410 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "btHeightfieldTerrainShape.h"
 | |
| 
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| btHeightfieldTerrainShape::btHeightfieldTerrainShape
 | |
| (
 | |
| int heightStickWidth, int heightStickLength, const void* heightfieldData,
 | |
| btScalar heightScale, btScalar minHeight, btScalar maxHeight,int upAxis,
 | |
| PHY_ScalarType hdt, bool flipQuadEdges
 | |
| )
 | |
| {
 | |
| 	initialize(heightStickWidth, heightStickLength, heightfieldData,
 | |
| 	           heightScale, minHeight, maxHeight, upAxis, hdt,
 | |
| 	           flipQuadEdges);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength,const void* heightfieldData,btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges)
 | |
| {
 | |
| 	// legacy constructor: support only float or unsigned char,
 | |
| 	// 	and min height is zero
 | |
| 	PHY_ScalarType hdt = (useFloatData) ? PHY_FLOAT : PHY_UCHAR;
 | |
| 	btScalar minHeight = 0.0f;
 | |
| 
 | |
| 	// previously, height = uchar * maxHeight / 65535.
 | |
| 	// So to preserve legacy behavior, heightScale = maxHeight / 65535
 | |
| 	btScalar heightScale = maxHeight / 65535;
 | |
| 
 | |
| 	initialize(heightStickWidth, heightStickLength, heightfieldData,
 | |
| 	           heightScale, minHeight, maxHeight, upAxis, hdt,
 | |
| 	           flipQuadEdges);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btHeightfieldTerrainShape::initialize
 | |
| (
 | |
| int heightStickWidth, int heightStickLength, const void* heightfieldData,
 | |
| btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis,
 | |
| PHY_ScalarType hdt, bool flipQuadEdges
 | |
| )
 | |
| {
 | |
| 	// validation
 | |
| 	btAssert(heightStickWidth > 1);// && "bad width");
 | |
| 	btAssert(heightStickLength > 1);// && "bad length");
 | |
| 	btAssert(heightfieldData);// && "null heightfield data");
 | |
| 	// btAssert(heightScale) -- do we care?  Trust caller here
 | |
| 	btAssert(minHeight <= maxHeight);// && "bad min/max height");
 | |
| 	btAssert(upAxis >= 0 && upAxis < 3);// && "bad upAxis--should be in range [0,2]");
 | |
| 	btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_SHORT);// && "Bad height data type enum");
 | |
| 
 | |
| 	// initialize member variables
 | |
| 	m_shapeType = TERRAIN_SHAPE_PROXYTYPE;
 | |
| 	m_heightStickWidth = heightStickWidth;
 | |
| 	m_heightStickLength = heightStickLength;
 | |
| 	m_minHeight = minHeight;
 | |
| 	m_maxHeight = maxHeight;
 | |
| 	m_width = (btScalar) (heightStickWidth - 1);
 | |
| 	m_length = (btScalar) (heightStickLength - 1);
 | |
| 	m_heightScale = heightScale;
 | |
| 	m_heightfieldDataUnknown = heightfieldData;
 | |
| 	m_heightDataType = hdt;
 | |
| 	m_flipQuadEdges = flipQuadEdges;
 | |
| 	m_useDiamondSubdivision = false;
 | |
| 	m_useZigzagSubdivision = false;
 | |
| 	m_upAxis = upAxis;
 | |
| 	m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
 | |
| 
 | |
| 	// determine min/max axis-aligned bounding box (aabb) values
 | |
| 	switch (m_upAxis)
 | |
| 	{
 | |
| 	case 0:
 | |
| 		{
 | |
| 			m_localAabbMin.setValue(m_minHeight, 0, 0);
 | |
| 			m_localAabbMax.setValue(m_maxHeight, m_width, m_length);
 | |
| 			break;
 | |
| 		}
 | |
| 	case 1:
 | |
| 		{
 | |
| 			m_localAabbMin.setValue(0, m_minHeight, 0);
 | |
| 			m_localAabbMax.setValue(m_width, m_maxHeight, m_length);
 | |
| 			break;
 | |
| 		};
 | |
| 	case 2:
 | |
| 		{
 | |
| 			m_localAabbMin.setValue(0, 0, m_minHeight);
 | |
| 			m_localAabbMax.setValue(m_width, m_length, m_maxHeight);
 | |
| 			break;
 | |
| 		}
 | |
| 	default:
 | |
| 		{
 | |
| 			//need to get valid m_upAxis
 | |
| 			btAssert(0);// && "Bad m_upAxis");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// remember origin (defined as exact middle of aabb)
 | |
| 	m_localOrigin = btScalar(0.5) * (m_localAabbMin + m_localAabbMax);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btHeightfieldTerrainShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
 | |
| {
 | |
| 	btVector3 halfExtents = (m_localAabbMax-m_localAabbMin)* m_localScaling * btScalar(0.5);
 | |
| 
 | |
| 	btVector3 localOrigin(0, 0, 0);
 | |
| 	localOrigin[m_upAxis] = (m_minHeight + m_maxHeight) * btScalar(0.5);
 | |
| 	localOrigin *= m_localScaling;
 | |
| 
 | |
| 	btMatrix3x3 abs_b = t.getBasis().absolute();  
 | |
| 	btVector3 center = t.getOrigin();
 | |
|     btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
 | |
| 	extent += btVector3(getMargin(),getMargin(),getMargin());
 | |
| 
 | |
| 	aabbMin = center - extent;
 | |
| 	aabbMax = center + extent;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This returns the "raw" (user's initial) height, not the actual height.
