1671 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1671 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 Copyright (c) 2011 Apple Inc.
 | 
						|
 http://continuousphysics.com/Bullet/
 | 
						|
 
 | 
						|
 This software is provided 'as-is', without any express or implied warranty.
 | 
						|
 In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
 Permission is granted to anyone to use this software for any purpose, 
 | 
						|
 including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
 subject to the following restrictions:
 | 
						|
 
 | 
						|
 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 
 | 
						|
 This source version has been altered.
 | 
						|
 */
 | 
						|
 | 
						|
#if defined (_WIN32) || defined (__i386__)
 | 
						|
#define BT_USE_SSE_IN_API
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#include "btVector3.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined BT_USE_SIMD_VECTOR3
 | 
						|
 | 
						|
#if DEBUG
 | 
						|
#include <string.h>//for memset
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef __APPLE__
 | 
						|
#include <stdint.h>
 | 
						|
typedef  float float4 __attribute__ ((vector_size(16)));
 | 
						|
#else
 | 
						|
#define float4 __m128
 | 
						|
#endif
 | 
						|
//typedef  uint32_t uint4 __attribute__ ((vector_size(16)));
 | 
						|
 | 
						|
 | 
						|
#if defined BT_USE_SSE || defined _WIN32
 | 
						|
 | 
						|
#define LOG2_ARRAY_SIZE     6
 | 
						|
#define STACK_ARRAY_COUNT   (1UL << LOG2_ARRAY_SIZE)
 | 
						|
 | 
						|
#include <emmintrin.h>
 | 
						|
 | 
						|
long _maxdot_large( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
long _maxdot_large( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    const float4 *vertices = (const float4*) vv;
 | 
						|
    static const unsigned char indexTable[16] = {(unsigned char)-1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 };
 | 
						|
    float4 dotMax = btAssign128( -BT_INFINITY,  -BT_INFINITY,  -BT_INFINITY,  -BT_INFINITY );
 | 
						|
    float4 vvec = _mm_loadu_ps( vec );
 | 
						|
    float4 vHi = btCastiTo128f(_mm_shuffle_epi32( btCastfTo128i( vvec), 0xaa ));          /// zzzz
 | 
						|
    float4 vLo = _mm_movelh_ps( vvec, vvec );                               /// xyxy
 | 
						|
    
 | 
						|
    long maxIndex = -1L;
 | 
						|
    
 | 
						|
    size_t segment = 0;
 | 
						|
    float4 stack_array[ STACK_ARRAY_COUNT ];
 | 
						|
    
 | 
						|
#if DEBUG
 | 
						|
    //memset( stack_array, -1, STACK_ARRAY_COUNT * sizeof(stack_array[0]) );
 | 
						|
#endif
 | 
						|
    
 | 
						|
    size_t index;
 | 
						|
    float4 max;
 | 
						|
    // Faster loop without cleanup code for full tiles
 | 
						|
    for ( segment = 0; segment + STACK_ARRAY_COUNT*4 <= count; segment += STACK_ARRAY_COUNT*4 ) 
 | 
						|
    {
 | 
						|
        max = dotMax;
 | 
						|
        
 | 
						|
        for( index = 0; index < STACK_ARRAY_COUNT; index+= 4 )   
 | 
						|
        { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
            float4 v0 = vertices[0];
 | 
						|
            float4 v1 = vertices[1];
 | 
						|
            float4 v2 = vertices[2];
 | 
						|
            float4 v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+1] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+2] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+3] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            // It is too costly to keep the index of the max here. We will look for it again later.  We save a lot of work this way.
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If we found a new max
 | 
						|
        if( 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(max, dotMax)))
 | 
						|
        { 
 | 
						|
            // copy the new max across all lanes of our max accumulator
 | 
						|
            max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0x4e));
 | 
						|
            max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0xb1));
 | 
						|
            
 | 
						|
            dotMax = max;
 | 
						|
            
 | 
						|
            // find first occurrence of that max  
 | 
						|
            size_t test;
 | 
						|
            for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], max))); index++ )   // local_count must be a multiple of 4
 | 
						|
            {}
 | 
						|
            // record where it is.
 | 
						|
            maxIndex = 4*index + segment + indexTable[test];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // account for work we've already done
 | 
						|
    count -= segment;
 | 
						|
    
 | 
						|
    // Deal with the last < STACK_ARRAY_COUNT vectors
 | 
						|
    max = dotMax;
 | 
						|
    index = 0;
 | 
						|
    
