595 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
			
		
		
	
	
			595 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
| package kha.audio2.ogg.vorbis.data;
 | |
| import haxe.ds.Vector;
 | |
| import haxe.io.Bytes;
 | |
| import haxe.io.Input;
 | |
| import kha.audio2.ogg.tools.MathTools;
 | |
| import kha.audio2.ogg.vorbis.data.ReaderError.ReaderErrorType;
 | |
| import kha.audio2.ogg.vorbis.VorbisDecodeState;
 | |
| 
 | |
| /**
 | |
|  * ...
 | |
|  * @author shohei909
 | |
|  */
 | |
| class Codebook
 | |
| {
 | |
|     static public inline var NO_CODE = 255;
 | |
| 
 | |
|     public var dimensions:Int;
 | |
|     public var entries:Int;
 | |
|     public var codewordLengths:Vector<Int>; //uint8*
 | |
|     public var minimumValue:Float;
 | |
|     public var deltaValue:Float;
 | |
|     public var valueBits:Int; //uint8
 | |
|     public var lookupType:Int; //uint8
 | |
|     public var sequenceP:Bool; //uint8
 | |
|     public var sparse:Bool; //uint8
 | |
|     public var lookupValues:UInt; //uint32
 | |
|     public var multiplicands:Vector<Float>; // codetype *
 | |
|     public var codewords:Vector<UInt>; //uint32*
 | |
|     public var fastHuffman:Vector<Int>; //[FAST_HUFFMAN_TABLE_SIZE];
 | |
|     public var sortedCodewords:Array<UInt>; //uint32*
 | |
|     public var sortedValues:Vector<Int>;
 | |
|     public var sortedEntries:Int;
 | |
| 
 | |
|     public function new () {
 | |
|     }
 | |
| 
 | |
|     static public function read(decodeState:VorbisDecodeState):Codebook {
 | |
|         var c = new Codebook();
 | |
|         if (decodeState.readBits(8) != 0x42 || decodeState.readBits(8) != 0x43 || decodeState.readBits(8) != 0x56) {
 | |
|             throw new ReaderError(ReaderErrorType.INVALID_SETUP);
 | |
|         }
 | |
| 
 | |
|         var x = decodeState.readBits(8);
 | |
|         c.dimensions = (decodeState.readBits(8) << 8) + x;
 | |
| 
 | |
|         var x = decodeState.readBits(8);
 | |
|         var y = decodeState.readBits(8);
 | |
|         c.entries = (decodeState.readBits(8) << 16) + (y << 8) + x;
 | |
|         var ordered = decodeState.readBits(1);
 | |
|         c.sparse = (ordered != 0) ? false : (decodeState.readBits(1) != 0);
 | |
| 
 | |
|         var lengths = new Vector(c.entries);
 | |
|         if (!c.sparse) {
 | |
|             c.codewordLengths = lengths;
 | |
|         }
 | |
| 
 | |
|         var total = 0;
 | |
| 
 | |
|         if (ordered != 0) {
 | |
|             var currentEntry = 0;
 | |
|             var currentLength = decodeState.readBits(5) + 1;
 | |
| 
 | |
|             while (currentEntry < c.entries) {
 | |
|                 var limit = c.entries - currentEntry;
 | |
|                 var n = decodeState.readBits(MathTools.ilog(limit));
 | |
|                 if (currentEntry + n > c.entries) {
 | |
|                     throw new ReaderError(ReaderErrorType.INVALID_SETUP, "codebook entrys");
 | |
|                 }
 | |
|                 for (i in 0...n) {
 | |
|                     lengths.set(currentEntry + i, currentLength);
 | |
|                 }
 | |
|                 currentEntry += n;
 | |
|                 currentLength++;
 | |
|             }
 | |
|         } else {
 | |
|             for (j in 0...c.entries) {
 | |
|                 var present = (c.sparse) ? decodeState.readBits(1) : 1;
 | |
|                 if (present != 0) {
 | |
|                     lengths.set(j, decodeState.readBits(5) + 1);
 | |
|                     total++;
 | |
|                 } else {
 | |
|                     lengths.set(j, NO_CODE);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (c.sparse && total >= (c.entries >> 2)) {
 | |
|             c.codewordLengths = lengths;
