177 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "btGjkConvexCast.h"
 | |
| #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | |
| #include "btGjkPairDetector.h"
 | |
| #include "btPointCollector.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define MAX_ITERATIONS 64
 | |
| #else
 | |
| #define MAX_ITERATIONS 32
 | |
| #endif
 | |
| 
 | |
| btGjkConvexCast::btGjkConvexCast(const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
 | |
| :m_simplexSolver(simplexSolver),
 | |
| m_convexA(convexA),
 | |
| m_convexB(convexB)
 | |
| {
 | |
| }
 | |
| 
 | |
| bool	btGjkConvexCast::calcTimeOfImpact(
 | |
| 					const btTransform& fromA,
 | |
| 					const btTransform& toA,
 | |
| 					const btTransform& fromB,
 | |
| 					const btTransform& toB,
 | |
| 					CastResult& result)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	m_simplexSolver->reset();
 | |
| 
 | |
| 	/// compute linear velocity for this interval, to interpolate
 | |
| 	//assume no rotation/angular velocity, assert here?
 | |
| 	btVector3 linVelA,linVelB;
 | |
| 	linVelA = toA.getOrigin()-fromA.getOrigin();
 | |
| 	linVelB = toB.getOrigin()-fromB.getOrigin();
 | |
| 
 | |
| 	btScalar radius = btScalar(0.001);
 | |
| 	btScalar lambda = btScalar(0.);
 | |
| 	btVector3 v(1,0,0);
 | |
| 
 | |
| 	int maxIter = MAX_ITERATIONS;
 | |
| 
 | |
| 	btVector3 n;
 | |
| 	n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	bool hasResult = false;
 | |
| 	btVector3 c;
 | |
| 	btVector3 r = (linVelA-linVelB);
 | |
| 
 | |
| 	btScalar lastLambda = lambda;
 | |
| 	//btScalar epsilon = btScalar(0.001);
 | |
| 
 | |
| 	int numIter = 0;
 | |
| 	//first solution, using GJK
 | |
| 
 | |
| 
 | |
| 	btTransform identityTrans;
 | |
| 	identityTrans.setIdentity();
 | |
| 
 | |
| 
 | |
| //	result.drawCoordSystem(sphereTr);
 | |
| 
 | |
| 	btPointCollector	pointCollector;
 | |
| 
 | |
| 		
 | |
| 	btGjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,0);//m_penetrationDepthSolver);		
 | |
| 	btGjkPairDetector::ClosestPointInput input;
 | |
| 
 | |
| 	//we don't use margins during CCD
 | |
| 	//	gjk.setIgnoreMargin(true);
 | |
| 
 | |
| 	input.m_transformA = fromA;
 | |
| 	input.m_transformB = fromB;
 | |
| 	gjk.getClosestPoints(input,pointCollector,0);
 | |
| 
 | |
| 	hasResult = pointCollector.m_hasResult;
 | |
| 	c = pointCollector.m_pointInWorld;
 | |
| 
 | |
| 	if (hasResult)
 | |
| 	{
 | |
| 		btScalar dist;
 | |
| 		dist = pointCollector.m_distance;
 | |
| 		n = pointCollector.m_normalOnBInWorld;
 | |
| 
 | |
| 	
 | |
| 
 | |
| 		//not close enough
 | |
| 		while (dist > radius)
 | |
| 		{
 | |
| 			numIter++;
 | |
| 			if (numIter > maxIter)
 | |
| 			{
 | |
| 				return false; //todo: report a failure
 | |
| 			}
 | |
| 			btScalar dLambda = btScalar(0.);
 | |
| 
 | |
| 			btScalar projectedLinearVelocity = r.dot(n);
 | |
| 			
 | |
| 			dLambda = dist / (projectedLinearVelocity);
 | |
| 
 | |
| 			lambda = lambda - dLambda;
 | |
| 
 | |
| 			if (lambda > btScalar(1.))
 | |
| 				return false;
 | |
| 
 | |
| 			if (lambda < btScalar(0.))
 | |
| 				return false;
 | |
| 
 | |
| 			//todo: next check with relative epsilon
 | |
| 			if (lambda <= lastLambda)
 | |
| 			{
 | |
| 				return false;
 | |
| 				//n.setValue(0,0,0);
 | |
| 				break;
 | |
| 			}
 | |
| 			lastLambda = lambda;
 | |
| 
 | |
| 			//interpolate to next lambda
 | |
| 			result.DebugDraw( lambda );
 | |
| 			input.m_transformA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
 | |
| 			input.m_transformB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
 | |
| 			
 | |
| 			gjk.getClosestPoints(input,pointCollector,0);
 | |
| 			if (pointCollector.m_hasResult)
 | |
| 			{
 | |
| 				if (pointCollector.m_distance < btScalar(0.))
 | |
| 				{
 | |
| 					result.m_fraction = lastLambda;
 | |
| 					n = pointCollector.m_normalOnBInWorld;
 | |
| 					result.m_normal=n;
 | |
| 					result.m_hitPoint = pointCollector.m_pointInWorld;
 | |
| 					return true;
 | |
| 				}
 | |
| 				c = pointCollector.m_pointInWorld;		
 | |
| 				n = pointCollector.m_normalOnBInWorld;
 | |
| 				dist = pointCollector.m_distance;
 | |
| 			} else
 | |
| 			{
 | |
| 				//??
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		//is n normalized?
 | |
| 		//don't report time of impact for motion away from the contact normal (or causes minor penetration)
 | |
| 		if (n.dot(r)>=-result.m_allowedPenetration)
 | |
| 			return false;
 | |
| 
 | |
| 		result.m_fraction = lambda;
 | |
| 		result.m_normal = n;
 | |
| 		result.m_hitPoint = c;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 |