2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************
 | |
| *                                                                       *
 | |
| * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 | |
| * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 | |
| *                                                                       *
 | |
| * This library is free software; you can redistribute it and/or         *
 | |
| * modify it under the terms of EITHER:                                  *
 | |
| *   (1) The GNU Lesser General Public License as published by the Free  *
 | |
| *       Software Foundation; either version 2.1 of the License, or (at  *
 | |
| *       your option) any later version. The text of the GNU Lesser      *
 | |
| *       General Public License is included with this library in the     *
 | |
| *       file LICENSE.TXT.                                               *
 | |
| *   (2) The BSD-style license that is included with this library in     *
 | |
| *       the file LICENSE-BSD.TXT.                                       *
 | |
| *                                                                       *
 | |
| * This library is distributed in the hope that it will be useful,       *
 | |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 | |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 | |
| * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 | |
| *                                                                       *
 | |
| *************************************************************************/
 | |
| 
 | |
| /*
 | |
| 
 | |
| 
 | |
| THE ALGORITHM
 | |
| -------------
 | |
| 
 | |
| solve A*x = b+w, with x and w subject to certain LCP conditions.
 | |
| each x(i),w(i) must lie on one of the three line segments in the following
 | |
| diagram. each line segment corresponds to one index set :
 | |
| 
 | |
|      w(i)
 | |
|      /|\      |           :
 | |
|       |       |           :
 | |
|       |       |i in N     :
 | |
|   w>0 |       |state[i]=0 :
 | |
|       |       |           :
 | |
|       |       |           :  i in C
 | |
|   w=0 +       +-----------------------+
 | |
|       |                   :           |
 | |
|       |                   :           |
 | |
|   w<0 |                   :           |i in N
 | |
|       |                   :           |state[i]=1
 | |
|       |                   :           |
 | |
|       |                   :           |
 | |
|       +-------|-----------|-----------|----------> x(i)
 | |
|              lo           0           hi
 | |
| 
 | |
| the Dantzig algorithm proceeds as follows:
 | |
|   for i=1:n
 | |
|     * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
 | |
|       negative towards the line. as this is done, the other (x(j),w(j))
 | |
|       for j<i are constrained to be on the line. if any (x,w) reaches the
 | |
|       end of a line segment then it is switched between index sets.
 | |
|     * i is added to the appropriate index set depending on what line segment
 | |
|       it hits.
 | |
| 
 | |
| we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
 | |
| simpler, because the starting point for x(i),w(i) is always on the dotted
 | |
| line x=0 and x will only ever increase in one direction, so it can only hit
 | |
| two out of the three line segments.
 | |
| 
 | |
| 
 | |
| NOTES
 | |
| -----
 | |
| 
 | |
| this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
 | |
| the implementation is split into an LCP problem object (btLCP) and an LCP
 | |
| driver function. most optimization occurs in the btLCP object.
 | |
| 
 | |
| a naive implementation of the algorithm requires either a lot of data motion
 | |
| or a lot of permutation-array lookup, because we are constantly re-ordering
 | |
| rows and columns. to avoid this and make a more optimized algorithm, a
 | |
| non-trivial data structure is used to represent the matrix A (this is
 | |
| implemented in the fast version of the btLCP object).
 | |
| 
 | |
| during execution of this algorithm, some indexes in A are clamped (set C),
 | |
| some are non-clamped (set N), and some are "don't care" (where x=0).
 | |
| A,x,b,w (and other problem vectors) are permuted such that the clamped
 | |
| indexes are first, the unclamped indexes are next, and the don't-care
 | |
| indexes are last. this permutation is recorded in the array `p'.
 | |
| initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
 | |
| the corresponding elements of p are swapped.
 | |
| 
 | |
| because the C and N elements are grouped together in the rows of A, we can do
 | |
| lots of work with a fast dot product function. if A,x,etc were not permuted
 | |
| and we only had a permutation array, then those dot products would be much
 | |
| slower as we would have a permutation array lookup in some inner loops.
 | |
| 
 | |
| A is accessed through an array of row pointers, so that element (i,j) of the
 | |
| permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
 | |
| we still have to actually move the data.
 | |
| 
 | |
| during execution of this algorithm we maintain an L*D*L' factorization of
 | |
| the clamped submatrix of A (call it `AC') which is the top left nC*nC
 | |
| submatrix of A. there are two ways we could arrange the rows/columns in AC.
 | |
| 
 | |
| (1) AC is always permuted such that L*D*L' = AC. this causes a problem
 | |
| when a row/column is removed from C, because then all the rows/columns of A
 | |
| between the deleted index and the end of C need to be rotated downward.
 | |
| this results in a lot of data motion and slows things down.
 | |
| (2) L*D*L' is actually a factorization of a *permutation* of AC (which is
 | |
| itself a permutation of the underlying A). this is what we do - the
 | |
| permutation is recorded in the vector C. call this permutation A[C,C].
 | |
| when a row/column is removed from C, all we have to do is swap two
 | |
| rows/columns and manipulate C.
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "btDantzigLCP.h"
 | |
| 
 | |
| #include <string.h>//memcpy
 | |
| 
 | |
| bool s_error = false;
 | |
| 
 | |
| //***************************************************************************
 | |
| // code generation parameters
 | |
| 
 | |
| 
 | |
| #define btLCP_FAST		// use fast btLCP object
 | |
| 
 | |
| // option 1 : matrix row pointers (less data copying)
 | |
| #define BTROWPTRS
 | |
| #define BTATYPE btScalar **
 | |
| #define BTAROW(i) (m_A[i])
 | |
| 
 | |
| // option 2 : no matrix row pointers (slightly faster inner loops)
 | |
| //#define NOROWPTRS
 | |
| //#define BTATYPE btScalar *
 | |
| //#define BTAROW(i) (m_A+(i)*m_nskip)
 | |
| 
 | |
| #define BTNUB_OPTIMIZATIONS
 | |
| 
 | |
| 
 | |
| 
 | |
| /* solve L*X=B, with B containing 1 right hand sides.
 | |
|  * L is an n*n lower triangular matrix with ones on the diagonal.
 | |
|  * L is stored by rows and its leading dimension is lskip.
 | |
|  * B is an n*1 matrix that contains the right hand sides.
 | |
|  * B is stored by columns and its leading dimension is also lskip.
 | |
|  * B is overwritten with X.
 | |
|  * this processes blocks of 2*2.
 | |
|  * if this is in the factorizer source file, n must be a multiple of 2.
 | |
|  */
 | |
| 
 | |
| static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
 | |
| {  
 | |
|   /* declare variables - Z matrix, p and q vectors, etc */
 | |
|   btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
 | |
|   const btScalar *ell;
 | |
|   int i,j;
 | |
|   /* compute all 2 x 1 blocks of X */
 | |
|   for (i=0; i < n; i+=2) {
 | |
|     /* compute all 2 x 1 block of X, from rows i..i+2-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     Z21=0;
 | |
|     ell = L + i*lskip1;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-2; j >= 0; j -= 2) {
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       m11 = p1 * q1;
 | |
|       p2=ell[lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[1];
 | |
|       q1=ex[1];
 | |
|       m11 = p1 * q1;
 | |
|       p2=ell[1+lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 2;
 | |
|       ex += 2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 2;
 | |
|     for (; j > 0; j--) {
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       m11 = p1 * q1;
 | |
|       p2=ell[lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 1;
 | |
|       ex += 1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|     p1 = ell[lskip1];
 | |
|     Z21 = ex[1] - Z21 - p1*Z11;
 | |
|     ex[1] = Z21;
 | |
|     /* end of outer loop */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* solve L*X=B, with B containing 2 right hand sides.
 | |
|  * L is an n*n lower triangular matrix with ones on the diagonal.
 | |
|  * L is stored by rows and its leading dimension is lskip.
 | |
|  * B is an n*2 matrix that contains the right hand sides.
 | |
|  * B is stored by columns and its leading dimension is also lskip.
 | |
|  * B is overwritten with X.
 | |
|  * this processes blocks of 2*2.
 | |
|  * if this is in the factorizer source file, n must be a multiple of 2.