 | |
|             c.sparse = false;
 | |
|         }
 | |
| 
 | |
|         c.sortedEntries = if (c.sparse) {
 | |
|             total;
 | |
|         } else {
 | |
|             var sortedCount = 0;
 | |
|             for (j in 0...c.entries) {
 | |
|                 var l = lengths.get(j);
 | |
|                 if (l > Setting.FAST_HUFFMAN_LENGTH && l != NO_CODE) {
 | |
|                     ++sortedCount;
 | |
|                 }
 | |
|             }
 | |
|             sortedCount;
 | |
|         }
 | |
| 
 | |
|         var values:Vector<UInt> = null;
 | |
| 
 | |
|         if (!c.sparse) {
 | |
|             c.codewords = new Vector<UInt>(c.entries);
 | |
|         } else {
 | |
|             if (c.sortedEntries != 0) {
 | |
|                 c.codewordLengths = new Vector(c.sortedEntries);
 | |
|                 c.codewords = new Vector<UInt>(c.entries);
 | |
|                 values = new Vector<UInt>(c.entries);
 | |
|             }
 | |
| 
 | |
|             var size:Int = c.entries + (32 + 32) * c.sortedEntries;
 | |
|         }
 | |
| 
 | |
|         if (!c.computeCodewords(lengths, c.entries, values)) {
 | |
|             throw new ReaderError(ReaderErrorType.INVALID_SETUP, "compute codewords");
 | |
|         }
 | |
| 
 | |
|         if (c.sortedEntries != 0) {
 | |
|             // allocate an extra slot for sentinels
 | |
|             c.sortedCodewords = [];
 | |
| 
 | |
|             // allocate an extra slot at the front so that sortedValues[-1] is defined
 | |
|             // so that we can catch that case without an extra if
 | |
|             c.sortedValues = new Vector<Int>(c.sortedEntries);
 | |
|             c.computeSortedHuffman(lengths, values);
 | |
|         }
 | |
| 
 | |
|         if (c.sparse) {
 | |
|             values = null;
 | |
|             c.codewords = null;
 | |
|             lengths = null;
 | |
|         }
 | |
| 
 | |
|         c.computeAcceleratedHuffman();
 | |
| 
 | |
|         c.lookupType = decodeState.readBits(4);
 | |
|         if (c.lookupType > 2) {
 | |
|             throw new ReaderError(ReaderErrorType.INVALID_SETUP, "codebook lookup type");
 | |
|         }
 | |
| 
 | |
|         if (c.lookupType > 0) {
 | |
|             c.minimumValue = VorbisTools.floatUnpack(decodeState.readBits(32));
 | |
|             c.deltaValue = VorbisTools.floatUnpack(decodeState.readBits(32));
 | |
|             c.valueBits = decodeState.readBits(4) + 1;
 | |
|             c.sequenceP = (decodeState.readBits(1) != 0);
 | |
| 
 | |
|             if (c.lookupType == 1) {
 | |
|                 c.lookupValues = VorbisTools.lookup1Values(c.entries, c.dimensions);
 | |
|             } else {
 | |
|                 c.lookupValues = c.entries * c.dimensions;
 | |
|             }
 | |
|             var mults = new Vector<Int>(c.lookupValues);
 | |
|             for (j in 0...c.lookupValues) {
 | |
|                 var q = decodeState.readBits(c.valueBits);
 | |
|                 if (q == VorbisTools.EOP) {
 | |
|                     throw new ReaderError(ReaderErrorType.INVALID_SETUP, "fail lookup");
 | |
|                 }
 | |
|                 mults[j] = q;
 | |
|             }
 | |
| 
 | |
|             {
 | |
|                 c.multiplicands = new Vector(c.lookupValues);
 | |
| 
 | |
|                 //STB_VORBIS_CODEBOOK_FLOATS = true
 | |
|                 for (j in 0...c.lookupValues) {
 | |
|                     c.multiplicands[j] = mults[j] * c.deltaValue + c.minimumValue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             //STB_VORBIS_CODEBOOK_FLOATS = true
 | |
|             if (c.lookupType == 2 && c.sequenceP) {
 | |
|                 for (j in 1...c.lookupValues) {
 | |
