataIn);
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serializeDouble(struct	btQuaternionDoubleData& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btQuaternionDoubleData& dataIn);
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /**@brief Return the product of two quaternions */
 | |
| SIMD_FORCE_INLINE btQuaternion
 | |
| operator*(const btQuaternion& q1, const btQuaternion& q2) 
 | |
| {
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	__m128 vQ1 = q1.get128();
 | |
| 	__m128 vQ2 = q2.get128();
 | |
| 	__m128 A0, A1, B1, A2, B2;
 | |
|     
 | |
| 	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y  z x     //      vtrn
 | |
| 	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W  W X     // vdup vext
 | |
| 
 | |
| 	A1 = A1 * B1;
 | |
| 	
 | |
| 	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z  X Y     // vext 
 | |
| 	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x  Y Y     // vtrn vdup
 | |
| 
 | |
| 	A2 = A2 * B2;
 | |
| 
 | |
| 	B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z      // vtrn vext
 | |
| 	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z      // vext vtrn
 | |
| 	
 | |
| 	B1 = B1 * B2;	//	A3 *= B3
 | |
| 
 | |
| 	A0 = bt_splat_ps(vQ1, 3);	//	A0
 | |
| 	A0 = A0 * vQ2;	//	A0 * B0
 | |
| 
 | |
| 	A1 = A1 + A2;	//	AB12
 | |
| 	A0 =  A0 - B1;	//	AB03 = AB0 - AB3 
 | |
| 	
 | |
|     A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
 | |
| 	A0 = A0 + A1;	//	AB03 + AB12
 | |
| 	
 | |
| 	return btQuaternion(A0);
 | |
| 
 | |
| #elif defined(BT_USE_NEON)     
 | |
| 
 | |
| 	float32x4_t vQ1 = q1.get128();
 | |
| 	float32x4_t vQ2 = q2.get128();
 | |
| 	float32x4_t A0, A1, B1, A2, B2, A3, B3;
 | |
|     float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | |
|     
 | |
|     {
 | |
|     float32x2x2_t tmp;
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
 | |
|     vQ1zx = tmp.val[0];
 | |
| 
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
 | |
|     vQ2zx = tmp.val[0];
 | |
|     }
 | |
|     vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 
 | |
| 
 | |
|     vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | |
| 
 | |
|     vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | |
|     vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | |
| 
 | |
|     A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
 | |
|     B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 
 | |
| 
 | |
| 	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | |
|     B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | |
| 
 | |
|     A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
 | |
|     B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z
 | |
| 
 | |
| 	A1 = vmulq_f32(A1, B1);
 | |
| 	A2 = vmulq_f32(A2, B2);
 | |
| 	A3 = vmulq_f32(A3, B3);	//	A3 *= B3
 | |
| 	A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); //	A0 * B0
 | |
| 
 | |
| 	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
 | |
| 	A0 = vsubq_f32(A0, A3);	//	AB03 = AB0 - AB3 
 | |
| 	
 | |
|     //	change the sign of the last element
 | |
|     A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
 | |
| 	A0 = vaddq_f32(A0, A1);	//	AB03 + AB12
 | |
| 	
 | |
| 	return btQuaternion(A0);
 | |
| 
 | |
| #else
 | |
| 	return btQuaternion(
 | |
|         q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
 | |
| 		q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
 | |
| 		q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
 | |
| 		q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btQuaternion
 | |
| operator*(const btQuaternion& q, const btVector3& w)
 | |
| {
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	__m128 vQ1 = q.get128();
 | |
| 	__m128 vQ2 = w.get128();
 | |
| 	__m128 A1, B1, A2, B2, A3, B3;
 | |
| 	
 | |
| 	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
 | |
| 	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));
 | |
| 
 | |
| 	A1 = A1 * B1;
 | |
| 	
 | |
| 	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
 | |
| 	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
 | |
| 
 | |
| 	A2 = A2 * B2;
 | |
| 
 | |
| 	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
 | |
| 	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
 | |
| 	
 | |
| 	A3 = A3 * B3;	//	A3 *= B3
 | |
| 
 | |
| 	A1 = A1 + A2;	//	AB12
 | |
| 	A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
 | |
|     A1 = A1 - A3;	//	AB123 = AB12 - AB3 
