547 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			547 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef GIM_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED
 | |
| #define GIM_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED
 | |
| 
 | |
| /*! \file gim_basic_geometry_operations.h
 | |
| *\author Francisco Leon Najera
 | |
| type independant geometry routines
 | |
| 
 | |
| */
 | |
| /*
 | |
| -----------------------------------------------------------------------------
 | |
| This source file is part of GIMPACT Library.
 | |
| 
 | |
| For the latest info, see http://gimpact.sourceforge.net/
 | |
| 
 | |
| Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
 | |
| email: projectileman@yahoo.com
 | |
| 
 | |
|  This library is free software; you can redistribute it and/or
 | |
|  modify it under the terms of EITHER:
 | |
|    (1) The GNU Lesser General Public License as published by the Free
 | |
|        Software Foundation; either version 2.1 of the License, or (at
 | |
|        your option) any later version. The text of the GNU Lesser
 | |
|        General Public License is included with this library in the
 | |
|        file GIMPACT-LICENSE-LGPL.TXT.
 | |
|    (2) The BSD-style license that is included with this library in
 | |
|        the file GIMPACT-LICENSE-BSD.TXT.
 | |
|    (3) The zlib/libpng license that is included with this library in
 | |
|        the file GIMPACT-LICENSE-ZLIB.TXT.
 | |
| 
 | |
|  This library is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 | |
|  GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
 | |
| 
 | |
| -----------------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "gim_linear_math.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef PLANEDIREPSILON
 | |
| #define PLANEDIREPSILON 0.0000001f
 | |
| #endif
 | |
| 
 | |
| #ifndef PARALELENORMALS
 | |
| #define PARALELENORMALS 0.000001f
 | |
| #endif
 | |
| 
 | |
| #define TRIANGLE_NORMAL(v1,v2,v3,n)\
 | |
| {\
 | |
| 	vec3f _dif1,_dif2;\
 | |
|     VEC_DIFF(_dif1,v2,v1);\
 | |
|     VEC_DIFF(_dif2,v3,v1);\
 | |
|     VEC_CROSS(n,_dif1,_dif2);\
 | |
|     VEC_NORMALIZE(n);\
 | |
| }\
 | |
| 
 | |
| #define TRIANGLE_NORMAL_FAST(v1,v2,v3,n){\
 | |
|     vec3f _dif1,_dif2; \
 | |
|     VEC_DIFF(_dif1,v2,v1); \
 | |
|     VEC_DIFF(_dif2,v3,v1); \
 | |
|     VEC_CROSS(n,_dif1,_dif2); \
 | |
| }\
 | |
| 
 | |
| /// plane is a vec4f
 | |
| #define TRIANGLE_PLANE(v1,v2,v3,plane) {\
 | |
|     TRIANGLE_NORMAL(v1,v2,v3,plane);\
 | |
|     plane[3] = VEC_DOT(v1,plane);\
 | |
| }\
 | |
| 
 | |
| /// plane is a vec4f
 | |
| #define TRIANGLE_PLANE_FAST(v1,v2,v3,plane) {\
 | |
|     TRIANGLE_NORMAL_FAST(v1,v2,v3,plane);\
 | |
|     plane[3] = VEC_DOT(v1,plane);\
 | |
| }\
 | |
| 
 | |
| /// Calc a plane from an edge an a normal. plane is a vec4f
 | |
| #define EDGE_PLANE(e1,e2,n,plane) {\
 | |
|     vec3f _dif; \
 | |
|     VEC_DIFF(_dif,e2,e1); \
 | |
|     VEC_CROSS(plane,_dif,n); \
 | |
|     VEC_NORMALIZE(plane); \
 | |
|     plane[3] = VEC_DOT(e1,plane);\
 | |
| }\
 | |
| 
 | |