|                     c.multiplicands[j] = c.multiplicands[j - 1];
 | |
|                 }
 | |
|                 c.sequenceP = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return c;
 | |
|     }
 | |
| 
 | |
|     inline function addEntry(huffCode:UInt, symbol:Int, count:Int, len:Int, values:Vector<UInt>)
 | |
|     {
 | |
|         if (!sparse) {
 | |
|             codewords[symbol] = huffCode;
 | |
|         } else {
 | |
|             codewords[count] = huffCode;
 | |
|             codewordLengths.set(count, len);
 | |
|             values[count] = symbol;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     inline function includeInSort(len:Int)
 | |
|     {
 | |
|         return if (sparse) {
 | |
|             VorbisTools.assert(len != NO_CODE);
 | |
|             true;
 | |
|         } else if (len == NO_CODE) {
 | |
|             false;
 | |
|         } else if (len > Setting.FAST_HUFFMAN_LENGTH) {
 | |
|             true;
 | |
|         } else {
 | |
|             false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function computeCodewords(len:Vector<Int>, n:Int, values:Vector<UInt>)
 | |
|     {
 | |
|         var available = new Vector<UInt>(32);
 | |
|         for (x in 0...32) available[x] = 0;
 | |
| 
 | |
|         // find the first entry
 | |
|         var k = 0;
 | |
|         while (k < n) {
 | |
|             if (len.get(k) < NO_CODE) {
 | |
|                 break;
 | |
|             }
 | |
|             k++;
 | |
|         }
 | |
| 
 | |
|         if (k == n) {
 | |
|             VorbisTools.assert(sortedEntries == 0);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         var m = 0;
 | |
| 
 | |
|         // add to the list
 | |
|         addEntry(0, k, m++, len.get(k), values);
 | |
| 
 | |
|         // add all available leaves
 | |
|         var i = 0;
 | |
| 
 | |
|         while (++i <= len.get(k)) {
 | |
|             available[i] = (1:UInt) << ((32 - i):UInt);
 | |
|         }
 | |
| 
 | |
|         // note that the above code treats the first case specially,
 | |
|         // but it's really the same as the following code, so they
 | |
|         // could probably be combined (except the initial code is 0,
 | |
|         // and I use 0 in available[] to mean 'empty')
 | |
|         i = k;
 | |
|         while (++i < n) {
 | |
|             var z = len.get(i);
 | |
|             if (z == NO_CODE) continue;
 | |
| 
 | |
|             // find lowest available leaf (should always be earliest,
 | |
|             // which is what the specification calls for)
 | |
|             // note that this property, and the fact we can never have
 | |
|             // more than one free leaf at a given level, isn't totally
 | |
|             // trivial to prove, but it seems true and the assert never
 | |
|             // fires, so!
 | |
|             while (z > 0 && available[z] == 0) --z;
 | |
|             if (z == 0) {
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             var res:UInt = available[z];
 | |
|             available[z] = 0;
 | |
|             addEntry(VorbisTools.bitReverse(res), i, m++, len.get(i), values);
 | |
| 
 | |
|             // propogate availability up the tree
 | |
|             if (z != len.get(i)) {
 | |
|                 var y = len.get(i);
 | |
|                 while (y > z) {
 | |
|                     VorbisTools.assert(available[y] == 0);
 | |
|                     available[y] = res + (1 << (32 - y));
 | |
|                     y--;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function computeSortedHuffman(lengths:Vector<Int>, values:Vector<UInt>)
 | |
|     {
 | |
|         // build a list of all the entries
 | |
|         // OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN.