 | |
| 	
 | |
| 	return btQuaternion(A1);
 | |
|     
 | |
| #elif defined(BT_USE_NEON)     
 | |
| 
 | |
| 	float32x4_t vQ1 = q.get128();
 | |
| 	float32x4_t vQ2 = w.get128();
 | |
| 	float32x4_t A1, B1, A2, B2, A3, B3;
 | |
|     float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
 | |
|     
 | |
|     vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); 
 | |
|     {
 | |
|     float32x2x2_t tmp;
 | |
| 
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
 | |
|     vQ2zx = tmp.val[0];
 | |
| 
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
 | |
|     vQ1zx = tmp.val[0];
 | |
|     }
 | |
| 
 | |
|     vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | |
| 
 | |
|     vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | |
|     vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | |
| 
 | |
|     A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W  W X 
 | |
|     B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx);                    // X Y  z x 
 | |
| 
 | |
| 	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | |
|     B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | |
| 
 | |
|     A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
 | |
|     B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z
 | |
| 
 | |
| 	A1 = vmulq_f32(A1, B1);
 | |
| 	A2 = vmulq_f32(A2, B2);
 | |
| 	A3 = vmulq_f32(A3, B3);	//	A3 *= B3
 | |
| 
 | |
| 	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
 | |
| 	
 | |
|     //	change the sign of the last element
 | |
|     A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
 | |
| 	
 | |
|     A1 = vsubq_f32(A1, A3);	//	AB123 = AB12 - AB3
 | |
| 	
 | |
| 	return btQuaternion(A1);
 | |
|     
 | |
| #else
 | |
| 	return btQuaternion( 
 | |
|          q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
 | |
| 		 q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
 | |
| 		 q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
 | |
| 		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btQuaternion
 | |
| operator*(const btVector3& w, const btQuaternion& q)
 | |
| {
 | |
| #if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	__m128 vQ1 = w.get128();
 | |
| 	__m128 vQ2 = q.get128();
 | |
| 	__m128 A1, B1, A2, B2, A3, B3;
 | |
| 	
 | |
| 	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0));  // X Y  z x
 | |
| 	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));  // W W  W X 
 | |
| 
 | |
| 	A1 = A1 * B1;
 | |
| 	
 | |
| 	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
 | |
| 	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
 | |
| 
 | |
| 	A2 = A2 *B2;
 | |
| 
 | |
| 	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
 | |
| 	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
 | |
| 	
 | |
| 	A3 = A3 * B3;	//	A3 *= B3
 | |
| 
 | |
| 	A1 = A1 + A2;	//	AB12
 | |
| 	A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
 | |
| 	A1 = A1 - A3;	//	AB123 = AB12 - AB3 
 | |
| 	
 | |
| 	return btQuaternion(A1);
 | |
| 
 | |
| #elif defined(BT_USE_NEON)     
 | |
| 
 | |
| 	float32x4_t vQ1 = w.get128();
 | |
| 	float32x4_t vQ2 = q.get128();
 | |
| 	float32x4_t  A1, B1, A2, B2, A3, B3;
 | |
|     float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | |
|     
 | |
|     {
 | |
|     float32x2x2_t tmp;
 | |
|    
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
 | |
|     vQ1zx = tmp.val[0];
 | |
| 
 | |
|     tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
 | |
|     vQ2zx = tmp.val[0];
 | |
|     }
 | |
|     vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 
 | |
| 
 | |
|     vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | |
| 
 | |
|     vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | |
|     vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | |
| 
 | |
|     A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
 | |
|     B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 
 | |
| 
 | |
| 	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | |
|     B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | |
| 
 | |
|     A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
 | |
|     B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z
 | |
| 
 | |
| 	A1 = vmulq_f32(A1, B1);
 | |
| 	A2 = vmulq_f32(A2, B2);
 | |
| 	A3 = vmulq_f32(A3, B3);	//	A3 *= B3
 | |
| 
 | |
| 	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
 | |
| 	
 | |