 | |
|  */
 | |
| 
 | |
| static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
 | |
| {  
 | |
|   /* declare variables - Z matrix, p and q vectors, etc */
 | |
|   btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
 | |
|   const btScalar *ell;
 | |
|   int i,j;
 | |
|   /* compute all 2 x 2 blocks of X */
 | |
|   for (i=0; i < n; i+=2) {
 | |
|     /* compute all 2 x 2 block of X, from rows i..i+2-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     Z12=0;
 | |
|     Z21=0;
 | |
|     Z22=0;
 | |
|     ell = L + i*lskip1;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-2; j >= 0; j -= 2) {
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       m11 = p1 * q1;
 | |
|       q2=ex[lskip1];
 | |
|       m12 = p1 * q2;
 | |
|       p2=ell[lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       m22 = p2 * q2;
 | |
|       Z11 += m11;
 | |
|       Z12 += m12;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[1];
 | |
|       q1=ex[1];
 | |
|       m11 = p1 * q1;
 | |
|       q2=ex[1+lskip1];
 | |
|       m12 = p1 * q2;
 | |
|       p2=ell[1+lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       m22 = p2 * q2;
 | |
|       /* advance pointers */
 | |
|       ell += 2;
 | |
|       ex += 2;
 | |
|       Z11 += m11;
 | |
|       Z12 += m12;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 2;
 | |
|     for (; j > 0; j--) {
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       m11 = p1 * q1;
 | |
|       q2=ex[lskip1];
 | |
|       m12 = p1 * q2;
 | |
|       p2=ell[lskip1];
 | |
|       m21 = p2 * q1;
 | |
|       m22 = p2 * q2;
 | |
|       /* advance pointers */
 | |
|       ell += 1;
 | |
|       ex += 1;
 | |
|       Z11 += m11;
 | |
|       Z12 += m12;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|     Z12 = ex[lskip1] - Z12;
 | |
|     ex[lskip1] = Z12;
 | |
|     p1 = ell[lskip1];
 | |
|     Z21 = ex[1] - Z21 - p1*Z11;
 | |
|     ex[1] = Z21;
 | |
|     Z22 = ex[1+lskip1] - Z22 - p1*Z12;
 | |
|     ex[1+lskip1] = Z22;
 | |
|     /* end of outer loop */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
 | |
| {  
 | |
|   int i,j;
 | |
|   btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
 | |
|   if (n < 1) return;
 | |
|   
 | |
|   for (i=0; i<=n-2; i += 2) {
 | |
|     /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
 | |
|     btSolveL1_2 (A,A+i*nskip1,i,nskip1);
 | |
|     /* scale the elements in a 2 x i block at A(i,0), and also */
 | |
|     /* compute Z = the outer product matrix that we'll need. */
 | |
|     Z11 = 0;
 | |
|     Z21 = 0;
 | |
|     Z22 = 0;
 | |
|     ell = A+i*nskip1;
 | |
|     dee = d;
 | |
|     for (j=i-6; j >= 0; j -= 6) {
 | |
|       p1 = ell[0];
 | |
|       p2 = ell[nskip1];
 | |
|       dd = dee[0];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[0] = q1;
 | |
|       ell[nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       p1 = ell[1];
 | |
|       p2 = ell[1+nskip1];
 | |
|       dd = dee[1];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[1] = q1;
 | |
|       ell[1+nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       p1 = ell[2];
 | |
|       p2 = ell[2+nskip1];
 | |
|       dd = dee[2];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[2] = q1;
 | |
|       ell[2+nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       p1 = ell[3];
 | |
|       p2 = ell[3+nskip1];
 | |
|       dd = dee[3];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[3] = q1;
 | |
|       ell[3+nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       p1 = ell[4];
 | |
|       p2 = ell[4+nskip1];
 | |
|       dd = dee[4];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[4] = q1;
 | |
|       ell[4+nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       p1 = ell[5];
 | |
|       p2 = ell[5+nskip1];
 | |
|       dd = dee[5];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[5] = q1;
 | |
|       ell[5+nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       ell += 6;
 | |
|       dee += 6;
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 6;
 | |
|     for (; j > 0; j--) {
 | |
|       p1 = ell[0];
 | |
|       p2 = ell[nskip1];
 | |
|       dd = dee[0];
 | |
|       q1 = p1*dd;
 | |
|       q2 = p2*dd;
 | |
|       ell[0] = q1;
 | |
|       ell[nskip1] = q2;
 | |
|       m11 = p1*q1;
 | |
|       m21 = p2*q1;
 | |
|       m22 = p2*q2;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z22 += m22;
 | |
|       ell++;
 | |
|       dee++;
 | |
|     }
 | |
|     /* solve for diagonal 2 x 2 block at A(i,i) */
 | |
|     Z11 = ell[0] - Z11;
 | |
|     Z21 = ell[nskip1] - Z21;
 | |
|     Z22 = ell[1+nskip1] - Z22;
 | |
|     dee = d + i;
 | |
|     /* factorize 2 x 2 block Z,dee */
 | |
|     /* factorize row 1 */
 | |
|     dee[0] = btRecip(Z11);
 | |
|     /* factorize row 2 */
 | |
|     sum = 0;
 | |
|     q1 = Z21;
 | |
|     q2 = q1 * dee[0];
 | |
|     Z21 = q2;
 | |
|     sum += q1*q2;
 | |
|     dee[1] = btRecip(Z22 - sum);
 | |
|     /* done factorizing 2 x 2 block */
 | |
|     ell[nskip1] = Z21;
 | |
|   }
 | |
|   /* compute the (less than 2) rows at the bottom */
 | |
|   switch (n-i) {
 | |
|     case 0:
 | |
|     break;
 | |
|     
 | |
|     case 1:
 | |
|     btSolveL1_1 (A,A+i*nskip1,i,nskip1);
 | |
|     /* scale the elements in a 1 x i block at A(i,0), and also */
 | |
|     /* compute Z = the outer product matrix that we'll need. */
 | |
|     Z11 = 0;
 | |
|     ell = A+i*nskip1;
 | |
|     dee = d;
 | |
|     for (j=i-6; j >= 0; j -= 6) {
 | |
|       p1 = ell[0];
 | |
|       dd = dee[0];
 | |
|       q1 = p1*dd;
 | |
|       ell[0] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       p1 = ell[1];
 | |
|       dd = dee[1];
 | |
|       q1 = p1*dd;
 | |
|       ell[1] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       p1 = ell[2];
 | |
|       dd = dee[2];
 | |
|       q1 = p1*dd;
 | |
|       ell[2] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       p1 = ell[3];
 | |
|       dd = dee[3];
 | |
|       q1 = p1*dd;
 | |
|       ell[3] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       p1 = ell[4];
 | |
|       dd = dee[4];
 | |
|       q1 = p1*dd;
 | |
|       ell[4] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       p1 = ell[5];
 | |
|       dd = dee[5];
 | |
|       q1 = p1*dd;
 | |
|       ell[5] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       ell += 6;
 | |
|       dee += 6;
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 6;
 | |
|     for (; j > 0; j--) {
 | |
|       p1 = ell[0];
 | |
|       dd = dee[0];
 | |
|       q1 = p1*dd;
 | |
|       ell[0] = q1;
 | |
|       m11 = p1*q1;
 | |
|       Z11 += m11;
 | |
|       ell++;
 | |
|       dee++;
 | |
|     }
 | |
|     /* solve for diagonal 1 x 1 block at A(i,i) */
 | |
|     Z11 = ell[0] - Z11;
 | |
|     dee = d + i;
 | |
|     /* factorize 1 x 1 block Z,dee */
 | |
|     /* factorize row 1 */
 | |
|     dee[0] = btRecip(Z11);
 | |
|     /* done factorizing 1 x 1 block */
 | |
|     break;
 | |
|     
 | |
|     //default: *((char*)0)=0;  /* this should never happen! */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* solve L*X=B, with B containing 1 right hand sides.
 | |
|  * L is an n*n lower triangular matrix with ones on the diagonal.
 | |
|  * L is stored by rows and its leading dimension is lskip.
 | |
|  * B is an n*1 matrix that contains the right hand sides.
 | |
|  * B is stored by columns and its leading dimension is also lskip.
 | |
|  * B is overwritten with X.
 | |
|  * this processes blocks of 4*4.
