422 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| * The b2CollidePolygons routines are Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| ///btBox2dBox2dCollisionAlgorithm, with modified b2CollidePolygons routines from the Box2D library.
 | |
| ///The modifications include: switching from b2Vec to btVector3, redefinition of b2Dot, b2Cross
 | |
| 
 | |
| #include "btBox2dBox2dCollisionAlgorithm.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | |
| #include "BulletCollision/CollisionShapes/btBoxShape.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| #include "BulletCollision/CollisionDispatch/btBoxBoxDetector.h"
 | |
| #include "BulletCollision/CollisionShapes/btBox2dShape.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | |
| 
 | |
| #define USE_PERSISTENT_CONTACTS 1
 | |
| 
 | |
| btBox2dBox2dCollisionAlgorithm::btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* obj0Wrap,const btCollisionObjectWrapper* obj1Wrap)
 | |
| : btActivatingCollisionAlgorithm(ci,obj0Wrap,obj1Wrap),
 | |
| m_ownManifold(false),
 | |
| m_manifoldPtr(mf)
 | |
| {
 | |
| 	if (!m_manifoldPtr && m_dispatcher->needsCollision(obj0Wrap->getCollisionObject(),obj1Wrap->getCollisionObject()))
 | |
| 	{
 | |
| 		m_manifoldPtr = m_dispatcher->getNewManifold(obj0Wrap->getCollisionObject(),obj1Wrap->getCollisionObject());
 | |
| 		m_ownManifold = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btBox2dBox2dCollisionAlgorithm::~btBox2dBox2dCollisionAlgorithm()
 | |
| {
 | |
| 	
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		if (m_manifoldPtr)
 | |
| 			m_dispatcher->releaseManifold(m_manifoldPtr);
 | |
| 	}
 | |
| 	
 | |
| }
 | |
| 
 | |
| 
 | |
| void b2CollidePolygons(btManifoldResult* manifold,  const btBox2dShape* polyA, const btTransform& xfA, const btBox2dShape* polyB, const btTransform& xfB);
 | |
| 
 | |
| //#include <stdio.h>
 | |
| void btBox2dBox2dCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 	if (!m_manifoldPtr)
 | |
| 		return;
 | |
| 
 | |
| 	
 | |
| 	const btBox2dShape* box0 = (const btBox2dShape*)body0Wrap->getCollisionShape();
 | |
| 	const btBox2dShape* box1 = (const btBox2dShape*)body1Wrap->getCollisionShape();
 | |
| 
 | |
| 	resultOut->setPersistentManifold(m_manifoldPtr);
 | |
| 
 | |
| 	b2CollidePolygons(resultOut,box0,body0Wrap->getWorldTransform(),box1,body1Wrap->getWorldTransform());
 | |
| 
 | |
| 	//  refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		resultOut->refreshContactPoints();
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| btScalar btBox2dBox2dCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* /*body0*/,btCollisionObject* /*body1*/,const btDispatcherInfo& /*dispatchInfo*/,btManifoldResult* /*resultOut*/)
 | |
| {
 | |
| 	//not yet
 | |
| 	return 1.f;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ClipVertex
 | |
| {
 | |
| 	btVector3 v;
 | |
| 	int id;
 | |
| 	//b2ContactID id;
 | |
| 	//b2ContactID id;
 | |
| };
 | |
| 
 | |
| #define b2Dot(a,b) (a).dot(b)
 | |
| #define b2Mul(a,b) (a)*(b)
 | |
| #define b2MulT(a,b) (a).transpose()*(b)
 | |
| #define b2Cross(a,b) (a).cross(b)
 | |
| #define btCrossS(a,s) btVector3(s * a.getY(), -s * a.getX(),0.f)
 | |
| 
 | |
| int b2_maxManifoldPoints =2;
 | |
| 
 | |
| static int ClipSegmentToLine(ClipVertex vOut[2], ClipVertex vIn[2],
 | |
| 					  const btVector3& normal, btScalar offset)
 | |
| {
 | |
| 	// Start with no output points
 | |
| 	int numOut = 0;
 | |
| 
 | |
| 	// Calculate the distance of end points to the line
 | |
| 	btScalar distance0 = b2Dot(normal, vIn[0].v) - offset;
 | |
| 	btScalar distance1 = b2Dot(normal, vIn[1].v) - offset;
 | |
| 
 | |
| 	// If the points are behind the plane
 | |
| 	if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
 | |
| 	if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
 | |
| 
 | |
| 	// If the points are on different sides of the plane
 | |
| 	if (distance0 * distance1 < 0.0f)
 | |
| 	{
 | |
| 		// Find intersection point of edge and plane
 | |
| 		btScalar interp = distance0 / (distance0 - distance1);
 | |
| 		vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
 | |
| 		if (distance0 > 0.0f)
 | |
| 		{
 | |
| 			vOut[numOut].id = vIn[0].id;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			vOut[numOut].id = vIn[1].id;
 | |
| 		}
 | |
| 		++numOut;
 | |
| 	}
 | |
| 
 | |
| 	return numOut;
 | |
| }
 | |
| 
 | |
| // Find the separation between poly1 and poly2 for a give edge normal on poly1.