| #define DISTANCE_PLANE_POINT(plane,point) (VEC_DOT(plane,point) - plane[3])
 | |
| 
 | |
| #define PROJECT_POINT_PLANE(point,plane,projected) {\
 | |
| 	GREAL _dis;\
 | |
| 	_dis = DISTANCE_PLANE_POINT(plane,point);\
 | |
| 	VEC_SCALE(projected,-_dis,plane);\
 | |
| 	VEC_SUM(projected,projected,point);	\
 | |
| }\
 | |
| 
 | |
| //! Verifies if a point is in the plane hull
 | |
| template<typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE bool POINT_IN_HULL(
 | |
| 	const CLASS_POINT& point,const CLASS_PLANE * planes,GUINT plane_count)
 | |
| {
 | |
| 	GREAL _dis;
 | |
| 	for (GUINT _i = 0;_i< plane_count;++_i)
 | |
| 	{
 | |
| 		_dis = DISTANCE_PLANE_POINT(planes[_i],point);
 | |
| 	    if(_dis>0.0f) return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| template<typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE void PLANE_CLIP_SEGMENT(
 | |
| 	const CLASS_POINT& s1,
 | |
| 	const CLASS_POINT &s2,const CLASS_PLANE &plane,CLASS_POINT &clipped)
 | |
| {
 | |
| 	GREAL _dis1,_dis2;
 | |
| 	_dis1 = DISTANCE_PLANE_POINT(plane,s1);
 | |
| 	VEC_DIFF(clipped,s2,s1);
 | |
| 	_dis2 = VEC_DOT(clipped,plane);
 | |
| 	VEC_SCALE(clipped,-_dis1/_dis2,clipped);
 | |
| 	VEC_SUM(clipped,clipped,s1);
 | |
| }
 | |
| 
 | |
| enum ePLANE_INTERSECTION_TYPE
 | |
| {
 | |
| 	G_BACK_PLANE = 0,
 | |
| 	G_COLLIDE_PLANE,
 | |
| 	G_FRONT_PLANE
 | |
| };
 | |
| 
 | |
| enum eLINE_PLANE_INTERSECTION_TYPE
 | |
| {
 | |
| 	G_FRONT_PLANE_S1 = 0,
 | |
| 	G_FRONT_PLANE_S2,
 | |
| 	G_BACK_PLANE_S1,
 | |
| 	G_BACK_PLANE_S2,
 | |
| 	G_COLLIDE_PLANE_S1,
 | |
| 	G_COLLIDE_PLANE_S2
 | |
| };
 | |
| 
 | |
| //! Confirms if the plane intersect the edge or nor
 | |
| /*!
 | |
| intersection type must have the following values
 | |
| <ul>
 | |
| <li> 0 : Segment in front of plane, s1 closest
 | |
| <li> 1 : Segment in front of plane, s2 closest
 | |
| <li> 2 : Segment in back of plane, s1 closest
 | |
| <li> 3 : Segment in back of plane, s2 closest
 | |
| <li> 4 : Segment collides plane, s1 in back
 | |
| <li> 5 : Segment collides plane, s2 in back
 | |
| </ul>
 | |
| */
 | |
| 
 | |
| template<typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE eLINE_PLANE_INTERSECTION_TYPE PLANE_CLIP_SEGMENT2(
 | |
| 	const CLASS_POINT& s1,
 | |
| 	const CLASS_POINT &s2,
 | |
| 	const CLASS_PLANE &plane,CLASS_POINT &clipped)
 | |
| {
 | |
| 	GREAL _dis1 = DISTANCE_PLANE_POINT(plane,s1);
 | |
| 	GREAL _dis2 = DISTANCE_PLANE_POINT(plane,s2);
 | |
| 	if(_dis1 >-G_EPSILON && _dis2 >-G_EPSILON)
 | |
| 	{
 | |
| 	    if(_dis1<_dis2) return G_FRONT_PLANE_S1;
 | |
| 	    return G_FRONT_PLANE_S2;
 | |
| 	}
 | |
| 	else if(_dis1 <G_EPSILON && _dis2 <G_EPSILON)
 | |
| 	{
 | |
| 	    if(_dis1>_dis2) return G_BACK_PLANE_S1;
 | |
| 	    return G_BACK_PLANE_S2;
 | |
| 	}
 | |
| 
 | |
| 	VEC_DIFF(clipped,s2,s1);
 | |
| 	_dis2 = VEC_DOT(clipped,plane);
 | |
| 	VEC_SCALE(clipped,-_dis1/_dis2,clipped);
 | |
| 	VEC_SUM(clipped,clipped,s1);
 | |
| 	if(_dis1<_dis2) return G_COLLIDE_PLANE_S1;
 | |
| 	return G_COLLIDE_PLANE_S2;
 | |
| }
 | |
| 
 | |
| //! Confirms if the plane intersect the edge or not
 | |
| /*!
