243 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "btContinuousConvexCollision.h"
 | |
| #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | |
| 
 | |
| #include "btGjkPairDetector.h"
 | |
| #include "btPointCollector.h"
 | |
| #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape*	convexA,const btConvexShape*	convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
 | |
| :m_simplexSolver(simplexSolver),
 | |
| m_penetrationDepthSolver(penetrationDepthSolver),
 | |
| m_convexA(convexA),m_convexB1(convexB),m_planeShape(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| btContinuousConvexCollision::btContinuousConvexCollision( const btConvexShape*	convexA,const btStaticPlaneShape*	plane)
 | |
| :m_simplexSolver(0),
 | |
| m_penetrationDepthSolver(0),
 | |
| m_convexA(convexA),m_convexB1(0),m_planeShape(plane)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
 | |
| /// You don't want your game ever to lock-up.
 | |
| #define MAX_ITERATIONS 64
 | |
| 
 | |
| void btContinuousConvexCollision::computeClosestPoints( const btTransform& transA, const btTransform& transB,btPointCollector& pointCollector)
 | |
| {
 | |
| 	if (m_convexB1)
 | |
| 	{
 | |
| 		m_simplexSolver->reset();
 | |
| 		btGjkPairDetector gjk(m_convexA,m_convexB1,m_convexA->getShapeType(),m_convexB1->getShapeType(),m_convexA->getMargin(),m_convexB1->getMargin(),m_simplexSolver,m_penetrationDepthSolver);		
 | |
| 		btGjkPairDetector::ClosestPointInput input;
 | |
| 		input.m_transformA = transA;
 | |
| 		input.m_transformB = transB;
 | |
| 		gjk.getClosestPoints(input,pointCollector,0);
 | |
| 	} else
 | |
| 	{
 | |
| 		//convex versus plane
 | |
| 		const btConvexShape* convexShape = m_convexA;
 | |
| 		const btStaticPlaneShape* planeShape = m_planeShape;
 | |
| 		
 | |
| 		const btVector3& planeNormal = planeShape->getPlaneNormal();
 | |
| 		const btScalar& planeConstant = planeShape->getPlaneConstant();
 | |
| 		
 | |
| 		btTransform convexWorldTransform = transA;
 | |
| 		btTransform convexInPlaneTrans;
 | |
| 		convexInPlaneTrans= transB.inverse() * convexWorldTransform;
 | |
| 		btTransform planeInConvex;
 | |
| 		planeInConvex= convexWorldTransform.inverse() * transB;
 | |
| 		
 | |
| 		btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal);
 | |
| 
 | |
| 		btVector3 vtxInPlane = convexInPlaneTrans(vtx);
 | |
| 		btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
 | |
| 
 | |
| 		btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal;
 | |
| 		btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
 | |
| 		btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal;
 | |
| 
 | |
| 		pointCollector.addContactPoint(
 | |
| 			normalOnSurfaceB,
 | |
| 			vtxInPlaneWorld,
 | |
| 			distance);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool	btContinuousConvexCollision::calcTimeOfImpact(
 | |
| 				const btTransform& fromA,
 | |
| 				const btTransform& toA,
 | |
| 				const btTransform& fromB,
 | |
| 				const btTransform& toB,
 | |
| 				CastResult& result)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	/// compute linear and angular velocity for this interval, to interpolate
 | |
| 	btVector3 linVelA,angVelA,linVelB,angVelB;
 | |
| 	btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
 | |
| 	btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
 | |
| 
 | |
| 
 | |
| 	btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
 | |
| 	btScalar boundingRadiusB = m_convexB1?m_convexB1->getAngularMotionDisc():0.f;
 | |
| 
 | |
| 	btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
 | |
| 	btVector3 relLinVel = (linVelB-linVelA);
 | |
| 
 | |
| 	btScalar relLinVelocLength = (linVelB-linVelA).length();
