307 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #ifndef BT_SOLVER_BODY_H
 | |
| #define BT_SOLVER_BODY_H
 | |
| 
 | |
| class	btRigidBody;
 | |
| #include "LinearMath/btVector3.h"
 | |
| #include "LinearMath/btMatrix3x3.h"
 | |
| 
 | |
| #include "LinearMath/btAlignedAllocator.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| 
 | |
| ///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
 | |
| #ifdef BT_USE_SSE
 | |
| #define USE_SIMD 1
 | |
| #endif //
 | |
| 
 | |
| 
 | |
| #ifdef USE_SIMD
 | |
| 
 | |
| struct	btSimdScalar
 | |
| {
 | |
| 	SIMD_FORCE_INLINE	btSimdScalar()
 | |
| 	{
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	btSimdScalar(float	fl)
 | |
| 	:m_vec128 (_mm_set1_ps(fl))
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	btSimdScalar(__m128 v128)
 | |
| 		:m_vec128(v128)
 | |
| 	{
 | |
| 	}
 | |
| 	union
 | |
| 	{
 | |
| 		__m128		m_vec128;
 | |
| 		float		m_floats[4];
 | |
| 		int			m_ints[4];
 | |
| 		btScalar	m_unusedPadding;
 | |
| 	};
 | |
| 	SIMD_FORCE_INLINE	__m128	get128()
 | |
| 	{
 | |
| 		return m_vec128;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	const __m128	get128() const
 | |
| 	{
 | |
| 		return m_vec128;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	set128(__m128 v128)
 | |
| 	{
 | |
| 		m_vec128 = v128;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	operator       __m128()       
 | |
| 	{ 
 | |
| 		return m_vec128; 
 | |
| 	}
 | |
| 	SIMD_FORCE_INLINE	operator const __m128() const 
 | |
| 	{ 
 | |
| 		return m_vec128; 
 | |
| 	}
 | |
| 	
 | |
| 	SIMD_FORCE_INLINE	operator float() const 
 | |
| 	{ 
 | |
| 		return m_floats[0]; 
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| ///@brief Return the elementwise product of two btSimdScalar
 | |
| SIMD_FORCE_INLINE btSimdScalar 
 | |
| operator*(const btSimdScalar& v1, const btSimdScalar& v2) 
 | |
| {
 | |
| 	return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
 | |
| }
 | |
| 
 | |
| ///@brief Return the elementwise product of two btSimdScalar
 | |
| SIMD_FORCE_INLINE btSimdScalar 
 | |
| operator+(const btSimdScalar& v1, const btSimdScalar& v2) 
 | |
| {
 | |
| 	return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
 | |
| }
 | |
| 
 | |
| 
 | |
| #else
 | |
| #define btSimdScalar btScalar
 | |
| #endif
 | |
| 
 | |
| ///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
 | |
| ATTRIBUTE_ALIGNED16 (struct)	btSolverBody
 | |
| {
 | |
| 	BT_DECLARE_ALIGNED_ALLOCATOR();
 | |
| 	btTransform		m_worldTransform;
 | |
| 	btVector3		m_deltaLinearVelocity;
 | |
| 	btVector3		m_deltaAngularVelocity;
 | |
| 	btVector3		m_angularFactor;
 | |
| 	btVector3		m_linearFactor;
 | |
| 	btVector3		m_invMass;
 | |
| 	btVector3		m_pushVelocity;
 | |
| 	btVector3		m_turnVelocity;
 | |
| 	btVector3		m_linearVelocity;
 | |
| 	btVector3		m_angularVelocity;
 | |
| 	btVector3		m_externalForceImpulse;
 | |
| 	btVector3		m_externalTorqueImpulse;
 | |
| 
 | |
| 	btRigidBody*	m_originalBody;
 | |
| 	void	setWorldTransform(const btTransform& worldTransform)
 | |
| 	{
 | |
| 		m_worldTransform = worldTransform;
 | |
| 	}
 | |
| 
 | |
| 	const btTransform& getWorldTransform() const
 | |
| 	{
 | |
| 		return m_worldTransform;
 | |
| 	}
 | |
| 	
 | |
| 	
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 			velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
 | |
| 		else
 | |
| 			velocity.setValue(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 			velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
 | |
| 		else
 | |
| 			velocity.setValue(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	getAngularVelocity(btVector3& angVel) const