|     //	change the sign of the last element
 | |
|     A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
 | |
| 	
 | |
|     A1 = vsubq_f32(A1, A3);	//	AB123 = AB12 - AB3
 | |
| 	
 | |
| 	return btQuaternion(A1);
 | |
|     
 | |
| #else
 | |
| 	return btQuaternion( 
 | |
|         +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
 | |
| 		+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
 | |
| 		+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
 | |
| 		-w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Calculate the dot product between two quaternions */
 | |
| SIMD_FORCE_INLINE btScalar 
 | |
| dot(const btQuaternion& q1, const btQuaternion& q2) 
 | |
| { 
 | |
| 	return q1.dot(q2); 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**@brief Return the length of a quaternion */
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| length(const btQuaternion& q) 
 | |
| { 
 | |
| 	return q.length(); 
 | |
| }
 | |
| 
 | |
| /**@brief Return the angle between two quaternions*/
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| btAngle(const btQuaternion& q1, const btQuaternion& q2) 
 | |
| { 
 | |
| 	return q1.angle(q2); 
 | |
| }
 | |
| 
 | |
| /**@brief Return the inverse of a quaternion*/
 | |
| SIMD_FORCE_INLINE btQuaternion
 | |
| inverse(const btQuaternion& q) 
 | |
| {
 | |
| 	return q.inverse();
 | |
| }
 | |
| 
 | |
| /**@brief Return the result of spherical linear interpolation betwen two quaternions 
 | |
|  * @param q1 The first quaternion
 | |
|  * @param q2 The second quaternion 
 | |
|  * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 
 | |
|  * Slerp assumes constant velocity between positions. */
 | |
| SIMD_FORCE_INLINE btQuaternion
 | |
| slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) 
 | |
| {
 | |
| 	return q1.slerp(q2, t);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| quatRotate(const btQuaternion& rotation, const btVector3& v) 
 | |
| {
 | |
| 	btQuaternion q = rotation * v;
 | |
| 	q *= rotation.inverse();
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
|     return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
 | |
| #else	
 | |
| 	return btVector3(q.getX(),q.getY(),q.getZ());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btQuaternion 
 | |
| shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
 | |
| {
 | |
| 	btVector3 c = v0.cross(v1);
 | |
| 	btScalar  d = v0.dot(v1);
 | |
| 
 | |
| 	if (d < -1.0 + SIMD_EPSILON)
 | |
| 	{
 | |
| 		btVector3 n,unused;
 | |
| 		btPlaneSpace1(v0,n,unused);
 | |
| 		return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
 | |
| 	}
 | |
| 
 | |
| 	btScalar  s = btSqrt((1.0f + d) * 2.0f);
 | |
| 	btScalar rs = 1.0f / s;
 | |
| 
 | |
| 	return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btQuaternion 
 | |
| shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
 | |
| {
 | |
| 	v0.normalize();
 | |
| 	v1.normalize();
 | |
| 	return shortestArcQuat(v0,v1);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| struct	btQuaternionFloatData
 | |
| {
 | |
| 	float	m_floats[4];
 | |
| };
 | |
| 
 | |
| struct	btQuaternionDoubleData
 | |
| {
 | |
| 	double	m_floats[4];
 | |
| 
 | |
| };
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btQuaternion::serializeFloat(struct	btQuaternionFloatData& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = float(m_floats[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btQuaternion::deSerializeFloat(const struct	btQuaternionFloatData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = btScalar(dataIn.m_floats[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btQuaternion::serializeDouble(struct	btQuaternionDoubleData& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = double(m_floats[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btQuaternion::deSerializeDouble(const struct	btQuaternionDoubleData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = btScalar(dataIn.m_floats[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btQuaternion::serialize(struct	btQuaternionData& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = m_floats[i];
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btQuaternion::deSerialize(const struct	btQuaternionData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = dataIn.m_floats[i];
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif //BT_SIMD__QUATERNION_H_
 | |
| 
 | |
| 
 | |
| 
 |