 | |
| clipped1 and clipped2 are the vertices behind the plane.
 | |
| clipped1 is the closest
 | |
| 
 | |
| intersection_type must have the following values
 | |
| <ul>
 | |
| <li> 0 : Segment in front of plane, s1 closest
 | |
| <li> 1 : Segment in front of plane, s2 closest
 | |
| <li> 2 : Segment in back of plane, s1 closest
 | |
| <li> 3 : Segment in back of plane, s2 closest
 | |
| <li> 4 : Segment collides plane, s1 in back
 | |
| <li> 5 : Segment collides plane, s2 in back
 | |
| </ul>
 | |
| */
 | |
| template<typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE eLINE_PLANE_INTERSECTION_TYPE PLANE_CLIP_SEGMENT_CLOSEST(
 | |
| 	const CLASS_POINT& s1,
 | |
| 	const CLASS_POINT &s2,
 | |
| 	const CLASS_PLANE &plane,
 | |
| 	CLASS_POINT &clipped1,CLASS_POINT &clipped2)
 | |
| {
 | |
| 	eLINE_PLANE_INTERSECTION_TYPE intersection_type = PLANE_CLIP_SEGMENT2(s1,s2,plane,clipped1);
 | |
| 	switch(intersection_type)
 | |
| 	{
 | |
| 	case G_FRONT_PLANE_S1:
 | |
| 		VEC_COPY(clipped1,s1);
 | |
| 	    VEC_COPY(clipped2,s2);
 | |
| 		break;
 | |
| 	case G_FRONT_PLANE_S2:
 | |
| 		VEC_COPY(clipped1,s2);
 | |
| 	    VEC_COPY(clipped2,s1);
 | |
| 		break;
 | |
| 	case G_BACK_PLANE_S1:
 | |
| 		VEC_COPY(clipped1,s1);
 | |
| 	    VEC_COPY(clipped2,s2);
 | |
| 		break;
 | |
| 	case G_BACK_PLANE_S2:
 | |
| 		VEC_COPY(clipped1,s2);
 | |
| 	    VEC_COPY(clipped2,s1);
 | |
| 		break;
 | |
| 	case G_COLLIDE_PLANE_S1:
 | |
| 		VEC_COPY(clipped2,s1);
 | |
| 		break;
 | |
| 	case G_COLLIDE_PLANE_S2:
 | |
| 		VEC_COPY(clipped2,s2);
 | |
| 		break;
 | |
| 	}
 | |
| 	return intersection_type;
 | |
| }
 | |
| 
 | |
| 
 | |
| //! Finds the 2 smallest cartesian coordinates of a plane normal
 | |
| #define PLANE_MINOR_AXES(plane, i0, i1) VEC_MINOR_AXES(plane, i0, i1)
 | |
| 
 | |
| //! Ray plane collision in one way
 | |
| /*!
 | |
| Intersects plane in one way only. The ray must face the plane (normals must be in opossite directions).<br/>
 | |
| It uses the PLANEDIREPSILON constant.
 | |
| */
 | |
| template<typename T,typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE bool RAY_PLANE_COLLISION(
 | |
| 	const CLASS_PLANE & plane,
 | |
| 	const CLASS_POINT & vDir,
 | |
| 	const CLASS_POINT & vPoint,
 | |
| 	CLASS_POINT & pout,T &tparam)
 | |
| {
 | |
| 	GREAL _dis,_dotdir;
 | |
| 	_dotdir = VEC_DOT(plane,vDir);
 | |
| 	if(_dotdir<PLANEDIREPSILON)
 | |
| 	{
 | |
| 	    return false;
 | |
| 	}
 | |
| 	_dis = DISTANCE_PLANE_POINT(plane,vPoint);
 | |
| 	tparam = -_dis/_dotdir;
 | |
| 	VEC_SCALE(pout,tparam,vDir);
 | |
| 	VEC_SUM(pout,vPoint,pout);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| //! line collision
 | |
| /*!