 | |
| /// The actual height needs to be adjusted to be relative to the center
 | |
| ///   of the heightfield's AABB.
 | |
| btScalar
 | |
| btHeightfieldTerrainShape::getRawHeightFieldValue(int x,int y) const
 | |
| {
 | |
| 	btScalar val = 0.f;
 | |
| 	switch (m_heightDataType)
 | |
| 	{
 | |
| 	case PHY_FLOAT:
 | |
| 		{
 | |
| 			val = m_heightfieldDataFloat[(y*m_heightStickWidth)+x];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	case PHY_UCHAR:
 | |
| 		{
 | |
| 			unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y*m_heightStickWidth)+x];
 | |
| 			val = heightFieldValue * m_heightScale;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	case PHY_SHORT:
 | |
| 		{
 | |
| 			short hfValue = m_heightfieldDataShort[(y * m_heightStickWidth) + x];
 | |
| 			val = hfValue * m_heightScale;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	default:
 | |
| 		{
 | |
| 			btAssert(!"Bad m_heightDataType");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// this returns the vertex in bullet-local coordinates
 | |
| void	btHeightfieldTerrainShape::getVertex(int x,int y,btVector3& vertex) const
 | |
| {
 | |
| 	btAssert(x>=0);
 | |
| 	btAssert(y>=0);
 | |
| 	btAssert(x<m_heightStickWidth);
 | |
| 	btAssert(y<m_heightStickLength);
 | |
| 
 | |
| 	btScalar	height = getRawHeightFieldValue(x,y);
 | |
| 
 | |
| 	switch (m_upAxis)
 | |
| 	{
 | |
| 	case 0:
 | |
| 		{
 | |
| 		vertex.setValue(
 | |
| 			height - m_localOrigin.getX(),
 | |
| 			(-m_width/btScalar(2.0)) + x,
 | |
| 			(-m_length/btScalar(2.0) ) + y
 | |
| 			);
 | |
| 			break;
 | |
| 		}
 | |
| 	case 1:
 | |
| 		{
 | |
| 			vertex.setValue(
 | |
| 			(-m_width/btScalar(2.0)) + x,
 | |
| 			height - m_localOrigin.getY(),
 | |
| 			(-m_length/btScalar(2.0)) + y
 | |
| 			);
 | |
| 			break;
 | |
| 		};
 | |
| 	case 2:
 | |
| 		{
 | |
| 			vertex.setValue(
 | |
| 			(-m_width/btScalar(2.0)) + x,
 | |
| 			(-m_length/btScalar(2.0)) + y,
 | |
| 			height - m_localOrigin.getZ()
 | |
| 			);
 | |
| 			break;
 | |
| 		}
 | |
| 	default:
 | |
| 		{
 | |
| 			//need to get valid m_upAxis
 | |
| 			btAssert(0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vertex*=m_localScaling;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static inline int
 | |
| getQuantized
 | |
| (
 | |
| btScalar x
 | |
| )
 | |
| {
 | |
| 	if (x < 0.0) {
 | |
| 		return (int) (x - 0.5);
 | |
| 	}
 | |
| 	return (int) (x + 0.5);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// given input vector, return quantized version
 | |
| /**
 | |
|   This routine is basically determining the gridpoint indices for a given
 | |
|   input vector, answering the question: "which gridpoint is closest to the
 | |
|   provided point?".
 | |
| 
 | |
|   "with clamp" means that we restrict the point to be in the heightfield's
 | |
|   axis-aligned bounding box.
 | |
|  */
 | |
| void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point,int /*isMax*/) const
 | |
| {
 | |
| 	btVector3 clampedPoint(point);
 | |
| 	clampedPoint.setMax(m_localAabbMin);
 | |
| 	clampedPoint.setMin(m_localAabbMax);
 | |
| 
 | |
| 	out[0] = getQuantized(clampedPoint.getX());
 | |
| 	out[1] = getQuantized(clampedPoint.getY());
 | |
| 	out[2] = getQuantized(clampedPoint.getZ());
 | |
| 		
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// process all triangles within the provided axis-aligned bounding box
 | |
| /**
 | |
|   basic algorithm:
 | |
|     - convert input aabb to local coordinates (scale down and shift for local origin)
 | |
|     - convert input aabb to a range of heightfield grid points (quantize)
 | |
|     - iterate over all triangles in that subset of the grid
 | |
|  */
 | |
| void	btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 	// scale down the input aabb's so they are in local (non-scaled) coordinates
 | |
| 	btVector3	localAabbMin = aabbMin*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]);
 | |
| 	btVector3	localAabbMax = aabbMax*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]);
 | |
| 
 | |
| 	// account for local origin
 | |
| 	localAabbMin += m_localOrigin;
 | |
| 	localAabbMax += m_localOrigin;
 | |
| 
 | |
| 	//quantize the aabbMin and aabbMax, and adjust the start/end ranges
 | |
| 	int	quantizedAabbMin[3];
 | |
| 	int	quantizedAabbMax[3];
 | |
| 	quantizeWithClamp(quantizedAabbMin, localAabbMin,0);
 | |
| 	quantizeWithClamp(quantizedAabbMax, localAabbMax,1);
 | |
| 	
 | |
| 	// expand the min/max quantized values
 | |
| 	// this is to catch the case where the input aabb falls between grid points!