 | 
						|
    
 | 
						|
    if( btUnlikely( count > 16) )
 | 
						|
    {
 | 
						|
        for( ; index + 4 <= count / 4; index+=4 )   
 | 
						|
        { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
            float4 v0 = vertices[0];
 | 
						|
            float4 v1 = vertices[1];
 | 
						|
            float4 v2 = vertices[2];
 | 
						|
            float4 v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+1] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+2] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+3] = x;
 | 
						|
            max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            
 | 
						|
            // It is too costly to keep the index of the max here. We will look for it again later.  We save a lot of work this way.
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    size_t localCount = (count & -4L) - 4*index;
 | 
						|
    if( localCount )
 | 
						|
    {
 | 
						|
#ifdef __APPLE__
 | 
						|
        float4 t0, t1, t2, t3, t4;
 | 
						|
        float4 * sap = &stack_array[index + localCount / 4];
 | 
						|
          vertices += localCount;      // counter the offset
 | 
						|
         size_t byteIndex = -(localCount) * sizeof(float);
 | 
						|
        //AT&T Code style assembly
 | 
						|
        asm volatile
 | 
						|
        (   ".align 4                                                                   \n\
 | 
						|
             0: movaps  %[max], %[t2]                            // move max out of the way to avoid propagating NaNs in max \n\
 | 
						|
          movaps  (%[vertices], %[byteIndex], 4),    %[t0]    // vertices[0]      \n\
 | 
						|
          movaps  16(%[vertices], %[byteIndex], 4),  %[t1]    // vertices[1]      \n\
 | 
						|
          movaps  %[t0], %[max]                               // vertices[0]      \n\
 | 
						|
          movlhps %[t1], %[max]                               // x0y0x1y1         \n\
 | 
						|
         movaps  32(%[vertices], %[byteIndex], 4),  %[t3]    // vertices[2]      \n\
 | 
						|
         movaps  48(%[vertices], %[byteIndex], 4),  %[t4]    // vertices[3]      \n\
 | 
						|
          mulps   %[vLo], %[max]                              // x0y0x1y1 * vLo   \n\
 | 
						|
         movhlps %[t0], %[t1]                                // z0w0z1w1         \n\
 | 
						|
         movaps  %[t3], %[t0]                                // vertices[2]      \n\
 | 
						|
         movlhps %[t4], %[t0]                                // x2y2x3y3         \n\
 | 
						|
         mulps   %[vLo], %[t0]                               // x2y2x3y3 * vLo   \n\
 | 
						|
          movhlps %[t3], %[t4]                                // z2w2z3w3         \n\
 | 
						|
          shufps  $0x88, %[t4], %[t1]                         // z0z1z2z3         \n\
 | 
						|
          mulps   %[vHi], %[t1]                               // z0z1z2z3 * vHi   \n\
 | 
						|
         movaps  %[max], %[t3]                               // x0y0x1y1 * vLo   \n\
 | 
						|
         shufps  $0x88, %[t0], %[max]                        // x0x1x2x3 * vLo.x \n\
 | 
						|
         shufps  $0xdd, %[t0], %[t3]                         // y0y1y2y3 * vLo.y \n\
 | 
						|
         addps   %[t3], %[max]                               // x + y            \n\
 | 
						|
         addps   %[t1], %[max]                               // x + y + z        \n\
 | 
						|
         movaps  %[max], (%[sap], %[byteIndex])              // record result for later scrutiny \n\
 | 
						|
         maxps   %[t2], %[max]                               // record max, restore max   \n\
 | 
						|
         add     $16, %[byteIndex]                           // advance loop counter\n\
 | 
						|
         jnz     0b                                          \n\
 | 
						|
     "
 | 
						|
         : [max] "+x" (max), [t0] "=&x" (t0), [t1] "=&x" (t1), [t2] "=&x" (t2), [t3] "=&x" (t3), [t4] "=&x" (t4), [byteIndex] "+r" (byteIndex)
 | 
						|
         : [vLo] "x" (vLo), [vHi] "x" (vHi), [vertices] "r" (vertices), [sap] "r" (sap)
 | 
						|
         : "memory", "cc"
 | 
						|
         );
 | 
						|
        index += localCount/4;
 | 
						|
#else
 | 
						|
        {
 | 
						|
            for( unsigned int i=0; i<localCount/4; i++,index++)   
 | 
						|
            { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
                float4 v0 = vertices[0];
 | 
						|
                float4 v1 = vertices[1];
 | 
						|
                float4 v2 = vertices[2];
 | 
						|
                float4 v3 = vertices[3];            
 | 
						|
                vertices += 4;
 | 
						|
                
 | 
						|
                float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
                float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
                float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
                float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
                
 | 
						|
                lo0 = lo0*vLo;
 | 
						|
                lo1 = lo1*vLo;
 | 
						|
                float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
                float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
                float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
                z = z*vHi;
 | 
						|
                x = x+y;
 | 
						|
                x = x+z;
 | 
						|
                stack_array[index] = x;
 | 
						|
                max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            }
 | 
						|
        }
 | 
						|
#endif //__APPLE__
 | 
						|
    }
 | 
						|
 | 
						|
    // process the last few points
 | 
						|
    if( count & 3 )
 | 
						|
    {
 | 
						|
        float4 v0, v1, v2, x, y, z;
 | 
						|
        switch( count & 3 )
 | 
						|
        {
 | 
						|
            case 3:
 | 
						|
            {
 | 
						|
                v0 = vertices[0];
 | 
						|
                v1 = vertices[1];
 | 
						|
                v2 = vertices[2];
 | 
						|
                