 | |
| *\return
 | |
| 	-0  if the ray never intersects
 | |
| 	-1 if the ray collides in front
 | |
| 	-2 if the ray collides in back
 | |
| */
 | |
| template<typename T,typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE GUINT LINE_PLANE_COLLISION(
 | |
| 	const CLASS_PLANE & plane,
 | |
| 	const CLASS_POINT & vDir,
 | |
| 	const CLASS_POINT & vPoint,
 | |
| 	CLASS_POINT & pout,
 | |
| 	T &tparam,
 | |
| 	T tmin, T tmax)
 | |
| {
 | |
| 	GREAL _dis,_dotdir;
 | |
| 	_dotdir = VEC_DOT(plane,vDir);
 | |
| 	if(btFabs(_dotdir)<PLANEDIREPSILON)
 | |
| 	{
 | |
| 		tparam = tmax;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	_dis = DISTANCE_PLANE_POINT(plane,vPoint);
 | |
| 	char returnvalue = _dis<0.0f?2:1;
 | |
| 	tparam = -_dis/_dotdir;
 | |
| 
 | |
| 	if(tparam<tmin)
 | |
| 	{
 | |
| 		returnvalue = 0;
 | |
| 		tparam = tmin;
 | |
| 	}
 | |
| 	else if(tparam>tmax)
 | |
| 	{
 | |
| 		returnvalue = 0;
 | |
| 		tparam = tmax;
 | |
| 	}
 | |
| 
 | |
| 	VEC_SCALE(pout,tparam,vDir);
 | |
| 	VEC_SUM(pout,vPoint,pout);
 | |
| 	return returnvalue;
 | |
| }
 | |
| 
 | |
| /*! \brief Returns the Ray on which 2 planes intersect if they do.
 | |
|     Written by Rodrigo Hernandez on ODE convex collision
 | |
| 
 | |
|   \param p1 Plane 1
 | |
|   \param p2 Plane 2
 | |
|   \param p Contains the origin of the ray upon returning if planes intersect
 | |
|   \param d Contains the direction of the ray upon returning if planes intersect
 | |
|   \return true if the planes intersect, 0 if paralell.
 | |
| 
 | |
| */
 | |
| template<typename CLASS_POINT,typename CLASS_PLANE>
 | |
| SIMD_FORCE_INLINE bool INTERSECT_PLANES(
 | |
| 		const CLASS_PLANE &p1,
 | |
| 		const CLASS_PLANE &p2,
 | |
| 		CLASS_POINT &p,
 | |
| 		CLASS_POINT &d)
 | |
| {
 | |
| 	VEC_CROSS(d,p1,p2);
 | |
|   	GREAL denom = VEC_DOT(d, d);
 | |
|   	if(GIM_IS_ZERO(denom)) return false;
 | |
| 	vec3f _n;
 | |
| 	_n[0]=p1[3]*p2[0] - p2[3]*p1[0];
 | |
| 	_n[1]=p1[3]*p2[1] - p2[3]*p1[1];
 | |
| 	_n[2]=p1[3]*p2[2] - p2[3]*p1[2];
 | |
| 	VEC_CROSS(p,_n,d);
 | |
| 	p[0]/=denom;
 | |
| 	p[1]/=denom;
 | |
| 	p[2]/=denom;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| //***************** SEGMENT and LINE FUNCTIONS **********************************///
 | |
| 
 | |
| /*! Finds the closest point(cp) to (v) on a segment (e1,e2)
 | |
|  */
 | |
| template<typename CLASS_POINT>
 | |
| SIMD_FORCE_INLINE void CLOSEST_POINT_ON_SEGMENT(
 | |
| 	CLASS_POINT & cp, const CLASS_POINT & v,
 | |
| 	const CLASS_POINT &e1,const CLASS_POINT &e2)
 | |
| {
 | |
|     vec3f _n;
 | |
|     VEC_DIFF(_n,e2,e1);
 | |
|     VEC_DIFF(cp,v,e1);
 | |
| 	GREAL _scalar = VEC_DOT(cp, _n);
 | |
| 	_scalar/= VEC_DOT(_n, _n);
 | |
| 	if(_scalar <0.0f)
 | |
| 	{
 | |
| 	    VEC_COPY(cp,e1);
 | |
| 	}
 | |
| 	else if(_scalar >1.0f)
 | |
| 	{
 | |
| 	    VEC_COPY(cp,e2);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
|         VEC_SCALE(cp,_scalar,_n);
 | |
|         VEC_SUM(cp,cp,e1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! \brief Finds the line params where these lines intersect.
