531 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			531 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#ifndef BT_OBJECT_ARRAY__
 | 
						|
#define BT_OBJECT_ARRAY__
 | 
						|
 | 
						|
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
 | 
						|
#include "btAlignedAllocator.h"
 | 
						|
 | 
						|
///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
 | 
						|
///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
 | 
						|
///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
 | 
						|
///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
 | 
						|
///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
 | 
						|
 | 
						|
#define BT_USE_PLACEMENT_NEW 1
 | 
						|
//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
 | 
						|
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
 | 
						|
 | 
						|
#ifdef BT_USE_MEMCPY
 | 
						|
#include <memory.h>
 | 
						|
#include <string.h>
 | 
						|
#endif //BT_USE_MEMCPY
 | 
						|
 | 
						|
#ifdef BT_USE_PLACEMENT_NEW
 | 
						|
#include <new> //for placement new
 | 
						|
#endif //BT_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
// The register keyword is deprecated in C++11 so don't use it.
 | 
						|
#if __cplusplus > 199711L
 | 
						|
#define BT_REGISTER
 | 
						|
#else
 | 
						|
#define BT_REGISTER register
 | 
						|
#endif
 | 
						|
 | 
						|
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
 | 
						|
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
 | 
						|
template <typename T> 
 | 
						|
//template <class T> 
 | 
						|
class btAlignedObjectArray
 | 
						|
{
 | 
						|
	btAlignedAllocator<T , 16>	m_allocator;
 | 
						|
 | 
						|
	int					m_size;
 | 
						|
	int					m_capacity;
 | 
						|
	T*					m_data;
 | 
						|
	//PCK: added this line
 | 
						|
	bool				m_ownsMemory;
 | 
						|
 | 
						|
#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
public:
 | 
						|
	SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other)
 | 
						|
	{
 | 
						|
		copyFromArray(other);
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
#else//BT_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
private:
 | 
						|
		SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other);
 | 
						|
#endif//BT_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
 | 
						|
protected:
 | 
						|
		SIMD_FORCE_INLINE	int	allocSize(int size)
 | 
						|
		{
 | 
						|
			return (size ? size*2 : 1);
 | 
						|
		}
 | 
						|
		SIMD_FORCE_INLINE	void	copy(int start,int end, T* dest) const
 | 
						|
		{
 | 
						|
			int i;
 | 
						|
			for (i=start;i<end;++i)
 | 
						|
#ifdef BT_USE_PLACEMENT_NEW
 | 
						|
				new (&dest[i]) T(m_data[i]);
 | 
						|
#else
 | 
						|
				dest[i] = m_data[i];
 | 
						|
#endif //BT_USE_PLACEMENT_NEW
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	void	init()
 | 
						|
		{
 | 
						|
			//PCK: added this line
 | 
						|
			m_ownsMemory = true;
 | 
						|
			m_data = 0;
 | 
						|
			m_size = 0;
 | 
						|
			m_capacity = 0;
 | 
						|
		}
 | 
						|
		SIMD_FORCE_INLINE	void	destroy(int first,int last)
 | 
						|
		{
 | 
						|
			int i;
 | 
						|
			for (i=first; i<last;i++)
 | 
						|
			{
 | 
						|
				m_data[i].~T();
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	void* allocate(int size)
 | 
						|
		{
 | 
						|
			if (size)
 | 
						|
				return m_allocator.allocate(size);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	void	deallocate()
 | 
						|
		{
 | 
						|
			if(m_data)	{
 | 
						|
				//PCK: enclosed the deallocation in this block
 | 
						|
				if (m_ownsMemory)
 | 
						|
				{
 | 
						|
					m_allocator.deallocate(m_data);
 | 
						|
				}
 | 
						|
				m_data = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
 | 
						|
	public:
 | 
						|
		
 | 
						|
		btAlignedObjectArray()
 | 
						|
		{
 | 
						|
			init();
 | 
						|
		}
 | 
						|
 | 
						|
		~btAlignedObjectArray()
 | 
						|
		{
 | 
						|
			clear();
 | 
						|
		}
 | 
						|
 | 
						|
		///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
 | 
						|
		btAlignedObjectArray(const btAlignedObjectArray& otherArray)
 | 
						|
		{
 | 
						|
			init();
 | 
						|
 | 
						|
			int otherSize = otherArray.size();
 | 
						|
			resize (otherSize);
 | 
						|
			otherArray.copy(0, otherSize, m_data);
 | 
						|
		}
 | 
						|
 | 
						|
		
