233 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifndef BT_AABB_UTIL2
 | 
						|
#define BT_AABB_UTIL2
 | 
						|
 | 
						|
#include "btTransform.h"
 | 
						|
#include "btVector3.h"
 | 
						|
#include "btMinMax.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin,
 | 
						|
								   btVector3& aabbMax,
 | 
						|
								   const btVector3& expansionMin,
 | 
						|
								   const btVector3& expansionMax)
 | 
						|
{
 | 
						|
	aabbMin = aabbMin + expansionMin;
 | 
						|
	aabbMax = aabbMax + expansionMax;
 | 
						|
}
 | 
						|
 | 
						|
/// conservative test for overlap between two aabbs
 | 
						|
SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
 | 
						|
								const btVector3 &point)
 | 
						|
{
 | 
						|
	bool overlap = true;
 | 
						|
	overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap;
 | 
						|
	overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap;
 | 
						|
	overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap;
 | 
						|
	return overlap;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// conservative test for overlap between two aabbs
 | 
						|
SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
 | 
						|
								const btVector3 &aabbMin2, const btVector3 &aabbMax2)
 | 
						|
{
 | 
						|
	bool overlap = true;
 | 
						|
	overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap;
 | 
						|
	overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap;
 | 
						|
	overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap;
 | 
						|
	return overlap;
 | 
						|
}
 | 
						|
 | 
						|
/// conservative test for overlap between triangle and aabb
 | 
						|
SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices,
 | 
						|
									const btVector3 &aabbMin, const btVector3 &aabbMax)
 | 
						|
{
 | 
						|
	const btVector3 &p1 = vertices[0];
 | 
						|
	const btVector3 &p2 = vertices[1];
 | 
						|
	const btVector3 &p3 = vertices[2];
 | 
						|
 | 
						|
	if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false;
 | 
						|
	if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false;
 | 
						|
 | 
						|
	if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false;
 | 
						|
	if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false;
 | 
						|
  
 | 
						|
	if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false;
 | 
						|
	if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE int	btOutcode(const btVector3& p,const btVector3& halfExtent) 
 | 
						|
{
 | 
						|
	return (p.getX()  < -halfExtent.getX() ? 0x01 : 0x0) |    
 | 
						|
		   (p.getX() >  halfExtent.getX() ? 0x08 : 0x0) |
 | 
						|
		   (p.getY() < -halfExtent.getY() ? 0x02 : 0x0) |    
 | 
						|
		   (p.getY() >  halfExtent.getY() ? 0x10 : 0x0) |
 | 
						|
		   (p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) |    
 | 
						|
		   (p.getZ() >  halfExtent.getZ() ? 0x20 : 0x0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom,
 | 
						|
								  const btVector3& rayInvDirection,
 | 
						|
								  const unsigned int raySign[3],
 | 
						|
								  const btVector3 bounds[2],
 | 
						|
								  btScalar& tmin,
 | 
						|
								  btScalar lambda_min,
 | 
						|
								  btScalar lambda_max)
 | 
						|
{
 | 
						|
	btScalar tmax, tymin, tymax, tzmin, tzmax;
 | 
						|
	tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
 | 
						|
	tmax = (bounds[1-raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
 | 
						|
	tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
 | 
						|
	tymax = (bounds[1-raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
 | 
						|
 | 
						|
	if ( (tmin > tymax) || (tymin > tmax) )
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (tymin > tmin)
 | 
						|
		tmin = tymin;
 | 
						|
 | 
						|
	if (tymax < tmax)
 | 
						|
		tmax = tymax;
 | 
						|
 | 
						|
	tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
 | 
						|
	tzmax = (bounds[1-raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
 | 
						|
 | 
						|
	if ( (tmin > tzmax) || (tzmin > tmax) )
 | 
						|
		return false;
 | 
						|
	if (tzmin > tmin)
 | 
						|
		tmin = tzmin;
 | 
						|
	if (tzmax < tmax)
 | 
						|
		tmax = tzmax;
 | 
						|
	return ( (tmin < lambda_max) && (tmax > lambda_min) );