 | |
| 
 | |
| \param dir1 Direction of line 1
 | |
| \param point1 Point of line 1
 | |
| \param dir2 Direction of line 2
 | |
| \param point2 Point of line 2
 | |
| \param t1 Result Parameter for line 1
 | |
| \param t2 Result Parameter for line 2
 | |
| \param dointersect  0  if the lines won't intersect, else 1
 | |
| 
 | |
| */
 | |
| template<typename T,typename CLASS_POINT>
 | |
| SIMD_FORCE_INLINE bool LINE_INTERSECTION_PARAMS(
 | |
| 	const CLASS_POINT & dir1,
 | |
| 	CLASS_POINT & point1,
 | |
| 	const CLASS_POINT & dir2,
 | |
| 	CLASS_POINT &  point2,
 | |
| 	T& t1,T& t2)
 | |
| {
 | |
|     GREAL det;
 | |
| 	GREAL e1e1 = VEC_DOT(dir1,dir1);
 | |
| 	GREAL e1e2 = VEC_DOT(dir1,dir2);
 | |
| 	GREAL e2e2 = VEC_DOT(dir2,dir2);
 | |
| 	vec3f p1p2;
 | |
|     VEC_DIFF(p1p2,point1,point2);
 | |
|     GREAL p1p2e1 = VEC_DOT(p1p2,dir1);
 | |
| 	GREAL p1p2e2 = VEC_DOT(p1p2,dir2);
 | |
| 	det = e1e2*e1e2 - e1e1*e2e2;
 | |
| 	if(GIM_IS_ZERO(det)) return false;
 | |
| 	t1 = (e1e2*p1p2e2 - e2e2*p1p2e1)/det;
 | |
| 	t2 = (e1e1*p1p2e2 - e1e2*p1p2e1)/det;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| //! Find closest points on segments
 | |
| template<typename CLASS_POINT>
 | |
| SIMD_FORCE_INLINE void SEGMENT_COLLISION(
 | |
| 	const CLASS_POINT & vA1,
 | |
| 	const CLASS_POINT & vA2,
 | |
| 	const CLASS_POINT & vB1,
 | |
| 	const CLASS_POINT & vB2,
 | |
| 	CLASS_POINT & vPointA,
 | |
| 	CLASS_POINT & vPointB)
 | |
| {
 | |
|     CLASS_POINT _AD,_BD,n;
 | |
|     vec4f _M;//plane
 | |
|     VEC_DIFF(_AD,vA2,vA1);
 | |
|     VEC_DIFF(_BD,vB2,vB1);
 | |
|     VEC_CROSS(n,_AD,_BD);
 | |
|     GREAL _tp = VEC_DOT(n,n);
 | |
|     if(_tp<G_EPSILON)//ARE PARALELE
 | |
|     {
 | |
|     	//project B over A
 | |
|     	bool invert_b_order = false;
 | |
|     	_M[0] = VEC_DOT(vB1,_AD);
 | |
|     	_M[1] = VEC_DOT(vB2,_AD);
 | |
|     	if(_M[0]>_M[1])
 | |
|     	{
 | |
|     		invert_b_order  = true;
 | |
|     		GIM_SWAP_NUMBERS(_M[0],_M[1]);
 | |
|     	}
 | |
|     	_M[2] = VEC_DOT(vA1,_AD);
 | |
|     	_M[3] = VEC_DOT(vA2,_AD);
 | |
|     	//mid points
 | |
|     	n[0] = (_M[0]+_M[1])*0.5f;
 | |
|     	n[1] = (_M[2]+_M[3])*0.5f;
 | |
| 
 | |
|     	if(n[0]<n[1])
 | |
|     	{
 | |
|     		if(_M[1]<_M[2])
 | |
|     		{
 | |
|     			vPointB = invert_b_order?vB1:vB2;
 | |
|     			vPointA = vA1;
 | |
|     		}
 | |
|     		else if(_M[1]<_M[3])
 | |
|     		{
 | |
|     			vPointB = invert_b_order?vB1:vB2;
 | |
|     			CLOSEST_POINT_ON_SEGMENT(vPointA,vPointB,vA1,vA2);
 | |
|     		}
 | |
|     		else
 | |
|     		{
 | |
|     			vPointA = vA2;
 | |
|     			CLOSEST_POINT_ON_SEGMENT(vPointB,vPointA,vB1,vB2);
 | |
|     		}
 | |
|     	}
 | |
|     	else
 | |
|     	{