 | 
						|
                // Calculate 3 dot products, transpose, duplicate v2
 | 
						|
                float4 lo0 = _mm_movelh_ps( v0, v1);        // xyxy.lo
 | 
						|
                float4 hi0 = _mm_movehl_ps( v1, v0);        // z?z?.lo
 | 
						|
                lo0 = lo0*vLo;
 | 
						|
                z = _mm_shuffle_ps(hi0, v2,  0xa8 );           // z0z1z2z2
 | 
						|
                z = z*vHi;
 | 
						|
                float4 lo1 = _mm_movelh_ps(v2, v2);          // xyxy
 | 
						|
                lo1 = lo1*vLo;
 | 
						|
                x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
                y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            }
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
            {
 | 
						|
                v0 = vertices[0];
 | 
						|
                v1 = vertices[1];
 | 
						|
                float4 xy = _mm_movelh_ps(v0, v1);
 | 
						|
                z = _mm_movehl_ps(v1, v0);
 | 
						|
                xy = xy*vLo;
 | 
						|
                z = _mm_shuffle_ps( z, z,  0xa8);
 | 
						|
                x = _mm_shuffle_ps( xy, xy, 0xa8);
 | 
						|
                y = _mm_shuffle_ps( xy, xy, 0xfd);
 | 
						|
                z = z*vHi;
 | 
						|
            }
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
            {
 | 
						|
                float4 xy = vertices[0];
 | 
						|
                z =  _mm_shuffle_ps( xy, xy, 0xaa);
 | 
						|
                xy = xy*vLo;
 | 
						|
                z = z*vHi;
 | 
						|
                x = _mm_shuffle_ps(xy, xy, 0);
 | 
						|
                y = _mm_shuffle_ps(xy, xy, 0x55);
 | 
						|
            }
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        x = x+y;
 | 
						|
        x = x+z;
 | 
						|
        stack_array[index] = x;
 | 
						|
        max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | 
						|
        index++;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // if we found a new max. 
 | 
						|
    if( 0 == segment || 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(max, dotMax)))
 | 
						|
    { // we found a new max. Search for it
 | 
						|
      // find max across the max vector, place in all elements of max -- big latency hit here
 | 
						|
        max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0x4e));
 | 
						|
        max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0xb1));
 | 
						|
        
 | 
						|
        // It is slightly faster to do this part in scalar code when count < 8. However, the common case for
 | 
						|
        // this where it actually makes a difference is handled in the early out at the top of the function, 
 | 
						|
        // so it is less than a 1% difference here. I opted for improved code size, fewer branches and reduced 
 | 
						|
        // complexity, and removed it.
 | 
						|
        
 | 
						|
        dotMax = max;
 | 
						|
        
 | 
						|
        // scan for the first occurence of max in the array  
 | 
						|
        size_t test;
 | 
						|
        for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], max))); index++ )   // local_count must be a multiple of 4
 | 
						|
        {}
 | 
						|
        maxIndex = 4*index + segment + indexTable[test];
 | 
						|
    }
 | 
						|
    
 | 
						|
    _mm_store_ss( dotResult, dotMax);
 | 
						|
    return maxIndex;
 | 
						|
}
 | 
						|
 | 
						|
long _mindot_large( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
 | 
						|
long _mindot_large( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    const float4 *vertices = (const float4*) vv;
 | 
						|
    static const unsigned char indexTable[16] = {(unsigned char)-1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 };
 | 
						|
    float4 dotmin = btAssign128( BT_INFINITY,  BT_INFINITY,  BT_INFINITY,  BT_INFINITY );
 | 
						|
    float4 vvec = _mm_loadu_ps( vec );
 | 
						|
    float4 vHi = btCastiTo128f(_mm_shuffle_epi32( btCastfTo128i( vvec), 0xaa ));          /// zzzz
 | 
						|
    float4 vLo = _mm_movelh_ps( vvec, vvec );                               /// xyxy
 | 
						|
    
 | 
						|
    long minIndex = -1L;
 | 
						|
 | 
						|
    size_t segment = 0;
 | 
						|
    float4 stack_array[ STACK_ARRAY_COUNT ];
 | 
						|
    
 | 
						|
#if DEBUG
 | 
						|
    //memset( stack_array, -1, STACK_ARRAY_COUNT * sizeof(stack_array[0]) );
 | 
						|
#endif
 | 
						|
    
 | 
						|
    size_t index;
 | 
						|
    float4 min;
 | 
						|
    // Faster loop without cleanup code for full tiles
 | 
						|
    for ( segment = 0; segment + STACK_ARRAY_COUNT*4 <= count; segment += STACK_ARRAY_COUNT*4 ) 
 | 
						|
    {
 | 
						|
        min = dotmin;
 | 
						|
        
 | 
						|
        for( index = 0; index < STACK_ARRAY_COUNT; index+= 4 )   
 | 
						|
        { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
            float4 v0 = vertices[0];
 | 
						|
            float4 v1 = vertices[1];
 | 
						|
            float4 v2 = vertices[2];
 | 
						|
            float4 v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+1] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+2] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+3] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            // It is too costly to keep the index of the min here. We will look for it again later.  We save a lot of work this way.
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If we found a new min
 | 
						|
        if( 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(min, dotmin)))
 | 
						|
        { 
 | 
						|
            // copy the new min across all lanes of our min accumulator
 | 
						|
            min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0x4e));
 | 
						|
            min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0xb1));
 | 
						|
            
 | 
						|
            dotmin = min;
 | 
						|
            
 | 
						|
            // find first occurrence of that min  
 | 
						|
            size_t test;
 | 
						|
            for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], min))); index++ )   // local_count must be a multiple of 4
 | 
						|
            {}
 | 
						|
            // record where it is.
 | 
						|
            minIndex = 4*index + segment + indexTable[test];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // account for work we've already done
 | 
						|
    count -= segment;
 | 
						|
    
 | 
						|
    // Deal with the last < STACK_ARRAY_COUNT vectors
 | 
						|
    min = dotmin;
 | 
						|
    index = 0;
 | 
						|
    
 | 
						|
    
 | 
						|
    if(btUnlikely( count > 16) )
 | 
						|
    {
 | 
						|
        for( ; index + 4 <= count / 4; index+=4 )   
 | 
						|
        { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
            float4 v0 = vertices[0];
 | 
						|
            float4 v1 = vertices[1];
 | 
						|
            float4 v2 = vertices[2];
 | 
						|
            float4 v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+1] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+2] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            v0 = vertices[0];
 | 
						|
            v1 = vertices[1];
 | 
						|
            v2 = vertices[2];
 | 
						|
            v3 = vertices[3];            vertices += 4;
 | 
						|
            