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 			angVel =m_angularVelocity+m_deltaAngularVelocity;
 | |
| 		else
 | |
| 			angVel.setValue(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
 | |
| 	SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 		{
 | |
| 			m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
 | |
| 			m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 		{
 | |
| 			m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
 | |
| 			m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	const btVector3& getDeltaLinearVelocity() const
 | |
| 	{
 | |
| 		return m_deltaLinearVelocity;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& getDeltaAngularVelocity() const
 | |
| 	{
 | |
| 		return m_deltaAngularVelocity;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& getPushVelocity() const 
 | |
| 	{
 | |
| 		return m_pushVelocity;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& getTurnVelocity() const 
 | |
| 	{
 | |
| 		return m_turnVelocity;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	////////////////////////////////////////////////
 | |
| 	///some internal methods, don't use them
 | |
| 		
 | |
| 	btVector3& internalGetDeltaLinearVelocity()
 | |
| 	{
 | |
| 		return m_deltaLinearVelocity;
 | |
| 	}
 | |
| 
 | |
| 	btVector3& internalGetDeltaAngularVelocity()
 | |
| 	{
 | |
| 		return m_deltaAngularVelocity;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& internalGetAngularFactor() const
 | |
| 	{
 | |
| 		return m_angularFactor;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& internalGetInvMass() const
 | |
| 	{
 | |
| 		return m_invMass;
 | |
| 	}
 | |
| 
 | |
| 	void internalSetInvMass(const btVector3& invMass)
 | |
| 	{
 | |
| 		m_invMass = invMass;
 | |
| 	}
 | |
| 	
 | |
| 	btVector3& internalGetPushVelocity()
 | |
| 	{
 | |
| 		return m_pushVelocity;
 | |
| 	}
 | |
| 
 | |
| 	btVector3& internalGetTurnVelocity()
 | |
| 	{
 | |
| 		return m_turnVelocity;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
 | |
| 	{
 | |
| 		velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	internalGetAngularVelocity(btVector3& angVel) const
 | |
| 	{
 | |
| 		angVel = m_angularVelocity+m_deltaAngularVelocity;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
 | |
| 	SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 		{
 | |
| 			m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
 | |
| 			m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
 | |
| 		}
 | |
| 	}
 | |
| 		
 | |
| 	
 | |
| 	
 | |
| 
 | |
| 	void	writebackVelocity()
 | |
| 	{
 | |
| 		if (m_originalBody)
 | |
| 		{
 | |
| 			m_linearVelocity +=m_deltaLinearVelocity;
 | |
| 			m_angularVelocity += m_deltaAngularVelocity;
 | |
| 			
 | |
| 			//m_originalBody->setCompanionId(-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	void	writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
 | |
| 	{
 | |
|         (void) timeStep;
 | |
| 		if (m_originalBody)
 | |
| 		{
 | |
| 			m_linearVelocity += m_deltaLinearVelocity;
 | |
| 			m_angularVelocity += m_deltaAngularVelocity;
 | |
| 			
 | |
| 			//correct the position/orientation based on push/turn recovery
 | |
| 			btTransform newTransform;
 | |
| 			if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
 | |
| 			{
 | |
| 			//	btQuaternion orn = m_worldTransform.getRotation();
 | |
| 				btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
 | |
| 				m_worldTransform = newTransform;
 | |
| 			}
 | |
| 			//m_worldTransform.setRotation(orn);
 | |
| 			//m_originalBody->setCompanionId(-1);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| #endif //BT_SOLVER_BODY_H
 | |
| 
 | |
| 
 |