 | 
						|
		
 | 
						|
		/// return the number of elements in the array
 | 
						|
		SIMD_FORCE_INLINE	int size() const
 | 
						|
		{	
 | 
						|
			return m_size;
 | 
						|
		}
 | 
						|
		
 | 
						|
		SIMD_FORCE_INLINE const T& at(int n) const
 | 
						|
		{
 | 
						|
			btAssert(n>=0);
 | 
						|
			btAssert(n<size());
 | 
						|
			return m_data[n];
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE T& at(int n)
 | 
						|
		{
 | 
						|
			btAssert(n>=0);
 | 
						|
			btAssert(n<size());
 | 
						|
			return m_data[n];
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE const T& operator[](int n) const
 | 
						|
		{
 | 
						|
			btAssert(n>=0);
 | 
						|
			btAssert(n<size());
 | 
						|
			return m_data[n];
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE T& operator[](int n)
 | 
						|
		{
 | 
						|
			btAssert(n>=0);
 | 
						|
			btAssert(n<size());
 | 
						|
			return m_data[n];
 | 
						|
		}
 | 
						|
		
 | 
						|
 | 
						|
		///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
 | 
						|
		SIMD_FORCE_INLINE	void	clear()
 | 
						|
		{
 | 
						|
			destroy(0,size());
 | 
						|
			
 | 
						|
			deallocate();
 | 
						|
			
 | 
						|
			init();
 | 
						|
		}
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	void	pop_back()
 | 
						|
		{
 | 
						|
			btAssert(m_size>0);
 | 
						|
			m_size--;
 | 
						|
			m_data[m_size].~T();
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
 | 
						|
		///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
 | 
						|
		SIMD_FORCE_INLINE	void	resizeNoInitialize(int newsize)
 | 
						|
		{
 | 
						|
			if (newsize > size())
 | 
						|
			{
 | 
						|
				reserve(newsize);
 | 
						|
			}
 | 
						|
			m_size = newsize;
 | 
						|
		}
 | 
						|
	
 | 
						|
		SIMD_FORCE_INLINE	void	resize(int newsize, const T& fillData=T())
 | 
						|
		{
 | 
						|
			const BT_REGISTER int curSize = size();
 | 
						|
 | 
						|
			if (newsize < curSize)
 | 
						|
			{
 | 
						|
				for(int i = newsize; i < curSize; i++)
 | 
						|
				{
 | 
						|
					m_data[i].~T();
 | 
						|
				}
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				if (newsize > curSize)
 | 
						|
				{
 | 
						|
					reserve(newsize);
 | 
						|
				}
 | 
						|
#ifdef BT_USE_PLACEMENT_NEW
 | 
						|
				for (int i=curSize;i<newsize;i++)
 | 
						|
				{
 | 
						|
					new ( &m_data[i]) T(fillData);
 | 
						|
				}
 | 
						|
#endif //BT_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			m_size = newsize;
 | 
						|
		}
 | 
						|
		SIMD_FORCE_INLINE	T&  expandNonInitializing( )
 | 
						|
		{	
 | 
						|
			const BT_REGISTER int sz = size();
 | 
						|
			if( sz == capacity() )
 | 
						|
			{
 | 
						|
				reserve( allocSize(size()) );
 | 
						|
			}
 | 
						|
			m_size++;
 | 
						|
 | 
						|
			return m_data[sz];		
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	T&  expand( const T& fillValue=T())
 | 
						|
		{	
 | 
						|
			const BT_REGISTER int sz = size();
 | 
						|
			if( sz == capacity() )
 | 
						|
			{
 | 
						|
				reserve( allocSize(size()) );
 | 
						|
			}
 | 
						|
			m_size++;
 | 
						|
#ifdef BT_USE_PLACEMENT_NEW
 | 
						|
			new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
 | 
						|
#endif
 | 
						|
 | 
						|
			return m_data[sz];		
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE	void push_back(const T& _Val)
 | 
						|
		{	
 | 
						|
			const BT_REGISTER int sz = size();
 | 
						|
			if( sz == capacity() )
 | 
						|
			{
 | 
						|
				reserve( allocSize(size()) );
 | 
						|
			}
 | 
						|
			