 | 
						|
            lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
            hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
            lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
            hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
            
 | 
						|
            lo0 = lo0*vLo;
 | 
						|
            lo1 = lo1*vLo;
 | 
						|
            z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
            x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
            y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            z = z*vHi;
 | 
						|
            x = x+y;
 | 
						|
            x = x+z;
 | 
						|
            stack_array[index+3] = x;
 | 
						|
            min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
            
 | 
						|
            // It is too costly to keep the index of the min here. We will look for it again later.  We save a lot of work this way.
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    size_t localCount = (count & -4L) - 4*index;
 | 
						|
    if( localCount )
 | 
						|
    {
 | 
						|
        
 | 
						|
        
 | 
						|
#ifdef __APPLE__
 | 
						|
        vertices += localCount;      // counter the offset
 | 
						|
        float4 t0, t1, t2, t3, t4;
 | 
						|
        size_t byteIndex = -(localCount) * sizeof(float);
 | 
						|
        float4 * sap = &stack_array[index + localCount / 4];
 | 
						|
        
 | 
						|
        asm volatile
 | 
						|
        (   ".align 4                                                                   \n\
 | 
						|
             0: movaps  %[min], %[t2]                            // move min out of the way to avoid propagating NaNs in min \n\
 | 
						|
             movaps  (%[vertices], %[byteIndex], 4),    %[t0]    // vertices[0]      \n\
 | 
						|
             movaps  16(%[vertices], %[byteIndex], 4),  %[t1]    // vertices[1]      \n\
 | 
						|
             movaps  %[t0], %[min]                               // vertices[0]      \n\
 | 
						|
             movlhps %[t1], %[min]                               // x0y0x1y1         \n\
 | 
						|
             movaps  32(%[vertices], %[byteIndex], 4),  %[t3]    // vertices[2]      \n\
 | 
						|
             movaps  48(%[vertices], %[byteIndex], 4),  %[t4]    // vertices[3]      \n\
 | 
						|
             mulps   %[vLo], %[min]                              // x0y0x1y1 * vLo   \n\
 | 
						|
             movhlps %[t0], %[t1]                                // z0w0z1w1         \n\
 | 
						|
             movaps  %[t3], %[t0]                                // vertices[2]      \n\
 | 
						|
             movlhps %[t4], %[t0]                                // x2y2x3y3         \n\
 | 
						|
             movhlps %[t3], %[t4]                                // z2w2z3w3         \n\
 | 
						|
             mulps   %[vLo], %[t0]                               // x2y2x3y3 * vLo   \n\
 | 
						|
             shufps  $0x88, %[t4], %[t1]                         // z0z1z2z3         \n\
 | 
						|
             mulps   %[vHi], %[t1]                               // z0z1z2z3 * vHi   \n\
 | 
						|
             movaps  %[min], %[t3]                               // x0y0x1y1 * vLo   \n\
 | 
						|
             shufps  $0x88, %[t0], %[min]                        // x0x1x2x3 * vLo.x \n\
 | 
						|
             shufps  $0xdd, %[t0], %[t3]                         // y0y1y2y3 * vLo.y \n\
 | 
						|
             addps   %[t3], %[min]                               // x + y            \n\
 | 
						|
             addps   %[t1], %[min]                               // x + y + z        \n\
 | 
						|
             movaps  %[min], (%[sap], %[byteIndex])              // record result for later scrutiny \n\
 | 
						|
             minps   %[t2], %[min]                               // record min, restore min   \n\
 | 
						|
             add     $16, %[byteIndex]                           // advance loop counter\n\
 | 
						|
             jnz     0b                                          \n\
 | 
						|
             "
 | 
						|
         : [min] "+x" (min), [t0] "=&x" (t0), [t1] "=&x" (t1), [t2] "=&x" (t2), [t3] "=&x" (t3), [t4] "=&x" (t4), [byteIndex] "+r" (byteIndex)
 | 
						|
         : [vLo] "x" (vLo), [vHi] "x" (vHi), [vertices] "r" (vertices), [sap] "r" (sap)
 | 
						|
         : "memory", "cc"
 | 
						|
         );
 | 
						|
        index += localCount/4;
 | 
						|
#else
 | 
						|
        {
 | 
						|
            for( unsigned int i=0; i<localCount/4; i++,index++)   
 | 
						|
            { // do four dot products at a time. Carefully avoid touching the w element.
 | 
						|
                float4 v0 = vertices[0];
 | 
						|
                float4 v1 = vertices[1];
 | 
						|
                float4 v2 = vertices[2];
 | 
						|
                float4 v3 = vertices[3];            
 | 
						|
                vertices += 4;
 | 
						|
                
 | 
						|
                float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | 
						|
                float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | 
						|
                float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | 
						|
                float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | 
						|
                
 | 
						|
                lo0 = lo0*vLo;
 | 
						|
                lo1 = lo1*vLo;
 | 
						|
                float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | 
						|
                float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
                float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
                z = z*vHi;
 | 
						|
                x = x+y;
 | 
						|
                x = x+z;
 | 
						|
                stack_array[index] = x;
 | 
						|
                min = _mm_min_ps( x, min );         // control the order here so that max is never NaN even if x is nan
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    
 | 
						|
    // process the last few points
 | 
						|
    if( count & 3 )
 | 
						|
    {
 | 
						|
        float4 v0, v1, v2, x, y, z;
 | 
						|
        switch( count & 3 )
 | 
						|
        {
 | 
						|
            case 3:
 | 
						|
            {
 | 
						|
                v0 = vertices[0];
 | 
						|
                v1 = vertices[1];
 | 
						|
                v2 = vertices[2];
 | 
						|
                