 | |
|  * if this is in the factorizer source file, n must be a multiple of 4.
 | |
|  */
 | |
| 
 | |
| void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
 | |
| {  
 | |
|   /* declare variables - Z matrix, p and q vectors, etc */
 | |
|   btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
 | |
|   const btScalar *ell;
 | |
|   int lskip2,lskip3,i,j;
 | |
|   /* compute lskip values */
 | |
|   lskip2 = 2*lskip1;
 | |
|   lskip3 = 3*lskip1;
 | |
|   /* compute all 4 x 1 blocks of X */
 | |
|   for (i=0; i <= n-4; i+=4) {
 | |
|     /* compute all 4 x 1 block of X, from rows i..i+4-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     Z21=0;
 | |
|     Z31=0;
 | |
|     Z41=0;
 | |
|     ell = L + i*lskip1;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-12; j >= 0; j -= 12) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       p2=ell[lskip1];
 | |
|       p3=ell[lskip2];
 | |
|       p4=ell[lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[1];
 | |
|       q1=ex[1];
 | |
|       p2=ell[1+lskip1];
 | |
|       p3=ell[1+lskip2];
 | |
|       p4=ell[1+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[2];
 | |
|       q1=ex[2];
 | |
|       p2=ell[2+lskip1];
 | |
|       p3=ell[2+lskip2];
 | |
|       p4=ell[2+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[3];
 | |
|       q1=ex[3];
 | |
|       p2=ell[3+lskip1];
 | |
|       p3=ell[3+lskip2];
 | |
|       p4=ell[3+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[4];
 | |
|       q1=ex[4];
 | |
|       p2=ell[4+lskip1];
 | |
|       p3=ell[4+lskip2];
 | |
|       p4=ell[4+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[5];
 | |
|       q1=ex[5];
 | |
|       p2=ell[5+lskip1];
 | |
|       p3=ell[5+lskip2];
 | |
|       p4=ell[5+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[6];
 | |
|       q1=ex[6];
 | |
|       p2=ell[6+lskip1];
 | |
|       p3=ell[6+lskip2];
 | |
|       p4=ell[6+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[7];
 | |
|       q1=ex[7];
 | |
|       p2=ell[7+lskip1];
 | |
|       p3=ell[7+lskip2];
 | |
|       p4=ell[7+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[8];
 | |
|       q1=ex[8];
 | |
|       p2=ell[8+lskip1];
 | |
|       p3=ell[8+lskip2];
 | |
|       p4=ell[8+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[9];
 | |
|       q1=ex[9];
 | |
|       p2=ell[9+lskip1];
 | |
|       p3=ell[9+lskip2];
 | |
|       p4=ell[9+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[10];
 | |
|       q1=ex[10];
 | |
|       p2=ell[10+lskip1];
 | |
|       p3=ell[10+lskip2];
 | |
|       p4=ell[10+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[11];
 | |
|       q1=ex[11];
 | |
|       p2=ell[11+lskip1];
 | |
|       p3=ell[11+lskip2];
 | |
|       p4=ell[11+lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 12;
 | |
|       ex += 12;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 12;
 | |
|     for (; j > 0; j--) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       p2=ell[lskip1];
 | |
|       p3=ell[lskip2];
 | |
|       p4=ell[lskip3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       Z21 += p2 * q1;
 | |
|       Z31 += p3 * q1;
 | |
|       Z41 += p4 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 1;
 | |
|       ex += 1;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|     p1 = ell[lskip1];
 | |
|     Z21 = ex[1] - Z21 - p1*Z11;
 | |
|     ex[1] = Z21;
 | |
|     p1 = ell[lskip2];
 | |
|     p2 = ell[1+lskip2];
 | |
|     Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
 | |
|     ex[2] = Z31;
 | |
|     p1 = ell[lskip3];
 | |
|     p2 = ell[1+lskip3];
 | |
|     p3 = ell[2+lskip3];
 | |
|     Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
 | |
|     ex[3] = Z41;
 | |
|     /* end of outer loop */
 | |
|   }
 | |
|   /* compute rows at end that are not a multiple of block size */
 | |
|   for (; i < n; i++) {
 | |
|     /* compute all 1 x 1 block of X, from rows i..i+1-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     ell = L + i*lskip1;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-12; j >= 0; j -= 12) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[1];
 | |
|       q1=ex[1];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[2];
 | |
|       q1=ex[2];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[3];
 | |
|       q1=ex[3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[4];
 | |
|       q1=ex[4];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[5];
 | |
|       q1=ex[5];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[6];
 | |
|       q1=ex[6];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[7];
 | |
|       q1=ex[7];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[8];
 | |
|       q1=ex[8];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[9];
 | |
|       q1=ex[9];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[10];
 | |
|       q1=ex[10];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* load p and q values */
 | |
|       p1=ell[11];
 | |
|       q1=ex[11];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 12;
 | |
|       ex += 12;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 12;
 | |
|     for (; j > 0; j--) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       Z11 += p1 * q1;
 | |
|       /* advance pointers */
 | |
|       ell += 1;
 | |
|       ex += 1;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* solve L^T * x=b, with b containing 1 right hand side.
 | |
|  * L is an n*n lower triangular matrix with ones on the diagonal.
 | |
|  * L is stored by rows and its leading dimension is lskip.
 | |
|  * b is an n*1 matrix that contains the right hand side.
 | |
|  * b is overwritten with x.
 | |
|  * this processes blocks of 4.
 | |
|  */
 | |
| 
 | |
| void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
 | |
| {  
 | |
|   /* declare variables - Z matrix, p and q vectors, etc */
 | |
|   btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
 | |
|   const btScalar *ell;
 | |
|   int lskip2,i,j;
 | |
| //  int lskip3;
 | |
|   /* special handling for L and B because we're solving L1 *transpose* */
 | |
|   L = L + (n-1)*(lskip1+1);
 | |
|   B = B + n-1;
 | |
|   lskip1 = -lskip1;
 | |
|   /* compute lskip values */
 | |
|   lskip2 = 2*lskip1;
 | |
|   //lskip3 = 3*lskip1;
 | |
|   /* compute all 4 x 1 blocks of X */
 | |
|   for (i=0; i <= n-4; i+=4) {
 | |
|     /* compute all 4 x 1 block of X, from rows i..i+4-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     Z21=0;
 | |
|     Z31=0;
 | |
|     Z41=0;
 | |
|     ell = L - i;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-4; j >= 0; j -= 4) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       p2=ell[-1];
 | |
|       p3=ell[-2];
 | |
|       p4=ell[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       m21 = p2 * q1;
 | |
|       m31 = p3 * q1;
 | |
|       m41 = p4 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z31 += m31;
 | |
|       Z41 += m41;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-1];
 | |
|       p2=ell[-1];
 | |
|       p3=ell[-2];
 | |
|       p4=ell[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       m21 = p2 * q1;
 | |
|       m31 = p3 * q1;
 | |
|       m41 = p4 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z31 += m31;
 | |
|       Z41 += m41;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-2];
 | |
|       p2=ell[-1];
 | |
|       p3=ell[-2];
 | |
|       p4=ell[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       m21 = p2 * q1;
 | |
|       m31 = p3 * q1;
 | |
|       m41 = p4 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z31 += m31;
 | |
|       Z41 += m41;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-3];
 | |
|       p2=ell[-1];
 | |
|       p3=ell[-2];
 | |