 | |
|         // this is kind of a frivolous optimization--I don't see any performance improvement,
 | |
|         // but it's like 4 extra lines of code, so.
 | |
|         if (!sparse) {
 | |
|             var k = 0;
 | |
|             for (i in 0...entries) {
 | |
|                 if (includeInSort(lengths.get(i))) {
 | |
|                     sortedCodewords[k++] = VorbisTools.bitReverse(codewords[i]);
 | |
|                 }
 | |
|             }
 | |
|             VorbisTools.assert(k == sortedEntries);
 | |
|         } else {
 | |
|             for (i in 0...sortedEntries) {
 | |
|                 sortedCodewords[i] = VorbisTools.bitReverse(codewords[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sortedCodewords[sortedEntries] = 0xffffffff;
 | |
|         sortedCodewords.sort(VorbisTools.uintAsc);
 | |
| 
 | |
|         var len = sparse ? sortedEntries : entries;
 | |
|         // now we need to indicate how they correspond; we could either
 | |
|         //    #1: sort a different data structure that says who they correspond to
 | |
|         //    #2: for each sorted entry, search the original list to find who corresponds
 | |
|         //    #3: for each original entry, find the sorted entry
 | |
|         // #1 requires extra storage, #2 is slow, #3 can use binary search!
 | |
|         for (i in 0...len) {
 | |
|             var huffLen = sparse ? lengths.get(values[i]) : lengths.get(i);
 | |
|             if (includeInSort(huffLen)) {
 | |
|                 var code = VorbisTools.bitReverse(codewords[i]);
 | |
|                 var x = 0;
 | |
|                 var n = sortedEntries;
 | |
|                 while (n > 1) {
 | |
|                     // invariant: sc[x] <= code < sc[x+n]
 | |
|                     var m = x + (n >> 1);
 | |
|                     if (sortedCodewords[m] <= code) {
 | |
|                         x = m;
 | |
|                         n -= (n>>1);
 | |
|                     } else {
 | |
|                         n >>= 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 //VorbisTools.assert(sortedCodewords[x] == code);
 | |
|                 if (sparse) {
 | |
|                     sortedValues[x] = values[i];
 | |
|                     codewordLengths.set(x, huffLen);
 | |
|                 } else {
 | |
|                     sortedValues[x] = i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     function computeAcceleratedHuffman()
 | |
|     {
 | |
|         fastHuffman = new Vector(Setting.FAST_HUFFMAN_TABLE_SIZE);
 | |
|         fastHuffman[0] = -1;
 | |
|         for (i in 0...(Setting.FAST_HUFFMAN_TABLE_SIZE)) {
 | |
|             fastHuffman[i] =  -1;
 | |
|         }
 | |
| 
 | |
|         var len = (sparse) ? sortedEntries : entries;
 | |
| 
 | |
|         //STB_VORBIS_FAST_HUFFMAN_SHORT
 | |
|         //if (len > 32767) len = 32767; // largest possible value we can encode!