 | 
						|
                // Calculate 3 dot products, transpose, duplicate v2
 | 
						|
                float4 lo0 = _mm_movelh_ps( v0, v1);        // xyxy.lo
 | 
						|
                float4 hi0 = _mm_movehl_ps( v1, v0);        // z?z?.lo
 | 
						|
                lo0 = lo0*vLo;
 | 
						|
                z = _mm_shuffle_ps(hi0, v2,  0xa8 );           // z0z1z2z2
 | 
						|
                z = z*vHi;
 | 
						|
                float4 lo1 = _mm_movelh_ps(v2, v2);          // xyxy
 | 
						|
                lo1 = lo1*vLo;
 | 
						|
                x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | 
						|
                y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | 
						|
            }
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
            {
 | 
						|
                v0 = vertices[0];
 | 
						|
                v1 = vertices[1];
 | 
						|
                float4 xy = _mm_movelh_ps(v0, v1);
 | 
						|
                z = _mm_movehl_ps(v1, v0);
 | 
						|
                xy = xy*vLo;
 | 
						|
                z = _mm_shuffle_ps( z, z,  0xa8);
 | 
						|
                x = _mm_shuffle_ps( xy, xy, 0xa8);
 | 
						|
                y = _mm_shuffle_ps( xy, xy, 0xfd);
 | 
						|
                z = z*vHi;
 | 
						|
            }
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
            {
 | 
						|
                float4 xy = vertices[0];
 | 
						|
                z =  _mm_shuffle_ps( xy, xy, 0xaa);
 | 
						|
                xy = xy*vLo;
 | 
						|
                z = z*vHi;
 | 
						|
                x = _mm_shuffle_ps(xy, xy, 0);
 | 
						|
                y = _mm_shuffle_ps(xy, xy, 0x55);
 | 
						|
            }
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        x = x+y;
 | 
						|
        x = x+z;
 | 
						|
        stack_array[index] = x;
 | 
						|
        min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | 
						|
        index++;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // if we found a new min. 
 | 
						|
    if( 0 == segment || 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(min, dotmin)))
 | 
						|
    { // we found a new min. Search for it
 | 
						|
      // find min across the min vector, place in all elements of min -- big latency hit here
 | 
						|
        min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0x4e));
 | 
						|
        min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0xb1));
 | 
						|
        
 | 
						|
        // It is slightly faster to do this part in scalar code when count < 8. However, the common case for
 | 
						|
        // this where it actually makes a difference is handled in the early out at the top of the function, 
 | 
						|
        // so it is less than a 1% difference here. I opted for improved code size, fewer branches and reduced 
 | 
						|
        // complexity, and removed it.
 | 
						|
        
 | 
						|
        dotmin = min;
 | 
						|
        
 | 
						|
        // scan for the first occurence of min in the array  
 | 
						|
        size_t test;
 | 
						|
        for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], min))); index++ )   // local_count must be a multiple of 4
 | 
						|
        {}
 | 
						|
        minIndex = 4*index + segment + indexTable[test];
 | 
						|
    }
 | 
						|
    
 | 
						|
    _mm_store_ss( dotResult, dotmin);
 | 
						|
    return minIndex;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#elif defined BT_USE_NEON
 | 
						|
 | 
						|
#define ARM_NEON_GCC_COMPATIBILITY  1
 | 
						|
#include <arm_neon.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/sysctl.h> //for sysctlbyname
 | 
						|
 | 
						|
static long _maxdot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
static long _maxdot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
static long _maxdot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
static long _mindot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
static long _mindot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
static long _mindot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | 
						|
 | 
						|
long (*_maxdot_large)( const float *vv, const float *vec, unsigned long count, float *dotResult ) = _maxdot_large_sel;
 | 
						|
long (*_mindot_large)( const float *vv, const float *vec, unsigned long count, float *dotResult ) = _mindot_large_sel;
 | 
						|
 | 
						|
 | 
						|
static inline uint32_t btGetCpuCapabilities( void )
 | 
						|
{
 | 
						|
    static uint32_t capabilities = 0;
 | 
						|
    static bool testedCapabilities = false;
 | 
						|
 | 
						|
    if( 0 == testedCapabilities)
 | 
						|
    {
 | 
						|
        uint32_t hasFeature = 0;
 | 
						|
        size_t featureSize = sizeof( hasFeature );
 | 
						|
        int err = sysctlbyname( "hw.optional.neon_hpfp", &hasFeature, &featureSize, NULL, 0 );
 | 
						|
 | 
						|
        if( 0 == err && hasFeature)
 | 
						|
            capabilities |= 0x2000;
 | 
						|
 | 
						|
		testedCapabilities = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return capabilities;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static long _maxdot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
 | 
						|
    if( btGetCpuCapabilities() & 0x2000 )
 | 
						|
        _maxdot_large = _maxdot_large_v1;
 | 
						|
    else
 | 
						|
        _maxdot_large = _maxdot_large_v0;
 | 
						|
    
 | 
						|
    return _maxdot_large(vv, vec, count, dotResult);
 | 
						|
}
 | 
						|
 | 
						|
static long _mindot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
 | 
						|
    if( btGetCpuCapabilities() & 0x2000 )
 | 
						|
        _mindot_large = _mindot_large_v1;
 | 
						|
    else
 | 
						|
        _mindot_large = _mindot_large_v0;
 | 
						|
    