 | 
						|
#ifdef BT_USE_PLACEMENT_NEW
 | 
						|
			new ( &m_data[m_size] ) T(_Val);
 | 
						|
#else
 | 
						|
			m_data[size()] = _Val;			
 | 
						|
#endif //BT_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
			m_size++;
 | 
						|
		}
 | 
						|
 | 
						|
	
 | 
						|
		/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
 | 
						|
		SIMD_FORCE_INLINE	int capacity() const
 | 
						|
		{	
 | 
						|
			return m_capacity;
 | 
						|
		}
 | 
						|
		
 | 
						|
		SIMD_FORCE_INLINE	void reserve(int _Count)
 | 
						|
		{	// determine new minimum length of allocated storage
 | 
						|
			if (capacity() < _Count)
 | 
						|
			{	// not enough room, reallocate
 | 
						|
				T*	s = (T*)allocate(_Count);
 | 
						|
 | 
						|
				copy(0, size(), s);
 | 
						|
 | 
						|
				destroy(0,size());
 | 
						|
 | 
						|
				deallocate();
 | 
						|
				
 | 
						|
				//PCK: added this line
 | 
						|
				m_ownsMemory = true;
 | 
						|
 | 
						|
				m_data = s;
 | 
						|
				
 | 
						|
				m_capacity = _Count;
 | 
						|
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		class less
 | 
						|
		{
 | 
						|
			public:
 | 
						|
 | 
						|
				bool operator() ( const T& a, const T& b ) const
 | 
						|
				{
 | 
						|
					return ( a < b );
 | 
						|
				}
 | 
						|
		};
 | 
						|
	
 | 
						|
 | 
						|
		template <typename L>
 | 
						|
		void quickSortInternal(const L& CompareFunc,int lo, int hi)
 | 
						|
		{
 | 
						|
		//  lo is the lower index, hi is the upper index
 | 
						|
		//  of the region of array a that is to be sorted
 | 
						|
			int i=lo, j=hi;
 | 
						|
			T x=m_data[(lo+hi)/2];
 | 
						|
 | 
						|
			//  partition
 | 
						|
			do
 | 
						|
			{    
 | 
						|
				while (CompareFunc(m_data[i],x)) 
 | 
						|
					i++; 
 | 
						|
				while (CompareFunc(x,m_data[j])) 
 | 
						|
					j--;
 | 
						|
				if (i<=j)
 | 
						|
				{
 | 
						|
					swap(i,j);
 | 
						|
					i++; j--;
 | 
						|
				}
 | 
						|
			} while (i<=j);
 | 
						|
 | 
						|
			//  recursion
 | 
						|
			if (lo<j) 
 | 
						|
				quickSortInternal( CompareFunc, lo, j);
 | 
						|
			if (i<hi) 
 | 
						|
				quickSortInternal( CompareFunc, i, hi);
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		template <typename L>
 | 
						|
		void quickSort(const L& CompareFunc)
 | 
						|
		{
 | 
						|
			//don't sort 0 or 1 elements
 | 
						|
			if (size()>1)
 | 
						|
			{
 | 
						|
				quickSortInternal(CompareFunc,0,size()-1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
 | 
						|
		template <typename L>
 | 
						|
		void downHeap(T *pArr, int k, int n, const L& CompareFunc)
 | 
						|
		{
 | 
						|
			/*  PRE: a[k+1..N] is a heap */
 | 
						|
			/* POST:  a[k..N]  is a heap */
 | 
						|
			
 | 
						|
			T temp = pArr[k - 1];
 | 
						|
			/* k has child(s) */
 | 
						|
			while (k <= n/2) 
 | 
						|
			{
 | 
						|
				int child = 2*k;
 | 
						|
				