 | |
| static btScalar EdgeSeparation(const btBox2dShape* poly1, const btTransform& xf1, int edge1,
 | |
| 							  const btBox2dShape* poly2, const btTransform& xf2)
 | |
| {
 | |
| 	const btVector3* vertices1 = poly1->getVertices();
 | |
| 	const btVector3* normals1 = poly1->getNormals();
 | |
| 
 | |
| 	int count2 = poly2->getVertexCount();
 | |
| 	const btVector3* vertices2 = poly2->getVertices();
 | |
| 
 | |
| 	btAssert(0 <= edge1 && edge1 < poly1->getVertexCount());
 | |
| 
 | |
| 	// Convert normal from poly1's frame into poly2's frame.
 | |
| 	btVector3 normal1World = b2Mul(xf1.getBasis(), normals1[edge1]);
 | |
| 	btVector3 normal1 = b2MulT(xf2.getBasis(), normal1World);
 | |
| 
 | |
| 	// Find support vertex on poly2 for -normal.
 | |
| 	int index = 0;
 | |
| 	btScalar minDot = BT_LARGE_FLOAT;
 | |
| 
 | |
|     if( count2 > 0 )
 | |
|         index = (int) normal1.minDot( vertices2, count2, minDot);
 | |
| 
 | |
| 	btVector3 v1 = b2Mul(xf1, vertices1[edge1]);
 | |
| 	btVector3 v2 = b2Mul(xf2, vertices2[index]);
 | |
| 	btScalar separation = b2Dot(v2 - v1, normal1World);
 | |
| 	return separation;
 | |
| }
 | |
| 
 | |
| // Find the max separation between poly1 and poly2 using edge normals from poly1.
 | |
| static btScalar FindMaxSeparation(int* edgeIndex,
 | |
| 								 const btBox2dShape* poly1, const btTransform& xf1,
 | |
| 								 const btBox2dShape* poly2, const btTransform& xf2)
 | |
| {
 | |
| 	int count1 = poly1->getVertexCount();
 | |
| 	const btVector3* normals1 = poly1->getNormals();
 | |
| 
 | |
| 	// Vector pointing from the centroid of poly1 to the centroid of poly2.
 | |
| 	btVector3 d = b2Mul(xf2, poly2->getCentroid()) - b2Mul(xf1, poly1->getCentroid());
 | |
| 	btVector3 dLocal1 = b2MulT(xf1.getBasis(), d);
 | |
| 
 | |
| 	// Find edge normal on poly1 that has the largest projection onto d.
 | |
| 	int edge = 0;
 | |
|     btScalar maxDot;
 | |
|     if( count1 > 0 )
 | |
|         edge = (int) dLocal1.maxDot( normals1, count1, maxDot);
 | |
| 
 | |
| 	// Get the separation for the edge normal.
 | |
| 	btScalar s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | |
| 	if (s > 0.0f)
 | |
| 	{
 | |
| 		return s;
 | |
| 	}
 | |
| 
 | |
| 	// Check the separation for the previous edge normal.
 | |
| 	int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
 | |
| 	btScalar sPrev = EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
 | |
| 	if (sPrev > 0.0f)
 | |
| 	{
 | |
| 		return sPrev;
 | |
| 	}
 | |
| 
 | |
| 	// Check the separation for the next edge normal.
 | |
| 	int nextEdge = edge + 1 < count1 ? edge + 1 : 0;
 | |
| 	btScalar sNext = EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
 | |
| 	if (sNext > 0.0f)
 | |
| 	{
 | |
| 		return sNext;
 | |
| 	}
 | |
| 
 | |
| 	// Find the best edge and the search direction.
