471 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| //#define DISABLE_BVH
 | |
| 
 | |
| #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
 | |
| #include "LinearMath/btSerializer.h"
 | |
| 
 | |
| ///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
 | |
| ///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
 | |
| btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh)
 | |
| :btTriangleMeshShape(meshInterface),
 | |
| m_bvh(0),
 | |
| m_triangleInfoMap(0),
 | |
| m_useQuantizedAabbCompression(useQuantizedAabbCompression),
 | |
| m_ownsBvh(false)
 | |
| {
 | |
| 	m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
 | |
| 	//construct bvh from meshInterface
 | |
| #ifndef DISABLE_BVH
 | |
| 
 | |
| 	if (buildBvh)
 | |
| 	{
 | |
| 		buildOptimizedBvh();
 | |
| 	}
 | |
| 
 | |
| #endif //DISABLE_BVH
 | |
| 
 | |
| }
 | |
| 
 | |
| btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh)
 | |
| :btTriangleMeshShape(meshInterface),
 | |
| m_bvh(0),
 | |
| m_triangleInfoMap(0),
 | |
| m_useQuantizedAabbCompression(useQuantizedAabbCompression),
 | |
| m_ownsBvh(false)
 | |
| {
 | |
| 	m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
 | |
| 	//construct bvh from meshInterface
 | |
| #ifndef DISABLE_BVH
 | |
| 
 | |
| 	if (buildBvh)
 | |
| 	{
 | |
| 		void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
 | |
| 		m_bvh = new (mem) btOptimizedBvh();
 | |
| 		
 | |
| 		m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
 | |
| 		m_ownsBvh = true;
 | |
| 	}
 | |
| 
 | |
| #endif //DISABLE_BVH
 | |
| 
 | |
| }
 | |
| 
 | |
| void	btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax)
 | |
| {
 | |
| 	m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax );
 | |
| 	
 | |
| 	m_localAabbMin.setMin(aabbMin);
 | |
| 	m_localAabbMax.setMax(aabbMax);
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax)
 | |
| {
 | |
| 	m_bvh->refit( m_meshInterface, aabbMin,aabbMax );
 | |
| 	
 | |
| 	recalcLocalAabb();
 | |
| }
 | |
| 
 | |
| btBvhTriangleMeshShape::~btBvhTriangleMeshShape()
 | |
| {
 | |
| 	if (m_ownsBvh)
 | |
| 	{
 | |
| 		m_bvh->~btOptimizedBvh();
 | |
| 		btAlignedFree(m_bvh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
 | |
| {
 | |
| 	struct	MyNodeOverlapCallback : public btNodeOverlapCallback
 | |
| 	{
 | |
| 		btStridingMeshInterface*	m_meshInterface;
 | |
| 		btTriangleCallback* m_callback;
 | |
| 
 | |
| 		MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
 | |
| 			:m_meshInterface(meshInterface),
 | |
| 			m_callback(callback)
 | |
| 		{
 | |
| 		}
 | |
| 				
 | |
| 		virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
 | |
| 		{
 | |
| 			btVector3 m_triangle[3];
 | |
| 			const unsigned char *vertexbase;
 | |
| 			int numverts;
 | |
| 			PHY_ScalarType type;
 | |
| 			int stride;
 | |
| 			const unsigned char *indexbase;
 | |
| 			int indexstride;
 | |
| 			int numfaces;
 | |
| 			PHY_ScalarType indicestype;
 | |
| 
 | |
| 			m_meshInterface->getLockedReadOnlyVertexIndexBase(
 | |
| 				&vertexbase,
 | |
| 				numverts,
 | |
| 				type,
 | |
| 				stride,
 | |
| 				&indexbase,
 | |
| 				indexstride,
 | |
| 				numfaces,
 | |
| 				indicestype,
 | |
| 				nodeSubPart);
 | |
| 
 | |
| 			unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
 | |
| 			btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
 | |
| 	
 | |
| 			const btVector3& meshScaling = m_meshInterface->getScaling();
 | |
| 			for (int j=2;j>=0;j--)
 | |
| 			{
 | |
| 				int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
 | |
| 				
 | |
| 				if (type == PHY_FLOAT)
 | |
| 				{
 | |
| 					float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
 | |
| 					
 | |
| 					m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());		
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
 | |
| 					
 | |
| 					m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());		
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Perform ray vs. triangle collision here */
 | |
| 			m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
 | |
| 			m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	MyNodeOverlapCallback	myNodeCallback(callback,m_meshInterface);
 | |
| 
 | |
| 	m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget);
 | |
| }
 | |
| 
 | |
| void	btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
 | |
| {
 | |
| 	struct	MyNodeOverlapCallback : public btNodeOverlapCallback
 | |
| 	{
 | |
| 		btStridingMeshInterface*	m_meshInterface;
 | |
| 		btTriangleCallback* m_callback;
 | |
| 
 | |
| 		MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
 | |
| 			:m_meshInterface(meshInterface),
 | |
| 			m_callback(callback)
 | |
| 		{
 | |
| 		}
 | |
| 				
 | |
| 		virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
 | |
| 		{
 | |
| 			btVector3 m_triangle[3];
 | |
| 			const unsigned char *vertexbase;
 | |
| 			int numverts;
 | |
| 			PHY_ScalarType type;
 | |
| 			int stride;
 | |
| 			const unsigned char *indexbase;
 | |
| 			int indexstride;
 | |
| 			int numfaces;
 | |
| 			PHY_ScalarType indicestype;
 | |
| 
 | |
| 			m_meshInterface->getLockedReadOnlyVertexIndexBase(