 | |
| 
 | |
|         for (i in 0...len) {
 | |
|             if (codewordLengths[i] <= Setting.FAST_HUFFMAN_LENGTH) {
 | |
|                 var z:Int = (sparse) ? VorbisTools.bitReverse(sortedCodewords[i]) : codewords[i];
 | |
|                 // set table entries for all bit combinations in the higher bits
 | |
|                 while (z < Setting.FAST_HUFFMAN_TABLE_SIZE) {
 | |
|                     fastHuffman[z] = i;
 | |
|                     z += 1 << codewordLengths[i];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     function codebookDecode(decodeState:VorbisDecodeState, output:Vector<Float>, offset:Int, len:Int)
 | |
|     {
 | |
|         var z = decodeStart(decodeState);
 | |
|         var lookupValues = this.lookupValues;
 | |
|         var sequenceP = this.sequenceP;
 | |
|         var multiplicands = this.multiplicands;
 | |
|         var minimumValue = this.minimumValue;
 | |
| 
 | |
|         if (z < 0) {
 | |
|             return false;
 | |
|         }
 | |
|         if (len > dimensions) {
 | |
|             len = dimensions;
 | |
|         }
 | |
| 
 | |
|         // STB_VORBIS_DIVIDES_IN_CODEBOOK = true
 | |
|         if (lookupType == 1) {
 | |
|             var div = 1;
 | |
|             var last = 0.0;
 | |
|             for (i in 0...len) {
 | |
|                 var off = Std.int(z / div) % lookupValues;
 | |
|                 var val = multiplicands[off] + last;
 | |
|                 output[offset + i] += val;
 | |
|                 if (sequenceP) {
 | |
|                     last = val + minimumValue;
 | |
|                 }
 | |
|                 div *= lookupValues;
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         z *= dimensions;
 | |
|         if (sequenceP) {
 | |
|             var last = 0.0;
 | |
|             for (i in 0...len) {
 | |
|                 var val = multiplicands[z + i] + last;
 | |
|                 output[offset + i] += val;
 | |
|                 last = val + minimumValue;
 | |
|             }
 | |
|         } else {
 | |
|             var last = 0.0;
 | |
|             for (i in 0...len) {
 | |
|                 output[offset + i] += multiplicands[z + i] + last;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     function codebookDecodeStep(decodeState:VorbisDecodeState, output:Vector<Float>, offset:Int, len:Int, step:Int)
 | |
|     {
 | |
|         var z = decodeStart(decodeState);
 | |
|         var last = 0.0;
 | |
|         if (z < 0) {
 | |
|             return false;
 | |
|         }
 | |
|         if (len > dimensions) {
 | |
|             len = dimensions;
 | |
|         }
 | |
| 
 | |
|         var lookupValues = this.lookupValues;
 | |
|         var sequenceP = this.sequenceP;
 | |
|         var multiplicands = this.multiplicands;
 | |
| 
 | |
|         // STB_VORBIS_DIVIDES_IN_CODEBOOK = true
 | |
| 
 | |
|         if (lookupType == 1) {
 | |
|             var div = 1;
 | |
|             for (i in 0...len) {
 | |
|                 var off = Std.int(z / div) % lookupValues;
 | |
|                 var val = multiplicands[off] + last;
 | |
|                 output[offset + i * step] += val;
 | |
|                 if (sequenceP) {
 | |
|                     last = val;
 | |
|                 }
 | |
|                 div *= lookupValues;
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         z *= dimensions;
 | |
|         for (i in 0...len) {
 | |
|             var val = multiplicands[z + i] + last;
 | |
|             output[offset + i * step] += val;
 | |
|             if (sequenceP) {
 | |
|                 last = val;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     inline function decodeStart(decodeState:VorbisDecodeState)
 | |
|     {
 | |
|         return decodeState.decode(this);
 | |
| 
 | |
|         //var z = -1;
 | |
|         //// type 0 is only legal in a scalar context
 | |
|         //if (lookupType == 0) {
 | |
|         //    throw new ReaderError(INVALID_STREAM);
 | |
|         //} else {
 | |
|         //    z = decodeState.decode(this);
 | |
|         //    //if (sparse) VorbisTools.assert(z < sortedEntries);
 | |
|         //    if (z < 0) {  // check for VorbisTools.EOP
 | |
|         //        if (decodeState.isLastByte()) {
 | |
|         //            return z;
 | |
|         //        } else {
 | |
|         //            throw new ReaderError(INVALID_STREAM);
 | |
|         //        }
 | |
|         //    } else {
 | |
|         //        return z;
 | |
|         //    }
 | |
|         //}
 | |
|     }
 | |
| 
 | |
|     static var delay = 0;
 | |
| 
 | |
|     public function decodeDeinterleaveRepeat(decodeState:VorbisDecodeState, residueBuffers:Vector<Vector<Float>>, ch:Int, cInter:Int, pInter:Int, len:Int, totalDecode:Int)
 | |
|     {
 | |
|         var effective = dimensions;
 | |
| 
 | |
|         // type 0 is only legal in a scalar context
 | |
|         if (lookupType == 0) {
 | |
|             throw new ReaderError(INVALID_STREAM);
 | |
|         }
 | |
| 
 | |
|         var multiplicands = this.multiplicands;
 | |
|         var sequenceP = this.sequenceP;
 | |
|         var lookupValues = this.lookupValues;
 | |
| 
 | |
|         while (totalDecode > 0) {
 | |
|             var last = 0.0;
 | |
|             var z = decodeState.decode(this);
 | |
| 
 | |
|             if (z < 0) {
 | |
|                 if (decodeState.isLastByte()) {
 | |
|                     return null;
 | |
|                 }
 | |
|                 throw new ReaderError(INVALID_STREAM);
 | |
|             }
 | |
| 
 | |
|             // if this will take us off the end of the buffers, stop short!