 | 
						|
    return _mindot_large(vv, vec, count, dotResult);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined __arm__
 | 
						|
# define vld1q_f32_aligned_postincrement( _ptr ) ({ float32x4_t _r; asm( "vld1.f32 {%0}, [%1, :128]!\n" : "=w" (_r), "+r" (_ptr) ); /*return*/ _r; })
 | 
						|
#else
 | 
						|
//support 64bit arm
 | 
						|
# define vld1q_f32_aligned_postincrement( _ptr) ({ float32x4_t _r = ((float32x4_t*)(_ptr))[0]; (_ptr) = (const float*) ((const char*)(_ptr) + 16L); /*return*/ _r; })
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
long _maxdot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    unsigned long i = 0;
 | 
						|
    float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | 
						|
    float32x2_t vLo = vget_low_f32(vvec);
 | 
						|
    float32x2_t vHi = vdup_lane_f32(vget_high_f32(vvec), 0);
 | 
						|
    float32x2_t dotMaxLo = (float32x2_t) { -BT_INFINITY, -BT_INFINITY };
 | 
						|
    float32x2_t dotMaxHi = (float32x2_t) { -BT_INFINITY, -BT_INFINITY };
 | 
						|
    uint32x2_t indexLo = (uint32x2_t) {0, 1};
 | 
						|
    uint32x2_t indexHi = (uint32x2_t) {2, 3};
 | 
						|
    uint32x2_t iLo = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | 
						|
    uint32x2_t iHi = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | 
						|
    const uint32x2_t four = (uint32x2_t) {4,4};
 | 
						|
 | 
						|
    for( ; i+8 <= count; i+= 8 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
        float32x2_t rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
        uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | 
						|
        dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
        dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four); 
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
 | 
						|
        v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        rLo = vpadd_f32( xy0, xy1);
 | 
						|
        rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
        maskHi = vcgt_f32( rHi, dotMaxHi );
 | 
						|
        dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
        dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four);
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
    }
 | 
						|
 | 
						|
    for( ; i+4 <= count; i+= 4 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
        float32x2_t rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
        uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | 
						|
        dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
        dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four);
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
    }
 | 
						|
    
 | 
						|
    switch( count & 3 )
 | 
						|
    {
 | 
						|
        case 3:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
            float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
            
 | 
						|
            float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
            float32x2_t zHi = vmul_f32( vdup_lane_f32(vget_high_f32(v2), 0), vHi);
 | 
						|
            
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
            float32x2_t rHi = vpadd_f32( xy2, xy2);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            rHi = vadd_f32(rHi, zHi);
 | 
						|
            
 | 
						|
            uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
            uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | 
						|
            dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
            dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
            iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
            
 | 
						|
            float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
            
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            
 | 
						|
            uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
            dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t z0 = vdup_lane_f32(vget_high_f32(v0), 0);
 | 
						|
            float32x2_t zLo = vmul_f32( z0, vHi);
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy0);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | 
						|
            dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
        
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // select best answer between hi and lo results
 | 
						|
    uint32x2_t mask = vcgt_f32( dotMaxHi, dotMaxLo );
 | 
						|
    dotMaxLo = vbsl_f32(mask, dotMaxHi, dotMaxLo);
 | 
						|
    iLo = vbsl_u32(mask, iHi, iLo);
 | 
						|
    
 | 
						|
    // select best answer between even and odd results
 | 
						|
    dotMaxHi = vdup_lane_f32(dotMaxLo, 1);
 | 
						|
    iHi = vdup_lane_u32(iLo, 1);
 | 
						|
    mask = vcgt_f32( dotMaxHi, dotMaxLo );
 | 
						|
    dotMaxLo = vbsl_f32(mask, dotMaxHi, dotMaxLo);
 | 
						|
    iLo = vbsl_u32(mask, iHi, iLo);
 | 
						|
    
 | 
						|
    *dotResult = vget_lane_f32( dotMaxLo, 0);
 | 
						|
    return vget_lane_u32(iLo, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
long _maxdot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | 
						|
    float32x4_t vLo = vcombine_f32(vget_low_f32(vvec), vget_low_f32(vvec));
 | 
						|
    float32x4_t vHi = vdupq_lane_f32(vget_high_f32(vvec), 0);
 | 
						|
    const uint32x4_t four = (uint32x4_t){ 4, 4, 4, 4 };
 | 
						|
    uint32x4_t local_index = (uint32x4_t) {0, 1, 2, 3};
 | 
						|
    uint32x4_t index = (uint32x4_t) { static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1) };
 | 
						|
    float32x4_t maxDot = (float32x4_t) { -BT_INFINITY, -BT_INFINITY, -BT_INFINITY, -BT_INFINITY };
 | 
						|
    
 | 
						|
    unsigned long i = 0;
 | 
						|
    for( ; i + 8 <= count; i += 8 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
        float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
        float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        uint32x4_t mask = vcgtq_f32(x, maxDot);
 | 
						|
        maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
 | 
						|
        v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        zb = vuzpq_f32( z0, z1);
 | 
						|
        z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        xy = vuzpq_f32( xy0, xy1);
 | 
						|
        x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        mask = vcgtq_f32(x, maxDot);
 | 
						|
        maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
    }
 | 
						|
 | 
						|
    for( ; i + 4 <= count; i += 4 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
        float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
        float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        uint32x4_t mask = vcgtq_f32(x, maxDot);
 | 
						|
        maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
    }
 | 
						|
    
 | 
						|
    switch (count & 3) {
 | 
						|
        case 3:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
            float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v2));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v2));
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            xy1 = vmulq_f32(xy1, vLo);
 | 
						|
            