 | |
| 				&vertexbase,
 | |
| 				numverts,
 | |
| 				type,
 | |
| 				stride,
 | |
| 				&indexbase,
 | |
| 				indexstride,
 | |
| 				numfaces,
 | |
| 				indicestype,
 | |
| 				nodeSubPart);
 | |
| 
 | |
| 			unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
 | |
| 			btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
 | |
| 	
 | |
| 			const btVector3& meshScaling = m_meshInterface->getScaling();
 | |
| 			for (int j=2;j>=0;j--)
 | |
| 			{
 | |
| 				int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
 | |
| 
 | |
| 				if (type == PHY_FLOAT)
 | |
| 				{
 | |
| 					float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
 | |
| 
 | |
| 					m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());		
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
 | |
| 					
 | |
| 					m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());		
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Perform ray vs. triangle collision here */
 | |
| 			m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
 | |
| 			m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	MyNodeOverlapCallback	myNodeCallback(callback,m_meshInterface);
 | |
| 
 | |
| 	m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
 | |
| }
 | |
| 
 | |
| //perform bvh tree traversal and report overlapping triangles to 'callback'
 | |
| void	btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 
 | |
| #ifdef DISABLE_BVH
 | |
| 	//brute force traverse all triangles
 | |
| 	btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax);
 | |
| #else
 | |
| 
 | |
| 	//first get all the nodes
 | |
| 
 | |
| 	
 | |
| 	struct	MyNodeOverlapCallback : public btNodeOverlapCallback
 | |
| 	{
 | |
| 		btStridingMeshInterface*	m_meshInterface;
 | |
| 		btTriangleCallback*		m_callback;
 | |
| 		btVector3				m_triangle[3];
 | |
| 		int m_numOverlap;
 | |
| 
 | |
| 		MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
 | |
| 			:m_meshInterface(meshInterface),
 | |
| 			m_callback(callback),
 | |
| 			m_numOverlap(0)
 | |
| 		{
 | |
| 		}
 | |
| 				
 | |
| 		virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
 | |
| 		{
 | |
| 			m_numOverlap++;
 | |
| 			const unsigned char *vertexbase;
 | |
| 			int numverts;
 | |
| 			PHY_ScalarType type;
 | |
| 			int stride;
 | |
| 			const unsigned char *indexbase;
 | |
| 			int indexstride;
 | |
| 			int numfaces;
 | |
| 			PHY_ScalarType indicestype;
 | |
| 			
 | |
| 
 | |
| 			m_meshInterface->getLockedReadOnlyVertexIndexBase(
 | |
| 				&vertexbase,
 | |
| 				numverts,
 | |
| 				type,
 | |
| 				stride,
 | |
| 				&indexbase,
 | |
| 				indexstride,
 | |
| 				numfaces,
 | |
| 				indicestype,
 | |
| 				nodeSubPart);
 | |
| 
 | |
| 			unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
 | |
| 			btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT||indicestype==PHY_UCHAR);
 | |
| 	
 | |
| 			const btVector3& meshScaling = m_meshInterface->getScaling();
 | |
| 			for (int j=2;j>=0;j--)
 | |
| 			{
 | |
| 				
 | |
| 				int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:indicestype==PHY_INTEGER?gfxbase[j]:((unsigned char*)gfxbase)[j];
 | |
| 
 | |
| 
 | |
| #ifdef DEBUG_TRIANGLE_MESH
 | |
| 				printf("%d ,",graphicsindex);
 | |
| #endif //DEBUG_TRIANGLE_MESH
 | |
| 				if (type == PHY_FLOAT)
 | |
| 				{
 | |
| 					float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
 | |
| 					
 | |
| 					m_triangle[j] = btVector3(
 | |
| 																		graphicsbase[0]*meshScaling.getX(),
 | |
| 																		graphicsbase[1]*meshScaling.getY(),
 | |
| 																		graphicsbase[2]*meshScaling.getZ());
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
 | |
| 
 | |
| 					m_triangle[j] = btVector3(
 | |
| 						btScalar(graphicsbase[0])*meshScaling.getX(),
 | |
| 						btScalar(graphicsbase[1])*meshScaling.getY(),
 | |
| 						btScalar(graphicsbase[2])*meshScaling.getZ());
 | |
| 				}
 | |
| #ifdef DEBUG_TRIANGLE_MESH
 | |
| 				printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z());
 | |
| #endif //DEBUG_TRIANGLE_MESH
 | |
| 			}
 | |
| 
 | |
| 			m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
 | |
| 			m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
 | |
| 		}
 | |
| 
 | |
| 	};
 | |
| 
 | |
| 	MyNodeOverlapCallback	myNodeCallback(callback,m_meshInterface);
 | |
| 
 | |
| 	m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
 | |
| 	
 | |
| #endif//DISABLE_BVH
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| void   btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
 | |
| {
 | |
|    if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
 | |
|    {
 | |
|       btTriangleMeshShape::setLocalScaling(scaling);
 | |
| 	  buildOptimizedBvh();
 | |
|    }
 | |
| }
 | |
| 
 | |
| void   btBvhTriangleMeshShape::buildOptimizedBvh()
 | |
| {
 | |
| 	if (m_ownsBvh)
 | |
| 	{
 | |
| 		m_bvh->~btOptimizedBvh();
 | |
| 		btAlignedFree(m_bvh);
 | |
| 	}
 | |
| 	///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
 | |
| 	void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
 | |
| 	m_bvh = new(mem) btOptimizedBvh();
 | |
| 	//rebuild the bvh...