|       p4=ell[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       m21 = p2 * q1;
 | |
|       m31 = p3 * q1;
 | |
|       m41 = p4 * q1;
 | |
|       ell += lskip1;
 | |
|       ex -= 4;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z31 += m31;
 | |
|       Z41 += m41;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 4;
 | |
|     for (; j > 0; j--) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       p2=ell[-1];
 | |
|       p3=ell[-2];
 | |
|       p4=ell[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       m21 = p2 * q1;
 | |
|       m31 = p3 * q1;
 | |
|       m41 = p4 * q1;
 | |
|       ell += lskip1;
 | |
|       ex -= 1;
 | |
|       Z11 += m11;
 | |
|       Z21 += m21;
 | |
|       Z31 += m31;
 | |
|       Z41 += m41;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|     p1 = ell[-1];
 | |
|     Z21 = ex[-1] - Z21 - p1*Z11;
 | |
|     ex[-1] = Z21;
 | |
|     p1 = ell[-2];
 | |
|     p2 = ell[-2+lskip1];
 | |
|     Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
 | |
|     ex[-2] = Z31;
 | |
|     p1 = ell[-3];
 | |
|     p2 = ell[-3+lskip1];
 | |
|     p3 = ell[-3+lskip2];
 | |
|     Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
 | |
|     ex[-3] = Z41;
 | |
|     /* end of outer loop */
 | |
|   }
 | |
|   /* compute rows at end that are not a multiple of block size */
 | |
|   for (; i < n; i++) {
 | |
|     /* compute all 1 x 1 block of X, from rows i..i+1-1 */
 | |
|     /* set the Z matrix to 0 */
 | |
|     Z11=0;
 | |
|     ell = L - i;
 | |
|     ex = B;
 | |
|     /* the inner loop that computes outer products and adds them to Z */
 | |
|     for (j=i-4; j >= 0; j -= 4) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-1];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-2];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       ell += lskip1;
 | |
|       Z11 += m11;
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[-3];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       ell += lskip1;
 | |
|       ex -= 4;
 | |
|       Z11 += m11;
 | |
|       /* end of inner loop */
 | |
|     }
 | |
|     /* compute left-over iterations */
 | |
|     j += 4;
 | |
|     for (; j > 0; j--) {
 | |
|       /* load p and q values */
 | |
|       p1=ell[0];
 | |
|       q1=ex[0];
 | |
|       /* compute outer product and add it to the Z matrix */
 | |
|       m11 = p1 * q1;
 | |
|       ell += lskip1;
 | |
|       ex -= 1;
 | |
|       Z11 += m11;
 | |
|     }
 | |
|     /* finish computing the X(i) block */
 | |
|     Z11 = ex[0] - Z11;
 | |
|     ex[0] = Z11;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btVectorScale (btScalar *a, const btScalar *d, int n)
 | |
| {
 | |
|   btAssert (a && d && n >= 0);
 | |
|   for (int i=0; i<n; i++) {
 | |
|     a[i] *= d[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
 | |
| {
 | |
|   btAssert (L && d && b && n > 0 && nskip >= n);
 | |
|   btSolveL1 (L,b,n,nskip);
 | |
|   btVectorScale (b,d,n);
 | |
|   btSolveL1T (L,b,n,nskip);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //***************************************************************************
 | |
| 
 | |
| // swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
 | |
| // A is nskip. this only references and swaps the lower triangle.
 | |
| // if `do_fast_row_swaps' is nonzero and row pointers are being used, then
 | |
| // rows will be swapped by exchanging row pointers. otherwise the data will
 | |
| // be copied.
 | |
| 
 | |
| static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip, 
 | |
|   int do_fast_row_swaps)
 | |
| {
 | |
|   btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
 | |
|     nskip >= n && i1 < i2);
 | |
| 
 | |
| # ifdef BTROWPTRS
 | |
|   btScalar *A_i1 = A[i1];
 | |
|   btScalar *A_i2 = A[i2];
 | |
|   for (int i=i1+1; i<i2; ++i) {
 | |
|     btScalar *A_i_i1 = A[i] + i1;
 | |
|     A_i1[i] = *A_i_i1;
 | |
|     *A_i_i1 = A_i2[i];
 | |
|   }
 | |
|   A_i1[i2] = A_i1[i1];
 | |
|   A_i1[i1] = A_i2[i1];
 | |
|   A_i2[i1] = A_i2[i2];
 | |
|   // swap rows, by swapping row pointers
 | |
|   if (do_fast_row_swaps) {
 | |
|     A[i1] = A_i2;
 | |
|     A[i2] = A_i1;
 | |
|   }
 | |
|   else {
 | |
|     // Only swap till i2 column to match A plain storage variant.
 | |
|     for (int k = 0; k <= i2; ++k) {
 | |
|       btScalar tmp = A_i1[k];
 | |
|       A_i1[k] = A_i2[k];
 | |
|       A_i2[k] = tmp;
 | |
|     }
 | |
|   }
 | |
|   // swap columns the hard way
 | |
|   for (int j=i2+1; j<n; ++j) {
 | |
|     btScalar *A_j = A[j];
 | |
|     btScalar tmp = A_j[i1];
 | |
|     A_j[i1] = A_j[i2];
 | |
|     A_j[i2] = tmp;
 | |
|   }
 | |
| # else
 | |
|   btScalar *A_i1 = A+i1*nskip;
 | |
|   btScalar *A_i2 = A+i2*nskip;
 | |
|   for (int k = 0; k < i1; ++k) {
 | |
|     btScalar tmp = A_i1[k];
 | |
|     A_i1[k] = A_i2[k];
 | |
|     A_i2[k] = tmp;
 | |
|   }
 | |
|   btScalar *A_i = A_i1 + nskip;
 | |
|   for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
 | |
|     btScalar tmp = A_i2[i];
 | |
|     A_i2[i] = A_i[i1];
 | |
|     A_i[i1] = tmp;
 | |
|   }
 | |
|   {
 | |
|     btScalar tmp = A_i1[i1];
 | |
|     A_i1[i1] = A_i2[i2];
 | |
|     A_i2[i2] = tmp;
 | |
|   }
 | |
|   btScalar *A_j = A_i2 + nskip;
 | |
|   for (int j=i2+1; j<n; A_j+=nskip, ++j) {
 | |
|     btScalar tmp = A_j[i1];
 | |
|     A_j[i1] = A_j[i2];
 | |
|     A_j[i2] = tmp;
 | |
|   }
 | |
| # endif
 | |
| }
 | |
| 
 | |
| 
 | |
| // swap two indexes in the n*n LCP problem. i1 must be <= i2.
 | |
| 
 | |
| static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
 | |
|                          btScalar *hi, int *p, bool *state, int *findex,
 | |
|                          int n, int i1, int i2, int nskip,
 | |
|                          int do_fast_row_swaps)
 | |
| {
 | |
|   btScalar tmpr;
 | |
|   int tmpi;
 | |
|   bool tmpb;
 | |
|   btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
 | |
|   if (i1==i2) return;
 | |
|   
 | |
|   btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
 | |
|   
 | |
|   tmpr = x[i1];
 | |
|   x[i1] = x[i2];
 | |
|   x[i2] = tmpr;
 | |
|   
 | |
|   tmpr = b[i1];
 | |
|   b[i1] = b[i2];
 | |
|   b[i2] = tmpr;
 | |
|   
 | |
|   tmpr = w[i1];
 | |
|   w[i1] = w[i2];
 | |
|   w[i2] = tmpr;
 | |
|   
 | |
|   tmpr = lo[i1];
 | |
|   lo[i1] = lo[i2];
 | |
|   lo[i2] = tmpr;
 | |
| 
 | |
|   tmpr = hi[i1];
 | |
|   hi[i1] = hi[i2];
 | |
|   hi[i2] = tmpr;
 | |
| 
 | |
|   tmpi = p[i1];
 | |
|   p[i1] = p[i2];
 | |
|   p[i2] = tmpi;
 | |
| 
 | |
|   tmpb = state[i1];
 | |
|   state[i1] = state[i2];
 | |
|   state[i2] = tmpb;
 | |
| 
 | |
|   if (findex) {
 | |
|     tmpi = findex[i1];
 | |
|     findex[i1] = findex[i2];
 | |
|     findex[i2] = tmpi;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //***************************************************************************
 | |
| // btLCP manipulator object. this represents an n*n LCP problem.
 | |
| //
 | |
| // two index sets C and N are kept. each set holds a subset of
 | |
| // the variable indexes 0..n-1. an index can only be in one set.
 | |
| // initially both sets are empty.
 | |
| //
 | |
| // the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
 | |
| 
 | |
| //***************************************************************************
 | |
| // fast implementation of btLCP. see the above definition of btLCP for
 | |
| // interface comments.
 | |
| //
 | |
| // `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
 | |
| // permuted as the other vectors/matrices are permuted.
 | |
| //
 | |
| // A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
 | |
| // contiguous indexes. the don't-care indexes follow N.
 | |
| //
 | |
| // an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
 | |
| // added or removed from the set C the factorization is updated.