 | |
| 	int bestEdge;
 | |
| 	btScalar bestSeparation;
 | |
| 	int increment;
 | |
| 	if (sPrev > s && sPrev > sNext)
 | |
| 	{
 | |
| 		increment = -1;
 | |
| 		bestEdge = prevEdge;
 | |
| 		bestSeparation = sPrev;
 | |
| 	}
 | |
| 	else if (sNext > s)
 | |
| 	{
 | |
| 		increment = 1;
 | |
| 		bestEdge = nextEdge;
 | |
| 		bestSeparation = sNext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		*edgeIndex = edge;
 | |
| 		return s;
 | |
| 	}
 | |
| 
 | |
| 	// Perform a local search for the best edge normal.
 | |
| 	for ( ; ; )
 | |
| 	{
 | |
| 		if (increment == -1)
 | |
| 			edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
 | |
| 		else
 | |
| 			edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
 | |
| 
 | |
| 		s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | |
| 		if (s > 0.0f)
 | |
| 		{
 | |
| 			return s;
 | |
| 		}
 | |
| 
 | |
| 		if (s > bestSeparation)
 | |
| 		{
 | |
| 			bestEdge = edge;
 | |
| 			bestSeparation = s;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*edgeIndex = bestEdge;
 | |
| 	return bestSeparation;
 | |
| }
 | |
| 
 | |
| static void FindIncidentEdge(ClipVertex c[2],
 | |
| 							 const btBox2dShape* poly1, const btTransform& xf1, int edge1,
 | |
| 							 const btBox2dShape* poly2, const btTransform& xf2)
 | |
| {
 | |
| 	const btVector3* normals1 = poly1->getNormals();
 | |
| 
 | |
| 	int count2 = poly2->getVertexCount();
 | |
| 	const btVector3* vertices2 = poly2->getVertices();
 | |
| 	const btVector3* normals2 = poly2->getNormals();
 | |
| 
 | |
| 	btAssert(0 <= edge1 && edge1 < poly1->getVertexCount());
 | |
| 
 | |
| 	// Get the normal of the reference edge in poly2's frame.
 | |
| 	btVector3 normal1 = b2MulT(xf2.getBasis(), b2Mul(xf1.getBasis(), normals1[edge1]));
 | |
| 
 | |
| 	// Find the incident edge on poly2.
 | |
| 	int index = 0;
 | |
| 	btScalar minDot = BT_LARGE_FLOAT;
 | |
| 	for (int i = 0; i < count2; ++i)
 | |
| 	{
 | |
| 		btScalar dot = b2Dot(normal1, normals2[i]);
 | |
| 		if (dot < minDot)
 | |
| 		{
 | |
| 			minDot = dot;
 | |
| 			index = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build the clip vertices for the incident edge.
 | |
| 	int i1 = index;
 | |
| 	int i2 = i1 + 1 < count2 ? i1 + 1 : 0;
 | |
| 
 | |
| 	c[0].v = b2Mul(xf2, vertices2[i1]);
 | |
| //	c[0].id.features.referenceEdge = (unsigned char)edge1;
 | |
| //	c[0].id.features.incidentEdge = (unsigned char)i1;
 | |
| //	c[0].id.features.incidentVertex = 0;
 | |
| 
 | |
| 	c[1].v = b2Mul(xf2, vertices2[i2]);
 | |
| //	c[1].id.features.referenceEdge = (unsigned char)edge1;
 | |
| //	c[1].id.features.incidentEdge = (unsigned char)i2;
 | |
| //	c[1].id.features.incidentVertex = 1;
 | |
| }
 | |
| 
 | |
| // Find edge normal of max separation on A - return if separating axis is found
 | |
| // Find edge normal of max separation on B - return if separation axis is found
 | |
| // Choose reference edge as min(minA, minB)
 | |
| // Find incident edge
 | |
| // Clip
 | |
| 
 | |
| // The normal points from 1 to 2
 | |
| void b2CollidePolygons(btManifoldResult* manifold,
 | |
| 					  const btBox2dShape* polyA, const btTransform& xfA,
 | |
| 					  const btBox2dShape* polyB, const btTransform& xfB)
 | |
| {
 | |
| 
 | |
| 	int edgeA = 0;
 | |
| 	btScalar separationA = FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
 | |
| 	if (separationA > 0.0f)
 | |
| 		return;
 | |
| 
 | |
| 	int edgeB = 0;
 | |
| 	btScalar separationB = FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
 | |
| 	if (separationB > 0.0f)
 | |
| 		return;
 | |
| 
 | |
| 	const btBox2dShape* poly1;	// reference poly
 | |
| 	const btBox2dShape* poly2;	// incident poly
 | |
| 	btTransform xf1, xf2;
 | |
| 	int edge1;		// reference edge
 | |
| 	unsigned char flip;
 | |
| 	const btScalar k_relativeTol = 0.98f;
 | |
| 	const btScalar k_absoluteTol = 0.001f;
 | |
| 
 | |
| 	// TODO_ERIN use "radius" of poly for absolute tolerance.