 | 
						|
				if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child]))
 | 
						|
				{
 | 
						|
					child++;
 | 
						|
				}
 | 
						|
				/* pick larger child */
 | 
						|
				if (CompareFunc(temp , pArr[child - 1]))
 | 
						|
				{
 | 
						|
					/* move child up */
 | 
						|
					pArr[k - 1] = pArr[child - 1];
 | 
						|
					k = child;
 | 
						|
				}
 | 
						|
				else
 | 
						|
				{
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			pArr[k - 1] = temp;
 | 
						|
		} /*downHeap*/
 | 
						|
 | 
						|
		void	swap(int index0,int index1)
 | 
						|
		{
 | 
						|
#ifdef BT_USE_MEMCPY
 | 
						|
			char	temp[sizeof(T)];
 | 
						|
			memcpy(temp,&m_data[index0],sizeof(T));
 | 
						|
			memcpy(&m_data[index0],&m_data[index1],sizeof(T));
 | 
						|
			memcpy(&m_data[index1],temp,sizeof(T));
 | 
						|
#else
 | 
						|
			T temp = m_data[index0];
 | 
						|
			m_data[index0] = m_data[index1];
 | 
						|
			m_data[index1] = temp;
 | 
						|
#endif //BT_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	template <typename L>
 | 
						|
	void heapSort(const L& CompareFunc)
 | 
						|
	{
 | 
						|
		/* sort a[0..N-1],  N.B. 0 to N-1 */
 | 
						|
		int k;
 | 
						|
		int n = m_size;
 | 
						|
		for (k = n/2; k > 0; k--) 
 | 
						|
		{
 | 
						|
			downHeap(m_data, k, n, CompareFunc);
 | 
						|
		}
 | 
						|
 | 
						|
		/* a[1..N] is now a heap */
 | 
						|
		while ( n>=1 ) 
 | 
						|
		{
 | 
						|
			swap(0,n-1); /* largest of a[0..n-1] */
 | 
						|
 | 
						|
 | 
						|
			n = n - 1;
 | 
						|
			/* restore a[1..i-1] heap */
 | 
						|
			downHeap(m_data, 1, n, CompareFunc);
 | 
						|
		} 
 | 
						|
	}
 | 
						|
 | 
						|
	///non-recursive binary search, assumes sorted array
 | 
						|
	int	findBinarySearch(const T& key) const
 | 
						|
	{
 | 
						|
		int first = 0;
 | 
						|
		int last = size()-1;
 | 
						|
 | 
						|
		//assume sorted array
 | 
						|
		while (first <= last) {
 | 
						|
			int mid = (first + last) / 2;  // compute mid point.
 | 
						|
			if (key > m_data[mid]) 
 | 
						|
				first = mid + 1;  // repeat search in top half.
 | 
						|
			else if (key < m_data[mid]) 
 | 
						|
				last = mid - 1; // repeat search in bottom half.
 | 
						|
			else
 | 
						|
				return mid;     // found it. return position /////
 | 
						|
		}
 | 
						|
		return size();    // failed to find key
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	int	findLinearSearch(const T& key) const
 | 
						|
	{
 | 
						|
		int index=size();
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i=0;i<size();i++)
 | 
						|
		{
 | 
						|
			if (m_data[i] == key)
 | 
						|
			{
 | 
						|
				index = i;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return index;
 | 
						|
	}
 | 
						|
    
 | 
						|
    // If the key is not in the array, return -1 instead of 0,
 | 
						|
    // since 0 also means the first element in the array.
 | 
						|
    int	findLinearSearch2(const T& key) const
 | 
						|
    {
 | 
						|
        int index=-1;
 | 
						|
        int i;
 | 
						|
        
 | 
						|
        for (i=0;i<size();i++)
 | 
						|
        {
 | 
						|
            if (m_data[i] == key)
 | 
						|
            {
 | 
						|
                index = i;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
 | 
						|
    void removeAtIndex(int index)
 | 
						|
    {
 | 
						|
        if (index<size())
 | 
						|
        {
 | 
						|
            swap( index,size()-1);
 | 
						|
            pop_back();
 | 
						|
        }
 | 
						|
    }
 | 
						|
	void	remove(const T& key)
 | 
						|
	{
 | 
						|
		int findIndex = findLinearSearch(key);
 | 
						|
        removeAtIndex(findIndex);
 | 
						|
	}
 | 
						|
 | 
						|
	//PCK: whole function
 | 
						|
	void initializeFromBuffer(void *buffer, int size, int capacity)
 | 
						|
	{
 | 
						|
		clear();
 | 
						|
		m_ownsMemory = false;
 | 
						|
		m_data = (T*)buffer;
 | 
						|
		m_size = size;
 | 
						|
		m_capacity = capacity;
 | 
						|
	}
 | 
						|
 | 
						|
	void copyFromArray(const btAlignedObjectArray& otherArray)
 | 
						|
	{
 | 
						|
		int otherSize = otherArray.size();
 | 
						|
		resize (otherSize);
 | 
						|
		otherArray.copy(0, otherSize, m_data);
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
#endif //BT_OBJECT_ARRAY__
 |