 | |
| // thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
 | |
| // the leading dimension of the matrix L is always `nskip'.
 | |
| //
 | |
| // at the start there may be other indexes that are unbounded but are not
 | |
| // included in `nub'. btLCP will permute the matrix so that absolutely all
 | |
| // unbounded vectors are at the start. thus there may be some initial
 | |
| // permutation.
 | |
| //
 | |
| // the algorithms here assume certain patterns, particularly with respect to
 | |
| // index transfer.
 | |
| 
 | |
| #ifdef btLCP_FAST
 | |
| 
 | |
| struct btLCP 
 | |
| {
 | |
| 	const int m_n;
 | |
| 	const int m_nskip;
 | |
| 	int m_nub;
 | |
| 	int m_nC, m_nN;				// size of each index set
 | |
| 	BTATYPE const m_A;				// A rows
 | |
| 	btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi;	// permuted LCP problem data
 | |
| 	btScalar *const m_L, *const m_d;				// L*D*L' factorization of set C
 | |
| 	btScalar *const m_Dell, *const m_ell, *const m_tmp;
 | |
| 	bool *const m_state;
 | |
| 	int *const m_findex, *const m_p, *const m_C;
 | |
| 
 | |
| 	btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
 | |
| 		btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
 | |
| 		btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
 | |
| 		bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
 | |
| 	int getNub() const { return m_nub; }
 | |
| 	void transfer_i_to_C (int i);
 | |
| 	void transfer_i_to_N (int i) { m_nN++; }			// because we can assume C and N span 1:i-1
 | |
| 	void transfer_i_from_N_to_C (int i);
 | |
| 	void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch);
 | |
| 	int numC() const { return m_nC; }
 | |
| 	int numN() const { return m_nN; }
 | |
| 	int indexC (int i) const { return i; }
 | |
| 	int indexN (int i) const { return i+m_nC; }
 | |
| 	btScalar Aii (int i) const  { return BTAROW(i)[i]; }
 | |
| 	btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
 | |
| 	btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
 | |
| 	void pN_equals_ANC_times_qC (btScalar *p, btScalar *q);
 | |
| 	void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
 | |
| 	void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q);
 | |
| 	void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q);
 | |
| 	void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
 | |
| 	void unpermute();
 | |
| };
 | |
| 
 | |
| 
 | |
| btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
 | |
|             btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
 | |
|             btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
 | |
|             bool *_state, int *_findex, int *p, int *c, btScalar **Arows):
 | |
|   m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
 | |
| # ifdef BTROWPTRS
 | |
|   m_A(Arows),
 | |
| #else
 | |
|   m_A(_Adata),
 | |
| #endif
 | |
|   m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
 | |
|   m_L(l), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
 | |
|   m_state(_state), m_findex(_findex), m_p(p), m_C(c)
 | |
| {
 | |
|   {
 | |
|     btSetZero (m_x,m_n);
 | |
|   }
 | |
| 
 | |
|   {
 | |
| # ifdef BTROWPTRS
 | |
|     // make matrix row pointers
 | |
|     btScalar *aptr = _Adata;
 | |
|     BTATYPE A = m_A;
 | |
|     const int n = m_n, nskip = m_nskip;
 | |
|     for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
 | |
| # endif
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     int *p = m_p;
 | |
|     const int n = m_n;
 | |
|     for (int k=0; k<n; ++k) p[k]=k;		// initially unpermuted
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   // for testing, we can do some random swaps in the area i > nub
 | |
|   {
 | |
|     const int n = m_n;
 | |
|     const int nub = m_nub;
 | |
|     if (nub < n) {
 | |
|     for (int k=0; k<100; k++) {
 | |
|       int i1,i2;
 | |
|       do {
 | |
|         i1 = dRandInt(n-nub)+nub;
 | |
|         i2 = dRandInt(n-nub)+nub;
 | |
|       }
 | |
|       while (i1 > i2); 
 | |
|       //printf ("--> %d %d\n",i1,i2);
 | |
|       btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
 | |
|     }
 | |
|   }
 | |
|   */
 | |
| 
 | |
|   // permute the problem so that *all* the unbounded variables are at the
 | |
|   // start, i.e. look for unbounded variables not included in `nub'. we can
 | |
|   // potentially push up `nub' this way and get a bigger initial factorization.
 | |
|   // note that when we swap rows/cols here we must not just swap row pointers,
 | |
|   // as the initial factorization relies on the data being all in one chunk.
 | |
|   // variables that have findex >= 0 are *not* considered to be unbounded even
 | |
|   // if lo=-inf and hi=inf - this is because these limits may change during the
 | |
|   // solution process.
 | |
| 
 | |
|   {
 | |
|     int *findex = m_findex;
 | |
|     btScalar *lo = m_lo, *hi = m_hi;
 | |
|     const int n = m_n;
 | |
|     for (int k = m_nub; k<n; ++k) {
 | |
|       if (findex && findex[k] >= 0) continue;
 | |
|       if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
 | |
|         btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
 | |
|         m_nub++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // if there are unbounded variables at the start, factorize A up to that
 | |
|   // point and solve for x. this puts all indexes 0..nub-1 into C.
 | |
|   if (m_nub > 0) {
 | |
|     const int nub = m_nub;
 | |
|     {
 | |
|       btScalar *Lrow = m_L;
 | |
|       const int nskip = m_nskip;
 | |
|       for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
 | |
|     }
 | |
|     btFactorLDLT (m_L,m_d,nub,m_nskip);
 | |
|     memcpy (m_x,m_b,nub*sizeof(btScalar));
 | |
|     btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
 | |
|     btSetZero (m_w,nub);
 | |
|     {
 | |
|       int *C = m_C;
 | |
|       for (int k=0; k<nub; ++k) C[k] = k;
 | |
|     }
 | |
|     m_nC = nub;
 | |
|   }
 | |
| 
 | |
|   // permute the indexes > nub such that all findex variables are at the end
 | |
|   if (m_findex) {
 | |
|     const int nub = m_nub;
 | |
|     int *findex = m_findex;
 | |
|     int num_at_end = 0;
 | |
|     for (int k=m_n-1; k >= nub; k--) {
 | |
|       if (findex[k] >= 0) {
 | |
|         btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
 | |
|         num_at_end++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // print info about indexes
 | |
|   /*
 | |
|   {
 | |
|     const int n = m_n;
 | |
|     const int nub = m_nub;
 | |
|     for (int k=0; k<n; k++) {
 | |
|       if (k<nub) printf ("C");
 | |
|       else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
 | |
|       else printf (".");
 | |
|     }
 | |
|     printf ("\n");
 | |
|   }
 | |
|   */
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::transfer_i_to_C (int i)
 | |
| {
 | |
|   {
 | |
|     if (m_nC > 0) {
 | |
|       // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
 | |
|       {
 | |
|         const int nC = m_nC;
 | |
|         btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
 | |
|         for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
 | |
|       }
 | |
|       const int nC = m_nC;
 | |
|       m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
 | |
|     }
 | |
|     else {
 | |
|       m_d[0] = btRecip (BTAROW(i)[i]);
 | |
|     }
 | |
| 
 | |
|     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
 | |
| 
 | |
|     const int nC = m_nC;
 | |
|     m_C[nC] = nC;
 | |
|     m_nC = nC + 1; // nC value is outdated after this line
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::transfer_i_from_N_to_C (int i)
 | |
| {
 | |
|   {
 | |
|     if (m_nC > 0) {
 | |
|       {
 | |
|         btScalar *const aptr = BTAROW(i);
 | |
|         btScalar *Dell = m_Dell;
 | |
|         const int *C = m_C;
 | |
| #   ifdef BTNUB_OPTIMIZATIONS
 | |
|         // if nub>0, initial part of aptr unpermuted
 | |
|         const int nub = m_nub;
 | |
|         int j=0;
 | |
|         for ( ; j<nub; ++j) Dell[j] = aptr[j];
 | |
|         const int nC = m_nC;
 | |
|         for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
 | |
| #   else
 | |
|         const int nC = m_nC;
 | |
|         for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
 | |
| #   endif
 | |
|       }
 | |
|       btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
 | |
|       {
 | |
|         const int nC = m_nC;
 | |
|         btScalar *const Ltgt = m_L + nC*m_nskip;
 | |
|         btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
 | |
|         for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
 | |
|       }
 | |
|       const int nC = m_nC;
 | |
|       m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
 | |
|     }
 | |
|     else {
 | |
|       m_d[0] = btRecip (BTAROW(i)[i]);
 | |
|     }
 | |
| 
 | |
|     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
 | |
| 
 | |
|     const int nC = m_nC;
 | |
|     m_C[nC] = nC;
 | |
|     m_nN--;
 | |
|     m_nC = nC + 1; // nC value is outdated after this line
 | |
|   }
 | |
| 
 | |
|   // @@@ TO DO LATER
 | |
|   // if we just finish here then we'll go back and re-solve for
 | |
|   // delta_x. but actually we can be more efficient and incrementally
 | |
|   // update delta_x here. but if we do this, we wont have ell and Dell
 | |
|   // to use in updating the factorization later.