 | 
						|
            float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
            float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcgtq_f32(x, maxDot);
 | 
						|
            maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
 | 
						|
        case 2:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            
 | 
						|
            float32x4x2_t zb = vuzpq_f32( z0, z0);
 | 
						|
            float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcgtq_f32(x, maxDot);
 | 
						|
            maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
 | 
						|
        case 1:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v0));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z = vdupq_lane_f32(vget_high_f32(v0), 0); 
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            
 | 
						|
            z = vmulq_f32( z, vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcgtq_f32(x, maxDot);
 | 
						|
            maxDot = vbslq_f32( mask, x, maxDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    // select best answer between hi and lo results
 | 
						|
    uint32x2_t mask = vcgt_f32( vget_high_f32(maxDot), vget_low_f32(maxDot));
 | 
						|
    float32x2_t maxDot2 = vbsl_f32(mask, vget_high_f32(maxDot), vget_low_f32(maxDot));
 | 
						|
    uint32x2_t index2 = vbsl_u32(mask, vget_high_u32(index), vget_low_u32(index));
 | 
						|
    
 | 
						|
    // select best answer between even and odd results
 | 
						|
    float32x2_t maxDotO = vdup_lane_f32(maxDot2, 1);
 | 
						|
    uint32x2_t indexHi = vdup_lane_u32(index2, 1);
 | 
						|
    mask = vcgt_f32( maxDotO, maxDot2 );
 | 
						|
    maxDot2 = vbsl_f32(mask, maxDotO, maxDot2);
 | 
						|
    index2 = vbsl_u32(mask, indexHi, index2);
 | 
						|
    
 | 
						|
    *dotResult = vget_lane_f32( maxDot2, 0);
 | 
						|
    return vget_lane_u32(index2, 0);
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
long _mindot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    unsigned long i = 0;
 | 
						|
    float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | 
						|
    float32x2_t vLo = vget_low_f32(vvec);
 | 
						|
    float32x2_t vHi = vdup_lane_f32(vget_high_f32(vvec), 0);
 | 
						|
    float32x2_t dotMinLo = (float32x2_t) { BT_INFINITY, BT_INFINITY };
 | 
						|
    float32x2_t dotMinHi = (float32x2_t) { BT_INFINITY, BT_INFINITY };
 | 
						|
    uint32x2_t indexLo = (uint32x2_t) {0, 1};
 | 
						|
    uint32x2_t indexHi = (uint32x2_t) {2, 3};
 | 
						|
    uint32x2_t iLo = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | 
						|
    uint32x2_t iHi = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | 
						|
    const uint32x2_t four = (uint32x2_t) {4,4};
 | 
						|
    
 | 
						|
    for( ; i+8 <= count; i+= 8 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
        float32x2_t rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
        uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | 
						|
        dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
        dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four);
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
        
 | 
						|
        v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        rLo = vpadd_f32( xy0, xy1);
 | 
						|
        rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
        maskHi = vclt_f32( rHi, dotMinHi );
 | 
						|
        dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
        dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four);
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
    }
 | 
						|
 | 
						|
    for( ; i+4 <= count; i+= 4 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
        float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
        float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
        float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | 
						|
        
 | 
						|
        float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
        float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | 
						|
        
 | 
						|
        float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
        float32x2_t rHi = vpadd_f32( xy2, xy3);
 | 
						|
        rLo = vadd_f32(rLo, zLo);
 | 
						|
        rHi = vadd_f32(rHi, zHi);
 | 
						|
        
 | 
						|
        uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
        uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | 
						|
        dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
        dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | 
						|
        iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        indexLo = vadd_u32(indexLo, four);
 | 
						|
        indexHi = vadd_u32(indexHi, four);
 | 
						|
    }
 | 
						|
    switch( count & 3 )
 | 
						|
    {
 | 
						|
        case 3:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
            float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | 
						|
            
 | 
						|
            float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
            float32x2_t zHi = vmul_f32( vdup_lane_f32(vget_high_f32(v2), 0), vHi);
 | 
						|
            
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
            float32x2_t rHi = vpadd_f32( xy2, xy2);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            rHi = vadd_f32(rHi, zHi);
 | 
						|
            
 | 
						|
            uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
            uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | 
						|
            dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
            dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
            iHi = vbsl_u32(maskHi, indexHi, iHi);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | 
						|
            
 | 
						|
            float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | 
						|
            
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy1);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            
 | 
						|
            uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
            dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | 
						|
            float32x2_t z0 = vdup_lane_f32(vget_high_f32(v0), 0);
 | 
						|
            float32x2_t zLo = vmul_f32( z0, vHi);
 | 
						|
            float32x2_t rLo = vpadd_f32( xy0, xy0);
 | 
						|
            rLo = vadd_f32(rLo, zLo);
 | 
						|
            uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | 
						|
            dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | 
						|
            iLo = vbsl_u32(maskLo, indexLo, iLo);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
            
