242 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#ifndef BT_TRANSFORM_UTIL_H
 | 
						|
#define BT_TRANSFORM_UTIL_H
 | 
						|
 | 
						|
#include "btTransform.h"
 | 
						|
#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir)
 | 
						|
{
 | 
						|
	return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(),
 | 
						|
      supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(),
 | 
						|
      supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// Utils related to temporal transforms
 | 
						|
class btTransformUtil
 | 
						|
{
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
	static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform)
 | 
						|
	{
 | 
						|
		predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
 | 
						|
//	#define QUATERNION_DERIVATIVE
 | 
						|
	#ifdef QUATERNION_DERIVATIVE
 | 
						|
		btQuaternion predictedOrn = curTrans.getRotation();
 | 
						|
		predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
 | 
						|
		predictedOrn.safeNormalize();
 | 
						|
	#else
 | 
						|
		//Exponential map
 | 
						|
		//google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia
 | 
						|
 | 
						|
		btVector3 axis;
 | 
						|
		btScalar	fAngle2 = angvel.length2();
 | 
						|
        	btScalar    fAngle = 0;
 | 
						|
        	if (fAngle2>SIMD_EPSILON)
 | 
						|
        	{
 | 
						|
            		fAngle = btSqrt(fAngle2);
 | 
						|
        	}
 | 
						|
 | 
						|
		//limit the angular motion
 | 
						|
		if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD)
 | 
						|
		{
 | 
						|
			fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
 | 
						|
		}
 | 
						|
 | 
						|
		if ( fAngle < btScalar(0.001) )
 | 
						|
		{
 | 
						|
			// use Taylor's expansions of sync function
 | 
						|
			axis   = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle );
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			// sync(fAngle) = sin(c*fAngle)/t
 | 
						|
			axis   = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle );
 | 
						|
		}
 | 
						|
		btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) ));
 | 
						|
		btQuaternion orn0 = curTrans.getRotation();
 | 
						|
 | 
						|
		btQuaternion predictedOrn = dorn * orn0;
 | 
						|
		predictedOrn.safeNormalize();
 | 
						|
	#endif
 | 
						|
		if (predictedOrn.length2()>SIMD_EPSILON)
 | 
						|
		{
 | 
						|
			predictedTransform.setRotation(predictedOrn);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			predictedTransform.setBasis(curTrans.getBasis());
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	static void	calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
 | 
						|
	{
 | 
						|
		linVel = (pos1 - pos0) / timeStep;
 | 
						|
		btVector3 axis;
 | 
						|
		btScalar  angle;
 | 
						|
		if (orn0 != orn1)
 | 
						|
		{
 | 
						|
			calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle);
 | 
						|
			angVel = axis * angle / timeStep;
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			angVel.setValue(0,0,0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle)
 | 
						|
	{
 | 
						|
		btQuaternion orn1 = orn0.nearest(orn1a);
 | 
						|
		btQuaternion dorn = orn1 * orn0.inverse();
 | 
						|
		angle = dorn.getAngle();
 | 
						|
		axis = btVector3(dorn.x(),dorn.y(),dorn.z());
 | 
						|
		axis[3] = btScalar(0.);
 | 
						|
		//check for axis length
 | 
						|
		btScalar len = axis.length2();
 | 
						|
		if (len < SIMD_EPSILON*SIMD_EPSILON)
 | 
						|
			axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
 | 
						|
		else
 | 
						|
			axis /= btSqrt(len);
 | 
						|
	}
 | 
						|
 | 
						|
	static void	calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
 | 
						|
	{
 | 
						|
		linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
 | 
						|
		btVector3 axis;
 | 
						|
		btScalar  angle;
 | 
						|
		calculateDiffAxisAngle(transform0,transform1,axis,angle);
 | 
						|
		angVel = axis * angle / timeStep;
 | 
						|
	}
 | 
						|
 | 
						|
	static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
 | 
						|
	{
 | 
						|
		btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
 | 
						|
		btQuaternion dorn;
 | 
						|
		dmat.getRotation(dorn);
 | 
						|
 | 
						|
		///floating point inaccuracy can lead to w component > 1..., which breaks 
 | 
						|
		dorn.normalize();
 | 
						|
		