 | |
|             // we check by computing the length of the virtual interleaved
 | |
|             // buffer (len*ch), our current offset within it (pInter*ch)+(cInter),
 | |
|             // and the length we'll be using (effective)
 | |
|             if (cInter + pInter * ch + effective > len * ch) {
 | |
|                 effective = len * ch - (pInter * ch - cInter);
 | |
|             }
 | |
| 
 | |
|             if (lookupType == 1) {
 | |
|                 var div = 1;
 | |
|                 if (sequenceP) {
 | |
|                     for (i in 0...effective) {
 | |
|                         var off = Std.int(z / div) % lookupValues;
 | |
|                         var val = multiplicands[off] + last;
 | |
|                         residueBuffers[cInter][pInter] += val;
 | |
|                         if (++cInter == ch) {
 | |
|                             cInter = 0;
 | |
|                             ++pInter;
 | |
|                         }
 | |
|                         last = val;
 | |
|                         div *= lookupValues;
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (i in 0...effective) {
 | |
|                         var off = Std.int(z / div) % lookupValues;
 | |
|                         var val = multiplicands[off] + last;
 | |
|                         residueBuffers[cInter][pInter] += val;
 | |
|                         if (++cInter == ch) {
 | |
|                             cInter = 0;
 | |
|                             ++pInter;
 | |
|                         }
 | |
|                         div *= lookupValues;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 z *= dimensions;
 | |
|                 if (sequenceP) {
 | |
|                     for (i in 0...effective) {
 | |
|                         var val = multiplicands[z + i] + last;
 | |
|                         residueBuffers[cInter][pInter] += val;
 | |
|                         if (++cInter == ch) {
 | |
|                             cInter = 0;
 | |
|                             ++pInter;
 | |
|                         }
 | |
|                         last = val;
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (i in 0...effective) {
 | |
|                         var val = multiplicands[z + i] + last;
 | |
|                         residueBuffers[cInter][pInter] += val;
 | |
|                         if (++cInter == ch) {
 | |
|                             cInter = 0;
 | |
|                             ++pInter;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             totalDecode -= effective;
 | |
|         }
 | |
| 
 | |
|         return {
 | |
|             cInter : cInter,
 | |
|             pInter : pInter
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     public function residueDecode(decodeState:VorbisDecodeState, target:Vector<Float>, offset:Int, n:Int, rtype:Int)
 | |
|     {
 | |
|         if (rtype == 0) {
 | |
|             var step = Std.int(n / dimensions);
 | |
|             for (k in 0...step) {
 | |
|                 if (!codebookDecodeStep(decodeState, target, offset + k, n-offset-k, step)) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             var k = 0;
 | |
|             while(k < n) {
 | |
|                 if (!codebookDecode(decodeState, target, offset, n-k)) {
 | |
|                     return false;
 | |
|                 }
 | |
|                 k += dimensions;
 | |
|                 offset += dimensions;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| }
 |