 | |
| 	for (int i = 0; i < 3; ++i) {
 | |
| 		quantizedAabbMin[i]--;
 | |
| 		quantizedAabbMax[i]++;
 | |
| 	}	
 | |
| 
 | |
| 	int startX=0;
 | |
| 	int endX=m_heightStickWidth-1;
 | |
| 	int startJ=0;
 | |
| 	int endJ=m_heightStickLength-1;
 | |
| 
 | |
| 	switch (m_upAxis)
 | |
| 	{
 | |
| 	case 0:
 | |
| 		{
 | |
| 			if (quantizedAabbMin[1]>startX)
 | |
| 				startX = quantizedAabbMin[1];
 | |
| 			if (quantizedAabbMax[1]<endX)
 | |
| 				endX = quantizedAabbMax[1];
 | |
| 			if (quantizedAabbMin[2]>startJ)
 | |
| 				startJ = quantizedAabbMin[2];
 | |
| 			if (quantizedAabbMax[2]<endJ)
 | |
| 				endJ = quantizedAabbMax[2];
 | |
| 			break;
 | |
| 		}
 | |
| 	case 1:
 | |
| 		{
 | |
| 			if (quantizedAabbMin[0]>startX)
 | |
| 				startX = quantizedAabbMin[0];
 | |
| 			if (quantizedAabbMax[0]<endX)
 | |
| 				endX = quantizedAabbMax[0];
 | |
| 			if (quantizedAabbMin[2]>startJ)
 | |
| 				startJ = quantizedAabbMin[2];
 | |
| 			if (quantizedAabbMax[2]<endJ)
 | |
| 				endJ = quantizedAabbMax[2];
 | |
| 			break;
 | |
| 		};
 | |
| 	case 2:
 | |
| 		{
 | |
| 			if (quantizedAabbMin[0]>startX)
 | |
| 				startX = quantizedAabbMin[0];
 | |
| 			if (quantizedAabbMax[0]<endX)
 | |
| 				endX = quantizedAabbMax[0];
 | |
| 			if (quantizedAabbMin[1]>startJ)
 | |
| 				startJ = quantizedAabbMin[1];
 | |
| 			if (quantizedAabbMax[1]<endJ)
 | |
| 				endJ = quantizedAabbMax[1];
 | |
| 			break;
 | |
| 		}
 | |
| 	default:
 | |
| 		{
 | |
| 			//need to get valid m_upAxis
 | |
| 			btAssert(0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
|   
 | |
| 
 | |
| 	for(int j=startJ; j<endJ; j++)
 | |
| 	{
 | |
| 		for(int x=startX; x<endX; x++)
 | |
| 		{
 | |
| 			btVector3 vertices[3];
 | |
| 			if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j+x) & 1))|| (m_useZigzagSubdivision  && !(j & 1)))
 | |
| 			{
 | |
|         //first triangle
 | |
|         getVertex(x,j,vertices[0]);
 | |
| 		getVertex(x, j + 1, vertices[1]);
 | |
| 		getVertex(x + 1, j + 1, vertices[2]);
 | |
|         callback->processTriangle(vertices,x,j);
 | |
|         //second triangle
 | |
|       //  getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
 | |
|         getVertex(x+1,j+1,vertices[1]);
 | |
| 		getVertex(x + 1, j, vertices[2]);
 | |
| 		callback->processTriangle(vertices, x, j);
 | |
| 
 | |
| 			} else
 | |
| 			{
 | |
|         //first triangle
 | |
|         getVertex(x,j,vertices[0]);
 | |
|         getVertex(x,j+1,vertices[1]);
 | |
|         getVertex(x+1,j,vertices[2]);
 | |
|         callback->processTriangle(vertices,x,j);
 | |
|         //second triangle
 | |
|         getVertex(x+1,j,vertices[0]);
 | |
|         //getVertex(x,j+1,vertices[1]);
 | |
|         getVertex(x+1,j+1,vertices[2]);
 | |
|         callback->processTriangle(vertices,x,j);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| }
 | |
| 
 | |
| void	btHeightfieldTerrainShape::calculateLocalInertia(btScalar ,btVector3& inertia) const
 | |
| {
 | |
| 	//moving concave objects not supported
 | |
| 	
 | |
| 	inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| }
 | |
| 
 | |
| void	btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling)
 | |
| {
 | |
| 	m_localScaling = scaling;
 | |
| }
 | |
| const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
 | |
| {
 | |
| 	return m_localScaling;
 | |
| }
 |