 | |
|     		if(_M[3]<_M[0])
 | |
|     		{
 | |
|     			vPointB = invert_b_order?vB2:vB1;
 | |
|     			vPointA = vA2;
 | |
|     		}
 | |
|     		else if(_M[3]<_M[1])
 | |
|     		{
 | |
|     			vPointA = vA2;
 | |
|     			CLOSEST_POINT_ON_SEGMENT(vPointB,vPointA,vB1,vB2);
 | |
|     		}
 | |
|     		else
 | |
|     		{
 | |
|     			vPointB = invert_b_order?vB1:vB2;
 | |
|     			CLOSEST_POINT_ON_SEGMENT(vPointA,vPointB,vA1,vA2);
 | |
|     		}
 | |
|     	}
 | |
|     	return;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     VEC_CROSS(_M,n,_BD);
 | |
|     _M[3] = VEC_DOT(_M,vB1);
 | |
| 
 | |
|     LINE_PLANE_COLLISION(_M,_AD,vA1,vPointA,_tp,btScalar(0), btScalar(1));
 | |
|     /*Closest point on segment*/
 | |
|     VEC_DIFF(vPointB,vPointA,vB1);
 | |
| 	_tp = VEC_DOT(vPointB, _BD);
 | |
| 	_tp/= VEC_DOT(_BD, _BD);
 | |
| 	_tp = GIM_CLAMP(_tp,0.0f,1.0f);
 | |
|     VEC_SCALE(vPointB,_tp,_BD);
 | |
|     VEC_SUM(vPointB,vPointB,vB1);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //! Line box intersection in one dimension
 | |
| /*!
 | |
| 
 | |
| *\param pos Position of the ray
 | |
| *\param dir Projection of the Direction of the ray
 | |
| *\param bmin Minimum bound of the box
 | |
| *\param bmax Maximum bound of the box
 | |
| *\param tfirst the minimum projection. Assign to 0 at first.
 | |
| *\param tlast the maximum projection. Assign to INFINITY at first.
 | |
| *\return true if there is an intersection.
 | |
| */
 | |
| template<typename T>
 | |
| SIMD_FORCE_INLINE bool BOX_AXIS_INTERSECT(T pos, T dir,T bmin, T bmax, T & tfirst, T & tlast)
 | |
| {
 | |
| 	if(GIM_IS_ZERO(dir))
 | |
| 	{
 | |
|         return !(pos < bmin || pos > bmax);
 | |
| 	}
 | |
| 	GREAL a0 = (bmin - pos) / dir;
 | |
| 	GREAL a1 = (bmax - pos) / dir;
 | |
| 	if(a0 > a1)   GIM_SWAP_NUMBERS(a0, a1);
 | |
| 	tfirst = GIM_MAX(a0, tfirst);
 | |
| 	tlast = GIM_MIN(a1, tlast);
 | |
| 	if (tlast < tfirst) return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //! Sorts 3 componets
 | |
| template<typename T>
 | |
| SIMD_FORCE_INLINE void SORT_3_INDICES(
 | |
| 		const T * values,
 | |
| 		GUINT * order_indices)
 | |
| {
 | |
| 	//get minimum
 | |
| 	order_indices[0] = values[0] < values[1] ? (values[0] < values[2] ? 0 : 2) : (values[1] < values[2] ? 1 : 2);
 | |
| 
 | |
| 	//get second and third
 | |
| 	GUINT i0 = (order_indices[0] + 1)%3;
 | |
| 	GUINT i1 = (i0 + 1)%3;
 | |
| 
 | |
| 	if(values[i0] < values[i1])
 | |
| 	{
 | |
| 		order_indices[1] = i0;
 | |
| 		order_indices[2] = i1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		order_indices[1] = i1;
 | |
| 		order_indices[2] = i0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif // GIM_VECTOR_H_INCLUDED
 |