 | |
| 
 | |
| }
 | |
| 
 | |
| void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
 | |
| {
 | |
|   btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
 | |
|   if (r >= n-1) return;
 | |
|   if (r > 0) {
 | |
|     {
 | |
|       const size_t move_size = (n-r-1)*sizeof(btScalar);
 | |
|       btScalar *Adst = A + r;
 | |
|       for (int i=0; i<r; Adst+=nskip,++i) {
 | |
|         btScalar *Asrc = Adst + 1;
 | |
|         memmove (Adst,Asrc,move_size);
 | |
|       }
 | |
|     }
 | |
|     {
 | |
|       const size_t cpy_size = r*sizeof(btScalar);
 | |
|       btScalar *Adst = A + r * nskip;
 | |
|       for (int i=r; i<(n-1); ++i) {
 | |
|         btScalar *Asrc = Adst + nskip;
 | |
|         memcpy (Adst,Asrc,cpy_size);
 | |
|         Adst = Asrc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   {
 | |
|     const size_t cpy_size = (n-r-1)*sizeof(btScalar);
 | |
|     btScalar *Adst = A + r * (nskip + 1);
 | |
|     for (int i=r; i<(n-1); ++i) {
 | |
|       btScalar *Asrc = Adst + (nskip + 1);
 | |
|       memcpy (Adst,Asrc,cpy_size);
 | |
|       Adst = Asrc - 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
 | |
| {
 | |
|   btAssert (L && d && a && n > 0 && nskip >= n);
 | |
| 
 | |
|   if (n < 2) return;
 | |
|   scratch.resize(2*nskip);
 | |
|   btScalar *W1 = &scratch[0];
 | |
|   
 | |
|   btScalar *W2 = W1 + nskip;
 | |
| 
 | |
|   W1[0] = btScalar(0.0);
 | |
|   W2[0] = btScalar(0.0);
 | |
|   for (int j=1; j<n; ++j) {
 | |
|     W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
 | |
|   }
 | |
|   btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
 | |
|   btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
 | |
| 
 | |
|   btScalar alpha1 = btScalar(1.0);
 | |
|   btScalar alpha2 = btScalar(1.0);
 | |
| 
 | |
|   {
 | |
|     btScalar dee = d[0];
 | |
|     btScalar alphanew = alpha1 + (W11*W11)*dee;
 | |
|     btAssert(alphanew != btScalar(0.0));
 | |
|     dee /= alphanew;
 | |
|     btScalar gamma1 = W11 * dee;
 | |
|     dee *= alpha1;
 | |
|     alpha1 = alphanew;
 | |
|     alphanew = alpha2 - (W21*W21)*dee;
 | |
|     dee /= alphanew;
 | |
|     //btScalar gamma2 = W21 * dee;
 | |
|     alpha2 = alphanew;
 | |
|     btScalar k1 = btScalar(1.0) - W21*gamma1;
 | |
|     btScalar k2 = W21*gamma1*W11 - W21;
 | |
|     btScalar *ll = L + nskip;
 | |
|     for (int p=1; p<n; ll+=nskip, ++p) {
 | |
|       btScalar Wp = W1[p];
 | |
|       btScalar ell = *ll;
 | |
|       W1[p] =    Wp - W11*ell;
 | |
|       W2[p] = k1*Wp +  k2*ell;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   btScalar *ll = L + (nskip + 1);
 | |
|   for (int j=1; j<n; ll+=nskip+1, ++j) {
 | |
|     btScalar k1 = W1[j];
 | |
|     btScalar k2 = W2[j];
 | |
| 
 | |
|     btScalar dee = d[j];
 | |
|     btScalar alphanew = alpha1 + (k1*k1)*dee;
 | |
|     btAssert(alphanew != btScalar(0.0));
 | |
|     dee /= alphanew;
 | |
|     btScalar gamma1 = k1 * dee;
 | |
|     dee *= alpha1;
 | |
|     alpha1 = alphanew;
 | |
|     alphanew = alpha2 - (k2*k2)*dee;
 | |
|     dee /= alphanew;
 | |
|     btScalar gamma2 = k2 * dee;
 | |
|     dee *= alpha2;
 | |
|     d[j] = dee;
 | |
|     alpha2 = alphanew;
 | |
| 
 | |
|     btScalar *l = ll + nskip;
 | |
|     for (int p=j+1; p<n; l+=nskip, ++p) {
 | |
|       btScalar ell = *l;
 | |
|       btScalar Wp = W1[p] - k1 * ell;
 | |
|       ell += gamma1 * Wp;
 | |
|       W1[p] = Wp;
 | |
|       Wp = W2[p] - k2 * ell;
 | |
|       ell -= gamma2 * Wp;
 | |
|       W2[p] = Wp;
 | |
|       *l = ell;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define _BTGETA(i,j) (A[i][j])
 | |
| //#define _GETA(i,j) (A[(i)*nskip+(j)])
 | |
| #define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
 | |
| 
 | |
| inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
 | |
| {
 | |
|   return nskip * 2 * sizeof(btScalar);
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
 | |
|     int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
 | |
| {
 | |
|   btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
 | |
| 	   n1 >= n2 && nskip >= n1);
 | |
|   #ifdef BT_DEBUG
 | |
| 	for (int i=0; i<n2; ++i) 
 | |
| 		btAssert(p[i] >= 0 && p[i] < n1);
 | |
|   #endif
 | |
| 
 | |
|   if (r==n2-1) {
 | |
|     return;		// deleting last row/col is easy
 | |
|   }
 | |
|   else {
 | |
|     size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
 | |
|     btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
 | |
| 	scratch.resize(nskip * 2+n2);
 | |
|     btScalar *tmp = &scratch[0];
 | |
|     if (r==0) {
 | |
|       btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
 | |
|       const int p_0 = p[0];
 | |
|       for (int i=0; i<n2; ++i) {
 | |
|         a[i] = -BTGETA(p[i],p_0);
 | |
|       }
 | |
|       a[0] += btScalar(1.0);
 | |
|       btLDLTAddTL (L,d,a,n2,nskip,scratch);
 | |
|     }
 | |
|     else {
 | |
|       btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
 | |
|       {
 | |
|         btScalar *Lcurr = L + r*nskip;
 | |
|         for (int i=0; i<r; ++Lcurr, ++i) {
 | |
|           btAssert(d[i] != btScalar(0.0));
 | |
|           t[i] = *Lcurr / d[i];
 | |
|         }
 | |
|       }
 | |
|       btScalar *a = t + r;
 | |
|       {
 | |
|         btScalar *Lcurr = L + r*nskip;
 | |
|         const int *pp_r = p + r, p_r = *pp_r;
 | |
|         const int n2_minus_r = n2-r;
 | |
|         for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
 | |
|           a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
 | |
|         }
 | |
|       }
 | |
|       a[0] += btScalar(1.0);
 | |
|       btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // snip out row/column r from L and d
 | |
|   btRemoveRowCol (L,n2,nskip,r);
 | |
|   if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch)
 | |
| {
 | |
|   {
 | |
|     int *C = m_C;
 | |
|     // remove a row/column from the factorization, and adjust the
 | |
|     // indexes (black magic!)