 | 
						|
		angle = dorn.getAngle();
 | 
						|
		axis = btVector3(dorn.x(),dorn.y(),dorn.z());
 | 
						|
		axis[3] = btScalar(0.);
 | 
						|
		//check for axis length
 | 
						|
		btScalar len = axis.length2();
 | 
						|
		if (len < SIMD_EPSILON*SIMD_EPSILON)
 | 
						|
			axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
 | 
						|
		else
 | 
						|
			axis /= btSqrt(len);
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
///The btConvexSeparatingDistanceUtil can help speed up convex collision detection 
 | 
						|
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
 | 
						|
class	btConvexSeparatingDistanceUtil
 | 
						|
{
 | 
						|
	btQuaternion	m_ornA;
 | 
						|
	btQuaternion	m_ornB;
 | 
						|
	btVector3	m_posA;
 | 
						|
	btVector3	m_posB;
 | 
						|
	
 | 
						|
	btVector3	m_separatingNormal;
 | 
						|
 | 
						|
	btScalar	m_boundingRadiusA;
 | 
						|
	btScalar	m_boundingRadiusB;
 | 
						|
	btScalar	m_separatingDistance;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
	btConvexSeparatingDistanceUtil(btScalar	boundingRadiusA,btScalar	boundingRadiusB)
 | 
						|
		:m_boundingRadiusA(boundingRadiusA),
 | 
						|
		m_boundingRadiusB(boundingRadiusB),
 | 
						|
		m_separatingDistance(0.f)
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar	getConservativeSeparatingDistance()
 | 
						|
	{
 | 
						|
		return m_separatingDistance;
 | 
						|
	}
 | 
						|
 | 
						|
	void	updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
 | 
						|
	{
 | 
						|
		const btVector3& toPosA = transA.getOrigin();
 | 
						|
		const btVector3& toPosB = transB.getOrigin();
 | 
						|
		btQuaternion toOrnA = transA.getRotation();
 | 
						|
		btQuaternion toOrnB = transB.getRotation();
 | 
						|
 | 
						|
		if (m_separatingDistance>0.f)
 | 
						|
		{
 | 
						|
			
 | 
						|
 | 
						|
			btVector3 linVelA,angVelA,linVelB,angVelB;
 | 
						|
			btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA);
 | 
						|
			btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB);
 | 
						|
			btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
 | 
						|
			btVector3 relLinVel = (linVelB-linVelA);
 | 
						|
			btScalar relLinVelocLength = relLinVel.dot(m_separatingNormal);
 | 
						|
			if (relLinVelocLength<0.f)
 | 
						|
			{
 | 
						|
				relLinVelocLength = 0.f;
 | 
						|
			}
 | 
						|
	
 | 
						|
			btScalar	projectedMotion = maxAngularProjectedVelocity +relLinVelocLength;
 | 
						|
			m_separatingDistance -= projectedMotion;
 | 
						|
		}
 | 
						|
	
 | 
						|
		m_posA = toPosA;
 | 
						|
		m_posB = toPosB;
 | 
						|
		m_ornA = toOrnA;
 | 
						|
		m_ornB = toOrnB;
 | 
						|
	}
 | 
						|
 | 
						|
	void	initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
 | 
						|
	{
 | 
						|
		m_separatingDistance = separatingDistance;
 | 
						|
 | 
						|
		if (m_separatingDistance>0.f)
 | 
						|
		{
 | 
						|
			m_separatingNormal = separatingVector;
 | 
						|
			
 | 
						|
			const btVector3& toPosA = transA.getOrigin();
 | 
						|
			const btVector3& toPosB = transB.getOrigin();
 | 
						|
			btQuaternion toOrnA = transA.getRotation();
 | 
						|
			btQuaternion toOrnB = transB.getRotation();
 | 
						|
			m_posA = toPosA;
 | 
						|
			m_posB = toPosB;
 | 
						|
			m_ornA = toOrnA;
 | 
						|
			m_ornB = toOrnB;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#endif //BT_TRANSFORM_UTIL_H
 | 
						|
 |