 | |
| 	
 | |
| 	if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f)
 | |
| 		return false;
 | |
| 
 | |
| 
 | |
| 
 | |
| 	btScalar lambda = btScalar(0.);
 | |
| 	btVector3 v(1,0,0);
 | |
| 
 | |
| 	int maxIter = MAX_ITERATIONS;
 | |
| 
 | |
| 	btVector3 n;
 | |
| 	n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	bool hasResult = false;
 | |
| 	btVector3 c;
 | |
| 
 | |
| 	btScalar lastLambda = lambda;
 | |
| 	//btScalar epsilon = btScalar(0.001);
 | |
| 
 | |
| 	int numIter = 0;
 | |
| 	//first solution, using GJK
 | |
| 
 | |
| 
 | |
| 	btScalar radius = 0.001f;
 | |
| //	result.drawCoordSystem(sphereTr);
 | |
| 
 | |
| 	btPointCollector	pointCollector1;
 | |
| 
 | |
| 	{
 | |
| 	
 | |
| 		computeClosestPoints(fromA,fromB,pointCollector1);
 | |
| 
 | |
| 		hasResult = pointCollector1.m_hasResult;
 | |
| 		c = pointCollector1.m_pointInWorld;
 | |
| 	}
 | |
| 
 | |
| 	if (hasResult)
 | |
| 	{
 | |
| 		btScalar dist;
 | |
| 		dist = pointCollector1.m_distance + result.m_allowedPenetration;
 | |
| 		n = pointCollector1.m_normalOnBInWorld;
 | |
| 		btScalar projectedLinearVelocity = relLinVel.dot(n);
 | |
| 		if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
 | |
| 			return false;
 | |
| 
 | |
| 		//not close enough
 | |
| 		while (dist > radius)
 | |
| 		{
 | |
| 			if (result.m_debugDrawer)
 | |
| 			{
 | |
| 				result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1));
 | |
| 			}
 | |
| 			btScalar dLambda = btScalar(0.);
 | |
| 
 | |
| 			projectedLinearVelocity = relLinVel.dot(n);
 | |
| 
 | |
| 			
 | |
| 			//don't report time of impact for motion away from the contact normal (or causes minor penetration)
 | |
| 			if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
 | |
| 				return false;
 | |
| 			
 | |
| 			dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
 | |
| 
 | |
| 			
 | |
| 			
 | |
| 			lambda = lambda + dLambda;
 | |
| 
 | |
| 			if (lambda > btScalar(1.))
 | |
| 				return false;
 | |
| 
 | |
| 			if (lambda < btScalar(0.))
 | |
| 				return false;
 | |
| 
 | |
| 
 | |
| 			//todo: next check with relative epsilon
 | |
| 			if (lambda <= lastLambda)
 | |
| 			{
 | |
| 				return false;
 | |
| 				//n.setValue(0,0,0);
 | |
| 				break;
 | |
| 			}
 | |
| 			lastLambda = lambda;
 | |
| 
 | |
| 			
 | |
| 
 | |
| 			//interpolate to next lambda
 | |
| 			btTransform interpolatedTransA,interpolatedTransB,relativeTrans;
 | |
| 
 | |
| 			btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
 | |
| 			btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
 | |
| 			relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
 | |
| 
 | |
| 			if (result.m_debugDrawer)
 | |
| 			{
 | |
| 				result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0));
 | |
| 			}
 | |
| 
 | |
| 			result.DebugDraw( lambda );
 | |
| 
 | |
| 			btPointCollector	pointCollector;
 | |
| 			computeClosestPoints(interpolatedTransA,interpolatedTransB,pointCollector);
 | |
| 
 | |
| 			if (pointCollector.m_hasResult)
 | |
| 			{
 | |
| 				dist = pointCollector.m_distance+result.m_allowedPenetration;
 | |
| 				c = pointCollector.m_pointInWorld;		
 | |
| 				n = pointCollector.m_normalOnBInWorld;
 | |
| 			} else
 | |
| 			{
 | |
| 				result.reportFailure(-1, numIter);
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
| 			numIter++;
 | |
| 			if (numIter > maxIter)
 | |
| 			{
 | |
| 				result.reportFailure(-2, numIter);
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 	
 | |
| 		result.m_fraction = lambda;
 | |
| 		result.m_normal = n;
 | |
| 		result.m_hitPoint = c;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| 
 | |
| }
 | |
| 
 |