 | |
| 	if (separationB > k_relativeTol * separationA + k_absoluteTol)
 | |
| 	{
 | |
| 		poly1 = polyB;
 | |
| 		poly2 = polyA;
 | |
| 		xf1 = xfB;
 | |
| 		xf2 = xfA;
 | |
| 		edge1 = edgeB;
 | |
| 		flip = 1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		poly1 = polyA;
 | |
| 		poly2 = polyB;
 | |
| 		xf1 = xfA;
 | |
| 		xf2 = xfB;
 | |
| 		edge1 = edgeA;
 | |
| 		flip = 0;
 | |
| 	}
 | |
| 
 | |
| 	ClipVertex incidentEdge[2];
 | |
| 	FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
 | |
| 
 | |
| 	int count1 = poly1->getVertexCount();
 | |
| 	const btVector3* vertices1 = poly1->getVertices();
 | |
| 
 | |
| 	btVector3 v11 = vertices1[edge1];
 | |
| 	btVector3 v12 = edge1 + 1 < count1 ? vertices1[edge1+1] : vertices1[0];
 | |
| 
 | |
| 	//btVector3 dv = v12 - v11;
 | |
| 	btVector3 sideNormal = b2Mul(xf1.getBasis(), v12 - v11);
 | |
| 	sideNormal.normalize();
 | |
| 	btVector3 frontNormal = btCrossS(sideNormal, 1.0f);
 | |
| 	
 | |
| 	
 | |
| 	v11 = b2Mul(xf1, v11);
 | |
| 	v12 = b2Mul(xf1, v12);
 | |
| 
 | |
| 	btScalar frontOffset = b2Dot(frontNormal, v11);
 | |
| 	btScalar sideOffset1 = -b2Dot(sideNormal, v11);
 | |
| 	btScalar sideOffset2 = b2Dot(sideNormal, v12);
 | |
| 
 | |
| 	// Clip incident edge against extruded edge1 side edges.
 | |
| 	ClipVertex clipPoints1[2];
 | |
| 	clipPoints1[0].v.setValue(0,0,0);
 | |
| 	clipPoints1[1].v.setValue(0,0,0);
 | |
| 
 | |
| 	ClipVertex clipPoints2[2];
 | |
| 	clipPoints2[0].v.setValue(0,0,0);
 | |
| 	clipPoints2[1].v.setValue(0,0,0);
 | |
| 
 | |
| 
 | |
| 	int np;
 | |
| 
 | |
| 	// Clip to box side 1
 | |
| 	np = ClipSegmentToLine(clipPoints1, incidentEdge, -sideNormal, sideOffset1);
 | |
| 
 | |
| 	if (np < 2)
 | |
| 		return;
 | |
| 
 | |
| 	// Clip to negative box side 1
 | |
| 	np = ClipSegmentToLine(clipPoints2, clipPoints1,  sideNormal, sideOffset2);
 | |
| 
 | |
| 	if (np < 2)
 | |
| 	{
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Now clipPoints2 contains the clipped points.
 | |
| 	btVector3 manifoldNormal = flip ? -frontNormal : frontNormal;
 | |
| 
 | |
| 	int pointCount = 0;
 | |
| 	for (int i = 0; i < b2_maxManifoldPoints; ++i)
 | |
| 	{
 | |
| 		btScalar separation = b2Dot(frontNormal, clipPoints2[i].v) - frontOffset;
 | |
| 
 | |
| 		if (separation <= 0.0f)
 | |
| 		{
 | |
| 			
 | |
| 			//b2ManifoldPoint* cp = manifold->points + pointCount;
 | |
| 			//btScalar separation = separation;
 | |
| 			//cp->localPoint1 = b2MulT(xfA, clipPoints2[i].v);
 | |
| 			//cp->localPoint2 = b2MulT(xfB, clipPoints2[i].v);
 | |
| 
 | |
| 			manifold->addContactPoint(-manifoldNormal,clipPoints2[i].v,separation);
 | |
| 
 | |
| //			cp->id = clipPoints2[i].id;
 | |
| //			cp->id.features.flip = flip;
 | |
| 			++pointCount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| //	manifold->pointCount = pointCount;}
 | |
| }
 |