 | |
|     int last_idx = -1;
 | |
|     const int nC = m_nC;
 | |
|     int j = 0;
 | |
|     for ( ; j<nC; ++j) {
 | |
|       if (C[j]==nC-1) {
 | |
|         last_idx = j;
 | |
|       }
 | |
|       if (C[j]==i) {
 | |
|         btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
 | |
|         int k;
 | |
|         if (last_idx == -1) {
 | |
|           for (k=j+1 ; k<nC; ++k) {
 | |
|             if (C[k]==nC-1) {
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|           btAssert (k < nC);
 | |
|         }
 | |
|         else {
 | |
|           k = last_idx;
 | |
|         }
 | |
|         C[k] = C[j];
 | |
|         if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     btAssert (j < nC);
 | |
| 
 | |
|     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1);
 | |
| 
 | |
|     m_nN++;
 | |
|     m_nC = nC - 1; // nC value is outdated after this line
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q)
 | |
| {
 | |
|   // we could try to make this matrix-vector multiplication faster using
 | |
|   // outer product matrix tricks, e.g. with the dMultidotX() functions.
 | |
|   // but i tried it and it actually made things slower on random 100x100
 | |
|   // problems because of the overhead involved. so we'll stick with the
 | |
|   // simple method for now.
 | |
|   const int nC = m_nC;
 | |
|   btScalar *ptgt = p + nC;
 | |
|   const int nN = m_nN;
 | |
|   for (int i=0; i<nN; ++i) {
 | |
|     ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
 | |
| {
 | |
|   const int nC = m_nC;
 | |
|   btScalar *aptr = BTAROW(i) + nC;
 | |
|   btScalar *ptgt = p + nC;
 | |
|   if (sign > 0) {
 | |
|     const int nN = m_nN;
 | |
|     for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
 | |
|   }
 | |
|   else {
 | |
|     const int nN = m_nN;
 | |
|     for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q)
 | |
| {
 | |
|   const int nC = m_nC;
 | |
|   for (int i=0; i<nC; ++i) {
 | |
|     p[i] += s*q[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q)
 | |
| {
 | |
|   const int nC = m_nC;
 | |
|   btScalar *ptgt = p + nC, *qsrc = q + nC;
 | |
|   const int nN = m_nN;
 | |
|   for (int i=0; i<nN; ++i) {
 | |
|     ptgt[i] += s*qsrc[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
 | |
| {
 | |
|   // the `Dell' and `ell' that are computed here are saved. if index i is
 | |
|   // later added to the factorization then they can be reused.
 | |
|   //
 | |
|   // @@@ question: do we need to solve for entire delta_x??? yes, but
 | |
|   //     only if an x goes below 0 during the step.
 | |
| 
 | |
|   if (m_nC > 0) {
 | |
|     {
 | |
|       btScalar *Dell = m_Dell;
 | |
|       int *C = m_C;
 | |
|       btScalar *aptr = BTAROW(i);
 | |
| #   ifdef BTNUB_OPTIMIZATIONS
 | |
|       // if nub>0, initial part of aptr[] is guaranteed unpermuted
 | |
|       const int nub = m_nub;
 | |
|       int j=0;
 | |
|       for ( ; j<nub; ++j) Dell[j] = aptr[j];
 | |
|       const int nC = m_nC;
 | |
|       for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
 | |
| #   else
 | |
|       const int nC = m_nC;
 | |
|       for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
 | |
| #   endif
 | |
|     }
 | |
|     btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
 | |
|     {
 | |
|       btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
 | |
|       const int nC = m_nC;
 | |
|       for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
 | |
|     }
 | |
| 
 | |
|     if (!only_transfer) {
 | |
|       btScalar *tmp = m_tmp, *ell = m_ell;
 | |
|       {
 | |
|         const int nC = m_nC;
 | |
|         for (int j=0; j<nC; ++j) tmp[j] = ell[j];
 | |
|       }
 | |
|       btSolveL1T (m_L,tmp,m_nC,m_nskip);
 | |
|       if (dir > 0) {
 | |
|         int *C = m_C;
 | |
|         btScalar *tmp = m_tmp;
 | |
|         const int nC = m_nC;
 | |
|         for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
 | |
|       } else {
 | |
|         int *C = m_C;
 | |
|         btScalar *tmp = m_tmp;
 | |
|         const int nC = m_nC;
 | |
|         for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void btLCP::unpermute()
 | |
| {
 | |
|   // now we have to un-permute x and w
 | |
|   {
 | |
|     memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
 | |
|     btScalar *x = m_x, *tmp = m_tmp;
 | |
|     const int *p = m_p;
 | |
|     const int n = m_n;
 | |
|     for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
 | |
|   }
 | |
|   {
 | |
|     memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
 | |
|     btScalar *w = m_w, *tmp = m_tmp;
 | |
|     const int *p = m_p;
 | |
|     const int n = m_n;
 | |
|     for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif // btLCP_FAST
 | |
| 
 | |
| 
 | |
| //***************************************************************************
 | |
| // an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
 | |
| 
 | |
| bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b,
 | |
|                 btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
 | |
| {
 | |
| 	s_error = false;
 | |
| 
 | |
| //	printf("btSolveDantzigLCP n=%d\n",n);
 | |
|   btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
 | |
|   btAssert(outer_w);
 | |
| 
 | |
| #ifdef BT_DEBUG
 | |
|   {
 | |
|     // check restrictions on lo and hi
 | |
|     for (int k=0; k<n; ++k) 
 | |
| 		btAssert (lo[k] <= 0 && hi[k] >= 0);
 | |
|   }
 | |
| # endif
 | |
| 
 | |
| 
 | |
|   // if all the variables are unbounded then we can just factor, solve,
 | |
|   // and return
 | |
|   if (nub >= n) 
 | |
|   {
 | |
|    
 | |
| 
 | |
|     int nskip = (n);
 | |
|     btFactorLDLT (A, outer_w, n, nskip);
 | |
|     btSolveLDLT (A, outer_w, b, n, nskip);
 | |
|     memcpy (x, b, n*sizeof(btScalar));
 | |
| 
 | |
|     return !s_error;
 | |
|   }
 | |
| 
 | |
|   const int nskip = (n);
 | |
|   scratchMem.L.resize(n*nskip);
 | |
| 
 | |
|   scratchMem.d.resize(n);
 | |
| 
 | |
|   btScalar *w = outer_w;
 | |
|   scratchMem.delta_w.resize(n);
 | |
|   scratchMem.delta_x.resize(n);
 | |
|   scratchMem.Dell.resize(n);
 | |
|   scratchMem.ell.resize(n);
 | |
|   scratchMem.Arows.resize(n);
 | |
|   scratchMem.p.resize(n);
 | |
|   scratchMem.C.resize(n);
 | |
| 
 | |
|   // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
 | |
|   scratchMem.state.resize(n);
 | |
| 
 | |
| 
 | |
|   // create LCP object. note that tmp is set to delta_w to save space, this
 | |
|   // optimization relies on knowledge of how tmp is used, so be careful!
 | |
|   btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
 | |
|   int adj_nub = lcp.getNub();
 | |
| 
 | |
|   // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
 | |
|   // LCP conditions then i is added to the appropriate index set. otherwise
 | |
|   // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
 | |
|   // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
 | |
|   // while driving x(i) we maintain the LCP conditions on the other variables
 | |
|   // 0..i-1. we do this by watching out for other x(i),w(i) values going
 | |
|   // outside the valid region, and then switching them between index sets
 | |
|   // when that happens.
 | |
| 
 | |
|   bool hit_first_friction_index = false;
 | |
|   for (int i=adj_nub; i<n; ++i) 
 | |
|   {
 | |
|     s_error = false;
 | |
|     // the index i is the driving index and indexes i+1..n-1 are "dont care",
 | |
|     // i.e. when we make changes to the system those x's will be zero and we
 | |
|     // don't care what happens to those w's. in other words, we only consider
 | |
|     // an (i+1)*(i+1) sub-problem of A*x=b+w.
 | |
| 
 | |
|     // if we've hit the first friction index, we have to compute the lo and
 | |
|     // hi values based on the values of x already computed. we have been
 | |
|     // permuting the indexes, so the values stored in the findex vector are
 | |
|     // no longer valid. thus we have to temporarily unpermute the x vector. 