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // select best answer between hi and lo results
 | 
						|
    uint32x2_t mask = vclt_f32( dotMinHi, dotMinLo );
 | 
						|
    dotMinLo = vbsl_f32(mask, dotMinHi, dotMinLo);
 | 
						|
    iLo = vbsl_u32(mask, iHi, iLo);
 | 
						|
    
 | 
						|
    // select best answer between even and odd results
 | 
						|
    dotMinHi = vdup_lane_f32(dotMinLo, 1);
 | 
						|
    iHi = vdup_lane_u32(iLo, 1);
 | 
						|
    mask = vclt_f32( dotMinHi, dotMinLo );
 | 
						|
    dotMinLo = vbsl_f32(mask, dotMinHi, dotMinLo);
 | 
						|
    iLo = vbsl_u32(mask, iHi, iLo);
 | 
						|
    
 | 
						|
    *dotResult = vget_lane_f32( dotMinLo, 0);
 | 
						|
    return vget_lane_u32(iLo, 0);
 | 
						|
}
 | 
						|
 | 
						|
long _mindot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | 
						|
{
 | 
						|
    float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | 
						|
    float32x4_t vLo = vcombine_f32(vget_low_f32(vvec), vget_low_f32(vvec));
 | 
						|
    float32x4_t vHi = vdupq_lane_f32(vget_high_f32(vvec), 0);
 | 
						|
    const uint32x4_t four = (uint32x4_t){ 4, 4, 4, 4 };
 | 
						|
    uint32x4_t local_index = (uint32x4_t) {0, 1, 2, 3};
 | 
						|
    uint32x4_t index = (uint32x4_t) { static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1) };
 | 
						|
    float32x4_t minDot = (float32x4_t) { BT_INFINITY, BT_INFINITY, BT_INFINITY, BT_INFINITY };
 | 
						|
    
 | 
						|
    unsigned long i = 0;
 | 
						|
    for( ; i + 8 <= count; i += 8 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
        float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
        float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        uint32x4_t mask = vcltq_f32(x, minDot);
 | 
						|
        minDot = vbslq_f32( mask, x, minDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
        
 | 
						|
        v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        zb = vuzpq_f32( z0, z1);
 | 
						|
        z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        xy = vuzpq_f32( xy0, xy1);
 | 
						|
        x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        mask = vcltq_f32(x, minDot);
 | 
						|
        minDot = vbslq_f32( mask, x, minDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
    }
 | 
						|
    
 | 
						|
    for( ; i + 4 <= count; i += 4 )
 | 
						|
    {
 | 
						|
        float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
        
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
        float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | 
						|
        // the next two lines should resolve to a single vswp d, d
 | 
						|
        float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
        float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | 
						|
        
 | 
						|
        xy0 = vmulq_f32(xy0, vLo);
 | 
						|
        xy1 = vmulq_f32(xy1, vLo);
 | 
						|
        
 | 
						|
        float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
        float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
        float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
        float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
        x = vaddq_f32(x, z);
 | 
						|
        
 | 
						|
        uint32x4_t mask = vcltq_f32(x, minDot);
 | 
						|
        minDot = vbslq_f32( mask, x, minDot);
 | 
						|
        index = vbslq_u32(mask, local_index, index);
 | 
						|
        local_index = vaddq_u32(local_index, four);
 | 
						|
    }
 | 
						|
    
 | 
						|
    switch (count & 3) {
 | 
						|
        case 3:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
            float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v2));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v2));
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            xy1 = vmulq_f32(xy1, vLo);
 | 
						|
            
 | 
						|
            float32x4x2_t zb = vuzpq_f32( z0, z1);
 | 
						|
            float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcltq_f32(x, minDot);
 | 
						|
            minDot = vbslq_f32( mask, x, minDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
            
 | 
						|
        case 2:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            
 | 
						|
            float32x4x2_t zb = vuzpq_f32( z0, z0);
 | 
						|
            float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcltq_f32(x, minDot);
 | 
						|
            minDot = vbslq_f32( mask, x, minDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
            
 | 
						|
        case 1:
 | 
						|
        {
 | 
						|
            float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | 
						|
            
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v0));
 | 
						|
            // the next two lines should resolve to a single vswp d, d
 | 
						|
            float32x4_t z = vdupq_lane_f32(vget_high_f32(v0), 0); 
 | 
						|
            
 | 
						|
            xy0 = vmulq_f32(xy0, vLo);
 | 
						|
            
 | 
						|
            z = vmulq_f32( z, vHi);
 | 
						|
            float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | 
						|
            float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | 
						|
            x = vaddq_f32(x, z);
 | 
						|
            
 | 
						|
            uint32x4_t mask = vcltq_f32(x, minDot);
 | 
						|
            minDot = vbslq_f32( mask, x, minDot);
 | 
						|
            index = vbslq_u32(mask, local_index, index);
 | 
						|
            local_index = vaddq_u32(local_index, four);
 | 
						|
        }
 | 
						|
            break;
 | 
						|
            
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    // select best answer between hi and lo results
 | 
						|
    uint32x2_t mask = vclt_f32( vget_high_f32(minDot), vget_low_f32(minDot));
 | 
						|
    float32x2_t minDot2 = vbsl_f32(mask, vget_high_f32(minDot), vget_low_f32(minDot));
 | 
						|
    uint32x2_t index2 = vbsl_u32(mask, vget_high_u32(index), vget_low_u32(index));
 | 
						|
    
 | 
						|
    // select best answer between even and odd results
 | 
						|
    float32x2_t minDotO = vdup_lane_f32(minDot2, 1);
 | 
						|
    uint32x2_t indexHi = vdup_lane_u32(index2, 1);
 | 
						|
    mask = vclt_f32( minDotO, minDot2 );
 | 
						|
    minDot2 = vbsl_f32(mask, minDotO, minDot2);
 | 
						|
    index2 = vbsl_u32(mask, indexHi, index2);
 | 
						|
    
 | 
						|
    *dotResult = vget_lane_f32( minDot2, 0);
 | 
						|
    return vget_lane_u32(index2, 0);
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
    #error Unhandled __APPLE__ arch
 | 
						|
#endif
 | 
						|
 | 
						|
#endif  /* __APPLE__ */
 | 
						|
 | 
						|
 |