 | 
						|
}
 | 
						|
 | 
						|
SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom, 
 | 
						|
								 const btVector3& rayTo, 
 | 
						|
								 const btVector3& aabbMin, 
 | 
						|
								 const btVector3& aabbMax,
 | 
						|
					  btScalar& param, btVector3& normal) 
 | 
						|
{
 | 
						|
	btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5);
 | 
						|
	btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5);
 | 
						|
	btVector3	source = rayFrom - aabbCenter;
 | 
						|
	btVector3	target = rayTo - aabbCenter;
 | 
						|
	int	sourceOutcode = btOutcode(source,aabbHalfExtent);
 | 
						|
	int targetOutcode = btOutcode(target,aabbHalfExtent);
 | 
						|
	if ((sourceOutcode & targetOutcode) == 0x0)
 | 
						|
	{
 | 
						|
		btScalar lambda_enter = btScalar(0.0);
 | 
						|
		btScalar lambda_exit  = param;
 | 
						|
		btVector3 r = target - source;
 | 
						|
		int i;
 | 
						|
		btScalar	normSign = 1;
 | 
						|
		btVector3	hitNormal(0,0,0);
 | 
						|
		int bit=1;
 | 
						|
 | 
						|
		for (int j=0;j<2;j++)
 | 
						|
		{
 | 
						|
			for (i = 0; i != 3; ++i)
 | 
						|
			{
 | 
						|
				if (sourceOutcode & bit)
 | 
						|
				{
 | 
						|
					btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
 | 
						|
					if (lambda_enter <= lambda)
 | 
						|
					{
 | 
						|
						lambda_enter = lambda;
 | 
						|
						hitNormal.setValue(0,0,0);
 | 
						|
						hitNormal[i] = normSign;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else if (targetOutcode & bit) 
 | 
						|
				{
 | 
						|
					btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
 | 
						|
					btSetMin(lambda_exit, lambda);
 | 
						|
				}
 | 
						|
				bit<<=1;
 | 
						|
			}
 | 
						|
			normSign = btScalar(-1.);
 | 
						|
		}
 | 
						|
		if (lambda_enter <= lambda_exit)
 | 
						|
		{
 | 
						|
			param = lambda_enter;
 | 
						|
			normal = hitNormal;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE	void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut)
 | 
						|
{
 | 
						|
	btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin);
 | 
						|
	btMatrix3x3 abs_b = t.getBasis().absolute();  
 | 
						|
	btVector3 center = t.getOrigin();
 | 
						|
    btVector3 extent = halfExtentsWithMargin.dot3( abs_b[0], abs_b[1], abs_b[2] );
 | 
						|
	aabbMinOut = center - extent;
 | 
						|
	aabbMaxOut = center + extent;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE	void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut)
 | 
						|
{
 | 
						|
		btAssert(localAabbMin.getX() <= localAabbMax.getX());
 | 
						|
		btAssert(localAabbMin.getY() <= localAabbMax.getY());
 | 
						|
		btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
 | 
						|
		btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin);
 | 
						|
		localHalfExtents+=btVector3(margin,margin,margin);
 | 
						|
 | 
						|
		btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin);
 | 
						|
		btMatrix3x3 abs_b = trans.getBasis().absolute();  
 | 
						|
		btVector3 center = trans(localCenter);
 | 
						|
        btVector3 extent = localHalfExtents.dot3( abs_b[0], abs_b[1], abs_b[2] );
 | 
						|
		aabbMinOut = center-extent;
 | 
						|
		aabbMaxOut = center+extent;
 | 
						|
}
 | 
						|
 | 
						|
#define USE_BANCHLESS 1
 | 
						|
#ifdef USE_BANCHLESS
 | 
						|
	//This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360)
 | 
						|
	SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
 | 
						|
	{		
 | 
						|
		return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
 | 
						|
			& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
 | 
						|
			& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
 | 
						|
			1, 0));
 | 
						|
	}
 | 
						|
#else
 | 
						|
	SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
 | 
						|
	{
 | 
						|
		bool overlap = true;
 | 
						|
		overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
 | 
						|
		overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
 | 
						|
		overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
 | 
						|
		return overlap;
 | 
						|
	}
 | 
						|
#endif //USE_BANCHLESS
 | 
						|
 | 
						|
#endif //BT_AABB_UTIL2
 | 
						|
 | 
						|
 |