 | |
|     // for the purposes of this computation, 0*infinity = 0 ... so if the
 | |
|     // contact constraint's normal force is 0, there should be no tangential
 | |
|     // force applied.
 | |
| 
 | |
|     if (!hit_first_friction_index && findex && findex[i] >= 0) {
 | |
|       // un-permute x into delta_w, which is not being used at the moment
 | |
|       for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
 | |
| 
 | |
|       // set lo and hi values
 | |
|       for (int k=i; k<n; ++k) {
 | |
|         btScalar wfk = scratchMem.delta_w[findex[k]];
 | |
|         if (wfk == 0) {
 | |
|           hi[k] = 0;
 | |
|           lo[k] = 0;
 | |
|         }
 | |
|         else {
 | |
|           hi[k] = btFabs (hi[k] * wfk);
 | |
|           lo[k] = -hi[k];
 | |
|         }
 | |
|       }
 | |
|       hit_first_friction_index = true;
 | |
|     }
 | |
| 
 | |
|     // thus far we have not even been computing the w values for indexes
 | |
|     // greater than i, so compute w[i] now.
 | |
|     w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
 | |
| 
 | |
|     // if lo=hi=0 (which can happen for tangential friction when normals are
 | |
|     // 0) then the index will be assigned to set N with some state. however,
 | |
|     // set C's line has zero size, so the index will always remain in set N.
 | |
|     // with the "normal" switching logic, if w changed sign then the index
 | |
|     // would have to switch to set C and then back to set N with an inverted
 | |
|     // state. this is pointless, and also computationally expensive. to
 | |
|     // prevent this from happening, we use the rule that indexes with lo=hi=0
 | |
|     // will never be checked for set changes. this means that the state for
 | |
|     // these indexes may be incorrect, but that doesn't matter.
 | |
| 
 | |
|     // see if x(i),w(i) is in a valid region
 | |
|     if (lo[i]==0 && w[i] >= 0) {
 | |
|       lcp.transfer_i_to_N (i);
 | |
|       scratchMem.state[i] = false;
 | |
|     }
 | |
|     else if (hi[i]==0 && w[i] <= 0) {
 | |
|       lcp.transfer_i_to_N (i);
 | |
|       scratchMem.state[i] = true;
 | |
|     }
 | |
|     else if (w[i]==0) {
 | |
|       // this is a degenerate case. by the time we get to this test we know
 | |
|       // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
 | |
|       // and similarly that hi > 0. this means that the line segment
 | |
|       // corresponding to set C is at least finite in extent, and we are on it.
 | |
|       // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
 | |
|       lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
 | |
| 
 | |
|       lcp.transfer_i_to_C (i);
 | |
|     }
 | |
|     else {
 | |
|       // we must push x(i) and w(i)
 | |
|       for (;;) {
 | |
|         int dir;
 | |
|         btScalar dirf;
 | |
|         // find direction to push on x(i)
 | |
|         if (w[i] <= 0) {
 | |
|           dir = 1;
 | |
|           dirf = btScalar(1.0);
 | |
|         }
 | |
|         else {
 | |
|           dir = -1;
 | |
|           dirf = btScalar(-1.0);
 | |
|         }
 | |
| 
 | |
|         // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
 | |
|         lcp.solve1 (&scratchMem.delta_x[0],i,dir);
 | |
| 
 | |
|         // note that delta_x[i] = dirf, but we wont bother to set it
 | |
| 
 | |
|         // compute: delta_w = A*delta_x ... note we only care about
 | |
|         // delta_w(N) and delta_w(i), the rest is ignored
 | |
|         lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
 | |
|         lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
 | |
|         scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
 | |
| 
 | |
|         // find largest step we can take (size=s), either to drive x(i),w(i)
 | |
|         // to the valid LCP region or to drive an already-valid variable
 | |
|         // outside the valid region.
 | |
| 
 | |
|         int cmd = 1;		// index switching command
 | |
|         int si = 0;		// si = index to switch if cmd>3
 | |
|         btScalar s = -w[i]/scratchMem.delta_w[i];
 | |
|         if (dir > 0) {
 | |
|           if (hi[i] < BT_INFINITY) {
 | |
|             btScalar s2 = (hi[i]-x[i])*dirf;	// was (hi[i]-x[i])/dirf	// step to x(i)=hi(i)
 | |
|             if (s2 < s) {
 | |
|               s = s2;
 | |
|               cmd = 3;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           if (lo[i] > -BT_INFINITY) {
 | |
|             btScalar s2 = (lo[i]-x[i])*dirf;	// was (lo[i]-x[i])/dirf	// step to x(i)=lo(i)
 | |
|             if (s2 < s) {
 | |
|               s = s2;
 | |
|               cmd = 2;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|           const int numN = lcp.numN();
 | |
|           for (int k=0; k < numN; ++k) {
 | |
|             const int indexN_k = lcp.indexN(k);
 | |
|             if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
 | |
|                 // don't bother checking if lo=hi=0
 | |
|                 if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
 | |
|                 btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
 | |
|                 if (s2 < s) {
 | |
|                   s = s2;
 | |
|                   cmd = 4;
 | |
|                   si = indexN_k;
 | |
|                 }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|           const int numC = lcp.numC();
 | |
|           for (int k=adj_nub; k < numC; ++k) {
 | |
|             const int indexC_k = lcp.indexC(k);
 | |
|             if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
 | |
|               btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
 | |
|               if (s2 < s) {
 | |
|                 s = s2;
 | |
|                 cmd = 5;
 | |
|                 si = indexC_k;
 | |
|               }
 | |
|             }
 | |
|             if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
 | |
|               btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
 | |
|               if (s2 < s) {
 | |
|                 s = s2;
 | |
|                 cmd = 6;
 | |
|                 si = indexC_k;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
 | |
|         //			     "C->NL","C->NH"};
 | |
|         //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
 | |
| 
 | |
|         // if s <= 0 then we've got a problem. if we just keep going then
 | |
|         // we're going to get stuck in an infinite loop. instead, just cross
 | |
|         // our fingers and exit with the current solution.
 | |
|         if (s <= btScalar(0.0)) 
 | |
| 		{
 | |
| //          printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
 | |
|           if (i < n) {
 | |
|             btSetZero (x+i,n-i);
 | |
|             btSetZero (w+i,n-i);
 | |
|           }
 | |
|           s_error = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // apply x = x + s * delta_x
 | |
|         lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
 | |
|         x[i] += s * dirf;
 | |
| 
 | |
|         // apply w = w + s * delta_w
 | |
|         lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
 | |
|         w[i] += s * scratchMem.delta_w[i];
 | |
| 
 | |
| //        void *tmpbuf;
 | |
|         // switch indexes between sets if necessary
 | |
|         switch (cmd) {
 | |
|         case 1:		// done
 | |
|           w[i] = 0;
 | |
|           lcp.transfer_i_to_C (i);
 | |
|           break;
 | |
|         case 2:		// done
 | |
|           x[i] = lo[i];
 | |
|           scratchMem.state[i] = false;
 | |
|           lcp.transfer_i_to_N (i);
 | |
|           break;
 | |
|         case 3:		// done
 | |
|           x[i] = hi[i];
 | |
|           scratchMem.state[i] = true;
 | |
|           lcp.transfer_i_to_N (i);
 | |
|           break;
 | |
|         case 4:		// keep going
 | |
|           w[si] = 0;
 | |
|           lcp.transfer_i_from_N_to_C (si);
 | |
|           break;
 | |
|         case 5:		// keep going
 | |
|           x[si] = lo[si];
 | |
|           scratchMem.state[si] = false;
 | |
| 		  lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
 | |
|           break;
 | |
|         case 6:		// keep going
 | |
|           x[si] = hi[si];
 | |
|           scratchMem.state[si] = true;
 | |
|           lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (cmd <= 3) break;
 | |
|       } // for (;;)
 | |
|     } // else
 | |
| 
 | |
|     if (s_error) 
 | |
| 	{
 | |
|       break;
 | |
|     }
 | |
|   } // for (int i=adj_nub; i<n; ++i)
 | |
| 
 | |
|   lcp.unpermute();
 | |
| 
 | |
| 
 | |
|   return !s_error;
 | |
| }
 | |
| 
 |