 | |
| 	m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
 | |
| 	m_ownsBvh = true;
 | |
| }
 | |
| 
 | |
| void   btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
 | |
| {
 | |
|    btAssert(!m_bvh);
 | |
|    btAssert(!m_ownsBvh);
 | |
| 
 | |
|    m_bvh = bvh;
 | |
|    m_ownsBvh = false;
 | |
|    // update the scaling without rebuilding the bvh
 | |
|    if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
 | |
|    {
 | |
|       btTriangleMeshShape::setLocalScaling(scaling);
 | |
|    }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| const char*	btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
 | |
| {
 | |
| 	btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*) dataBuffer;
 | |
| 
 | |
| 	btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer);
 | |
| 
 | |
| 	m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
 | |
| 
 | |
| 	trimeshData->m_collisionMargin = float(m_collisionMargin);
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	if (m_bvh && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_BVH))
 | |
| 	{
 | |
| 		void* chunk = serializer->findPointer(m_bvh);
 | |
| 		if (chunk)
 | |
| 		{
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| 			trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)chunk;
 | |
| 			trimeshData->m_quantizedFloatBvh = 0;
 | |
| #else
 | |
| 			trimeshData->m_quantizedFloatBvh  = (btQuantizedBvhData*)chunk;
 | |
| 			trimeshData->m_quantizedDoubleBvh= 0;
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 		} else
 | |
| 		{
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| 			trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
 | |
| 			trimeshData->m_quantizedFloatBvh = 0;
 | |
| #else
 | |
| 			trimeshData->m_quantizedFloatBvh  = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
 | |
| 			trimeshData->m_quantizedDoubleBvh= 0;
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 	
 | |
| 			int sz = m_bvh->calculateSerializeBufferSizeNew();
 | |
| 			btChunk* chunk = serializer->allocate(sz,1);
 | |
| 			const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
 | |
| 			serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,m_bvh);
 | |
| 		}
 | |
| 	} else
 | |
| 	{
 | |
| 		trimeshData->m_quantizedFloatBvh = 0;
 | |
| 		trimeshData->m_quantizedDoubleBvh = 0;
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	if (m_triangleInfoMap && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_TRIANGLEINFOMAP))
 | |
| 	{
 | |
| 		void* chunk = serializer->findPointer(m_triangleInfoMap);
 | |
| 		if (chunk)
 | |
| 		{
 | |
| 			trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)chunk;
 | |
| 		} else
 | |
| 		{
 | |
| 			trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)serializer->getUniquePointer(m_triangleInfoMap);
 | |
| 			int sz = m_triangleInfoMap->calculateSerializeBufferSize();
 | |
| 			btChunk* chunk = serializer->allocate(sz,1);
 | |
| 			const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
 | |
| 			serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,m_triangleInfoMap);
 | |
| 		}
 | |
| 	} else
 | |
| 	{
 | |
| 		trimeshData->m_triangleInfoMap = 0;
 | |
| 	}
 | |
| 
 | |
| 	// Fill padding with zeros to appease msan.
 | |
| 	memset(trimeshData->m_pad3, 0, sizeof(trimeshData->m_pad3));
 | |
| 
 | |
| 	return "btTriangleMeshShapeData";
 | |
| }
 | |
| 
 | |
| void	btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
 | |
| {
 | |
| 	if (m_bvh)
 | |
| 	{
 | |
| 		int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
 | |
| 		btChunk* chunk = serializer->allocate(len,1);
 | |
| 		const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
 | |
| 		serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,(void*)m_bvh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
 | |
| {
 | |
| 	if (m_triangleInfoMap)
 | |
| 	{
 | |
| 		int len = m_triangleInfoMap->calculateSerializeBufferSize();
 | |
| 		btChunk* chunk = serializer->allocate(len,1);
 | |
| 		const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
 | |
| 		serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,(void*)m_triangleInfoMap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |