1974 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1974 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| //#define COMPUTE_IMPULSE_DENOM 1
 | |
| //#define BT_ADDITIONAL_DEBUG
 | |
| 
 | |
| //It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
 | |
| 
 | |
| #include "btSequentialImpulseConstraintSolver.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
 | |
| 
 | |
| #include "LinearMath/btIDebugDraw.h"
 | |
| #include "LinearMath/btCpuFeatureUtility.h"
 | |
| 
 | |
| //#include "btJacobianEntry.h"
 | |
| #include "LinearMath/btMinMax.h"
 | |
| #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
 | |
| #include <new>
 | |
| #include "LinearMath/btStackAlloc.h"
 | |
| #include "LinearMath/btQuickprof.h"
 | |
| //#include "btSolverBody.h"
 | |
| //#include "btSolverConstraint.h"
 | |
| #include "LinearMath/btAlignedObjectArray.h"
 | |
| #include <string.h> //for memset
 | |
| 
 | |
| int		gNumSplitImpulseRecoveries = 0;
 | |
| 
 | |
| #include "BulletDynamics/Dynamics/btRigidBody.h"
 | |
| 
 | |
| //#define VERBOSE_RESIDUAL_PRINTF 1
 | |
| ///This is the scalar reference implementation of solving a single constraint row, the innerloop of the Projected Gauss Seidel/Sequential Impulse constraint solver
 | |
| ///Below are optional SSE2 and SSE4/FMA3 versions. We assume most hardware has SSE2. For SSE4/FMA3 we perform a CPU feature check.
 | |
| static btSimdScalar gResolveSingleConstraintRowGeneric_scalar_reference(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| 	btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
 | |
| 	const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
 | |
| 	const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
 | |
| 
 | |
| 	//	const btScalar delta_rel_vel	=	deltaVel1Dotn-deltaVel2Dotn;
 | |
| 	deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
 | |
| 	deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
 | |
| 
 | |
| 	const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
 | |
| 	if (sum < c.m_lowerLimit)
 | |
| 	{
 | |
| 		deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
 | |
| 		c.m_appliedImpulse = c.m_lowerLimit;
 | |
| 	}
 | |
| 	else if (sum > c.m_upperLimit)
 | |
| 	{
 | |
| 		deltaImpulse = c.m_upperLimit - c.m_appliedImpulse;
 | |
| 		c.m_appliedImpulse = c.m_upperLimit;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		c.m_appliedImpulse = sum;
 | |
| 	}
 | |
| 
 | |
| 	body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
 | |
| 	body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
 | |
| 
 | |
| 	return deltaImpulse;
 | |
| }
 | |
| 
 | |
| 
 | |
| static btSimdScalar gResolveSingleConstraintRowLowerLimit_scalar_reference(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| 	btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
 | |
| 	const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
 | |
| 	const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
 | |
| 
 | |
| 	deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
 | |
| 	deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
 | |
| 	const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
 | |
| 	if (sum < c.m_lowerLimit)
 | |
| 	{
 | |
| 		deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
 | |
| 		c.m_appliedImpulse = c.m_lowerLimit;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		c.m_appliedImpulse = sum;
 | |
| 	}
 | |
| 	body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
 | |
| 	body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
 | |
| 
 | |
| 	return deltaImpulse;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef USE_SIMD
 | |
| #include <emmintrin.h>
 | |
| 
 | |
| 
 | |
| #define btVecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e))
 | |
| static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 )
 | |
| {
 | |
| 	__m128 result = _mm_mul_ps( vec0, vec1);
 | |
| 	return _mm_add_ps( btVecSplat( result, 0 ), _mm_add_ps( btVecSplat( result, 1 ), btVecSplat( result, 2 ) ) );
 | |
| }
 | |
| 
 | |
| #if defined (BT_ALLOW_SSE4)
 | |
| #include <intrin.h>
 | |
| 
 | |
| #define USE_FMA					1
 | |
| #define USE_FMA3_INSTEAD_FMA4	1
 | |
| #define USE_SSE4_DOT			1
 | |
| 
 | |
| #define SSE4_DP(a, b)			_mm_dp_ps(a, b, 0x7f)
 | |
| #define SSE4_DP_FP(a, b)		_mm_cvtss_f32(_mm_dp_ps(a, b, 0x7f))
 | |
| 
 | |
| #if USE_SSE4_DOT
 | |
| #define DOT_PRODUCT(a, b)		SSE4_DP(a, b)
 | |
| #else
 | |
| #define DOT_PRODUCT(a, b)		btSimdDot3(a, b)
 | |
| #endif
 | |
| 
 | |
| #if USE_FMA
 | |
| #if USE_FMA3_INSTEAD_FMA4
 | |
| // a*b + c
 | |
| #define FMADD(a, b, c)		_mm_fmadd_ps(a, b, c)
 | |
| // -(a*b) + c
 | |
| #define FMNADD(a, b, c)		_mm_fnmadd_ps(a, b, c)
 | |
| #else // USE_FMA3
 | |
| // a*b + c
 | |
| #define FMADD(a, b, c)		_mm_macc_ps(a, b, c)
 | |
| // -(a*b) + c
 | |
| #define FMNADD(a, b, c)		_mm_nmacc_ps(a, b, c)
 | |
| #endif
 | |
| #else // USE_FMA
 | |
| // c + a*b
 | |
| #define FMADD(a, b, c)		_mm_add_ps(c, _mm_mul_ps(a, b))
 | |
| // c - a*b
 | |
| #define FMNADD(a, b, c)		_mm_sub_ps(c, _mm_mul_ps(a, b))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| // Project Gauss Seidel or the equivalent Sequential Impulse
 | |
| static btSimdScalar gResolveSingleConstraintRowGeneric_sse2(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| 	__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
 | |
| 	__m128	lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
 | |
| 	__m128	upperLimit1 = _mm_set1_ps(c.m_upperLimit);
 | |
| 	btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
 | |
| 	__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	btSimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
 | |
| 	btSimdScalar resultLowerLess, resultUpperLess;
 | |
| 	resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
 | |
| 	resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
 | |
| 	__m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
 | |
| 	deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
 | |
| 	c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
 | |
| 	__m128 upperMinApplied = _mm_sub_ps(upperLimit1, cpAppliedImp);
 | |
| 	deltaImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied));
 | |
| 	c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1));
 | |
| 	__m128	linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128);
 | |
| 	__m128	linearComponentB = _mm_mul_ps((c.m_contactNormal2).mVec128, body2.internalGetInvMass().mVec128);
 | |
| 	__m128 impulseMagnitude = deltaImpulse;
 | |
| 	body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
 | |
| 	body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
 | |
| 	body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
 | |
| 	body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
 | |
| 	return deltaImpulse;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
 | |
| static btSimdScalar gResolveSingleConstraintRowGeneric_sse4_1_fma3(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| #if defined (BT_ALLOW_SSE4)
 | |
| 	__m128 tmp					= _mm_set_ps1(c.m_jacDiagABInv);
 | |
| 	__m128 deltaImpulse			= _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
 | |
| 	const __m128 lowerLimit		= _mm_set_ps1(c.m_lowerLimit);
 | |
| 	const __m128 upperLimit		= _mm_set_ps1(c.m_upperLimit);
 | |
| 	const __m128 deltaVel1Dotn	= _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	const __m128 deltaVel2Dotn	= _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	deltaImpulse				= FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
 | |
| 	deltaImpulse				= FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
 | |
| 	tmp							= _mm_add_ps(c.m_appliedImpulse, deltaImpulse); // sum
 | |
| 	const __m128 maskLower		= _mm_cmpgt_ps(tmp, lowerLimit);
 | |
| 	const __m128 maskUpper		= _mm_cmpgt_ps(upperLimit, tmp);
 | |
| 	deltaImpulse				= _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), _mm_blendv_ps(_mm_sub_ps(upperLimit, c.m_appliedImpulse), deltaImpulse, maskUpper), maskLower);
 | |
| 	c.m_appliedImpulse			= _mm_blendv_ps(lowerLimit, _mm_blendv_ps(upperLimit, tmp, maskUpper), maskLower);
 | |
| 	body1.internalGetDeltaLinearVelocity().mVec128	= FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128), deltaImpulse, body1.internalGetDeltaLinearVelocity().mVec128);
 | |
| 	body1.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, body1.internalGetDeltaAngularVelocity().mVec128);
 | |
| 	body2.internalGetDeltaLinearVelocity().mVec128	= FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128), deltaImpulse, body2.internalGetDeltaLinearVelocity().mVec128);
 | |
| 	body2.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, body2.internalGetDeltaAngularVelocity().mVec128);
 | |
| 	return deltaImpulse;
 | |
| #else
 | |
| 	return gResolveSingleConstraintRowGeneric_sse2(body1,body2,c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static btSimdScalar gResolveSingleConstraintRowLowerLimit_sse2(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| 	__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
 | |
| 	__m128	lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
 | |
| 	__m128	upperLimit1 = _mm_set1_ps(c.m_upperLimit);
 | |
| 	btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
 | |
| 	__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	btSimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
 | |
| 	btSimdScalar resultLowerLess, resultUpperLess;
 | |
| 	resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
 | |
| 	resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
 | |
| 	__m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
 | |
| 	deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
 | |
| 	c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
 | |
| 	__m128	linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128);
 | |
| 	__m128	linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128);
 | |
| 	__m128 impulseMagnitude = deltaImpulse;
 | |
| 	body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
 | |
| 	body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
 | |
| 	body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
 | |
| 	body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
 | |
| 	return deltaImpulse;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
 | |
| static btSimdScalar gResolveSingleConstraintRowLowerLimit_sse4_1_fma3(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
 | |
| {
 | |
| #ifdef BT_ALLOW_SSE4
 | |
| 	__m128 tmp					= _mm_set_ps1(c.m_jacDiagABInv);
 | |
| 	__m128 deltaImpulse			= _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
 | |
| 	const __m128 lowerLimit		= _mm_set_ps1(c.m_lowerLimit);
 | |
| 	const __m128 deltaVel1Dotn	= _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	const __m128 deltaVel2Dotn	= _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
 | |
| 	deltaImpulse				= FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
 | |
| 	deltaImpulse				= FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
 | |
| 	tmp							= _mm_add_ps(c.m_appliedImpulse, deltaImpulse);
 | |
| 	const __m128 mask			= _mm_cmpgt_ps(tmp, lowerLimit);
 | |
| 	deltaImpulse				= _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), deltaImpulse, mask);
 | |
| 	c.m_appliedImpulse			= _mm_blendv_ps(lowerLimit, tmp, mask);
 | |
| 	body1.internalGetDeltaLinearVelocity().mVec128	= FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128), deltaImpulse, body1.internalGetDeltaLinearVelocity().mVec128);
 | |
| 	body1.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, body1.internalGetDeltaAngularVelocity().mVec128);
 | |
| 	body2.internalGetDeltaLinearVelocity().mVec128	= FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128), deltaImpulse, body2.internalGetDeltaLinearVelocity().mVec128);
 | |
| 	body2.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, body2.internalGetDeltaAngularVelocity().mVec128);
 | |
| 	return deltaImpulse;
 | |
| #else
 | |
| 	return gResolveSingleConstraintRowLowerLimit_sse2(body1,body2,c);
 | |
| #endif //BT_ALLOW_SSE4
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif //USE_SIMD
 | |
| 
 | |
| 
 | |
| 
 | |
| btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
 | |
| {
 | |
| 	return m_resolveSingleConstraintRowGeneric(body1, body2, c);
 | |
| }
 | |
| 
 | |
| // Project Gauss Seidel or the equivalent Sequential Impulse
 | |
| btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
 | |
| {
 | |
| 	return m_resolveSingleConstraintRowGeneric(body1, body2, c);
 | |
| }
 | |
| 
 | |
| btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
 | |
| {
 | |
| 	return m_resolveSingleConstraintRowLowerLimit(body1, body2, c);
 | |
| }
 | |
| 
 | |
| 
 | |
| btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
 | |
| {
 | |
| 	return m_resolveSingleConstraintRowLowerLimit(body1, body2, c);
 | |
| }
 | |
| 
 | |
| 
 | |
| static btSimdScalar gResolveSplitPenetrationImpulse_scalar_reference(
 | |
|         btSolverBody& body1,
 | |
|         btSolverBody& body2,
 | |
|         const btSolverConstraint& c)
 | |
| {
 | |
| 	btScalar deltaImpulse = 0.f;
 | |
| 
 | |
| 		if (c.m_rhsPenetration)
 | |
|         {
 | |
| 			gNumSplitImpulseRecoveries++;
 | |
| 			deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
 | |
| 			const btScalar deltaVel1Dotn	=	c.m_contactNormal1.dot(body1.internalGetPushVelocity()) 	+ c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
 | |
| 			const btScalar deltaVel2Dotn	=	c.m_contactNormal2.dot(body2.internalGetPushVelocity())		+ c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
 | |
| 
 | |
| 			deltaImpulse	-=	deltaVel1Dotn*c.m_jacDiagABInv;
 | |
| 			deltaImpulse	-=	deltaVel2Dotn*c.m_jacDiagABInv;
 | |
| 			const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse;
 | |
| 			if (sum < c.m_lowerLimit)
 | |
| 			{
 | |
| 				deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse;
 | |
| 				c.m_appliedPushImpulse = c.m_lowerLimit;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				c.m_appliedPushImpulse = sum;
 | |
| 			}
 | |
| 			body1.internalApplyPushImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
 | |
| 			body2.internalApplyPushImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
 | |
|         }
 | |
| 		return deltaImpulse;
 | |
| }
 | |
| 
 | |
| static btSimdScalar gResolveSplitPenetrationImpulse_sse2(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
 | |
| {
 | |
| #ifdef USE_SIMD
 | |
| 	if (!c.m_rhsPenetration)
 | |
| 		return 0.f;
 | |
| 
 | |
| 	gNumSplitImpulseRecoveries++;
 | |
| 
 | |
| 	__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse);
 | |
| 	__m128	lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
 | |
| 	__m128	upperLimit1 = _mm_set1_ps(c.m_upperLimit);
 | |
| 	__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
 | |
| 	__m128 deltaVel1Dotn	=	_mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,body1.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
 | |
| 	__m128 deltaVel2Dotn	=	_mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,body2.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128));
 | |
| 	deltaImpulse	=	_mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	deltaImpulse	=	_mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
 | |
| 	btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
 | |
| 	btSimdScalar resultLowerLess,resultUpperLess;
 | |
| 	resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
 | |
| 	resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
 | |
| 	__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
 | |
| 	deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
 | |
| 	c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
 | |
| 	__m128	linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,body1.internalGetInvMass().mVec128);
 | |
| 	__m128	linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128,body2.internalGetInvMass().mVec128);
 | |
| 	__m128 impulseMagnitude = deltaImpulse;
 | |
| 	body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
 | |
| 	body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
 | |
| 	body2.internalGetPushVelocity().mVec128 = _mm_add_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
 | |
| 	body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
 | |
| 	return deltaImpulse;
 | |
| #else
 | |
| 	return gResolveSplitPenetrationImpulse_scalar_reference(body1,body2,c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver()
 | |
| {
 | |
|     m_btSeed2 = 0;
 | |
|     m_cachedSolverMode = 0;
 | |
|     setupSolverFunctions( false );
 | |
| }
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::setupSolverFunctions( bool useSimd )
 | |
| {
 | |
|     m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_scalar_reference;
 | |
|     m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_scalar_reference;
 | |
|     m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_scalar_reference;
 | |
| 
 | |
|     if ( useSimd )
 | |
|     {
 | |
| #ifdef USE_SIMD
 | |
|         m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse2;
 | |
|         m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse2;
 | |
|         m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_sse2;
 | |
| 
 | |
| #ifdef BT_ALLOW_SSE4
 | |
|         int cpuFeatures = btCpuFeatureUtility::getCpuFeatures();
 | |
|         if ((cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_FMA3) && (cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_SSE4_1))
 | |
|         {
 | |
|             m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse4_1_fma3;
 | |
|             m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
 | |
|         }
 | |
| #endif//BT_ALLOW_SSE4
 | |
| #endif //USE_SIMD
 | |
|     }
 | |
| }
 | |
| 
 | |
|  btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver()
 | |
|  {
 | |
|  }
 | |
| 
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverGeneric()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowGeneric_scalar_reference;
 | |
|  }
 | |
| 
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverLowerLimit()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowLowerLimit_scalar_reference;
 | |
|  }
 | |
| 
 | |
| 
 | |
| #ifdef USE_SIMD
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverGeneric()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowGeneric_sse2;
 | |
|  }
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverLowerLimit()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowLowerLimit_sse2;
 | |
|  }
 | |
| #ifdef BT_ALLOW_SSE4
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverGeneric()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowGeneric_sse4_1_fma3;
 | |
|  }
 | |
|  btSingleConstraintRowSolver	btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverLowerLimit()
 | |
|  {
 | |
| 	 return gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
 | |
|  }
 | |
| #endif //BT_ALLOW_SSE4
 | |
| #endif //USE_SIMD
 | |
| 
 | |
| unsigned long btSequentialImpulseConstraintSolver::btRand2()
 | |
| {
 | |
| 	m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff;
 | |
| 	return m_btSeed2;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //See ODE: adam's all-int straightforward(?) dRandInt (0..n-1)
 | |
| int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
 | |
| {
 | |
| 	// seems good; xor-fold and modulus
 | |
| 	const unsigned long un = static_cast<unsigned long>(n);
 | |
| 	unsigned long r = btRand2();
 | |
| 
 | |
| 	// note: probably more aggressive than it needs to be -- might be
 | |
| 	//       able to get away without one or two of the innermost branches.
 | |
| 	if (un <= 0x00010000UL) {
 | |
| 		r ^= (r >> 16);
 | |
| 		if (un <= 0x00000100UL) {
 | |
| 			r ^= (r >> 8);
 | |
| 			if (un <= 0x00000010UL) {
 | |
| 				r ^= (r >> 4);
 | |
| 				if (un <= 0x00000004UL) {
 | |
| 					r ^= (r >> 2);
 | |
| 					if (un <= 0x00000002UL) {
 | |
| 						r ^= (r >> 1);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (int) (r % un);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep)
 | |
| {
 | |
| 
 | |
| 	btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
 | |
| 
 | |
| 	solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
 | |
| 	solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
 | |
| 	solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
 | |
| 	solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
 | |
| 
 | |
| 	if (rb)
 | |
| 	{
 | |
| 		solverBody->m_worldTransform = rb->getWorldTransform();
 | |
| 		solverBody->internalSetInvMass(btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor());
 | |
| 		solverBody->m_originalBody = rb;
 | |
| 		solverBody->m_angularFactor = rb->getAngularFactor();
 | |
| 		solverBody->m_linearFactor = rb->getLinearFactor();
 | |
| 		solverBody->m_linearVelocity = rb->getLinearVelocity();
 | |
| 		solverBody->m_angularVelocity = rb->getAngularVelocity();
 | |
| 		solverBody->m_externalForceImpulse = rb->getTotalForce()*rb->getInvMass()*timeStep;
 | |
| 		solverBody->m_externalTorqueImpulse = rb->getTotalTorque()*rb->getInvInertiaTensorWorld()*timeStep ;
 | |
| 
 | |
| 	} else
 | |
| 	{
 | |
| 		solverBody->m_worldTransform.setIdentity();
 | |
| 		solverBody->internalSetInvMass(btVector3(0,0,0));
 | |
| 		solverBody->m_originalBody = 0;
 | |
| 		solverBody->m_angularFactor.setValue(1,1,1);
 | |
| 		solverBody->m_linearFactor.setValue(1,1,1);
 | |
| 		solverBody->m_linearVelocity.setValue(0,0,0);
 | |
| 		solverBody->m_angularVelocity.setValue(0,0,0);
 | |
| 		solverBody->m_externalForceImpulse.setValue(0,0,0);
 | |
| 		solverBody->m_externalTorqueImpulse.setValue(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold)
 | |
| {
 | |
| 	//printf("rel_vel =%f\n", rel_vel);
 | |
| 	if (btFabs(rel_vel)<velocityThreshold)
 | |
| 		return 0.;
 | |
| 
 | |
| 	btScalar rest = restitution * -rel_vel;
 | |
| 	return rest;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	if (colObj && colObj->hasAnisotropicFriction(frictionMode))
 | |
| 	{
 | |
| 		// transform to local coordinates
 | |
| 		btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis();
 | |
| 		const btVector3& friction_scaling = colObj->getAnisotropicFriction();
 | |
| 		//apply anisotropic friction
 | |
| 		loc_lateral *= friction_scaling;
 | |
| 		// ... and transform it back to global coordinates
 | |
| 		frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,int  solverBodyIdA,int solverBodyIdB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
 | |
| 	btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 	btRigidBody* body0 = m_tmpSolverBodyPool[solverBodyIdA].m_originalBody;
 | |
| 	btRigidBody* body1 = m_tmpSolverBodyPool[solverBodyIdB].m_originalBody;
 | |
| 
 | |
| 	solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
| 	solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
| 
 | |
| 	solverConstraint.m_friction = cp.m_combinedFriction;
 | |
| 	solverConstraint.m_originalContactPoint = 0;
 | |
| 
 | |
| 	solverConstraint.m_appliedImpulse = 0.f;
 | |
| 	solverConstraint.m_appliedPushImpulse = 0.f;
 | |
| 
 | |
| 	if (body0)
 | |
| 	{
 | |
| 		solverConstraint.m_contactNormal1 = normalAxis;
 | |
| 		btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal1);
 | |
| 		solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
 | |
| 		solverConstraint.m_angularComponentA = body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor();
 | |
| 	}else
 | |
| 	{
 | |
| 		solverConstraint.m_contactNormal1.setZero();
 | |
| 		solverConstraint.m_relpos1CrossNormal.setZero();
 | |
| 		solverConstraint.m_angularComponentA .setZero();
 | |
| 	}
 | |
| 
 | |
| 	if (body1)
 | |
| 	{
 | |
| 		solverConstraint.m_contactNormal2 = -normalAxis;
 | |
| 		btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal2);
 | |
| 		solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
 | |
| 		solverConstraint.m_angularComponentB = body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor();
 | |
| 	} else
 | |
| 	{
 | |
| 		solverConstraint.m_contactNormal2.setZero();
 | |
| 		solverConstraint.m_relpos2CrossNormal.setZero();
 | |
| 		solverConstraint.m_angularComponentB.setZero();
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		btVector3 vec;
 | |
| 		btScalar denom0 = 0.f;
 | |
| 		btScalar denom1 = 0.f;
 | |
| 		if (body0)
 | |
| 		{
 | |
| 			vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
 | |
| 			denom0 = body0->getInvMass() + normalAxis.dot(vec);
 | |
| 		}
 | |
| 		if (body1)
 | |
| 		{
 | |
| 			vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
 | |
| 			denom1 = body1->getInvMass() + normalAxis.dot(vec);
 | |
| 		}
 | |
| 		btScalar denom = relaxation/(denom0+denom1);
 | |
| 		solverConstraint.m_jacDiagABInv = denom;
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 
 | |
| 
 | |
| 		btScalar rel_vel;
 | |
| 		btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
 | |
| 			+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
 | |
| 		btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
 | |
| 			+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
 | |
| 
 | |
| 		rel_vel = vel1Dotn+vel2Dotn;
 | |
| 
 | |
| //		btScalar positionalError = 0.f;
 | |
| 
 | |
| 		btScalar velocityError =  desiredVelocity - rel_vel;
 | |
| 		btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
 | |
| 
 | |
| 		btScalar penetrationImpulse = btScalar(0);
 | |
| 
 | |
| 		if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
 | |
| 		{
 | |
| 			btScalar distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(normalAxis);
 | |
| 			btScalar positionalError = -distance * infoGlobal.m_frictionERP/infoGlobal.m_timeStep;
 | |
| 			penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
 | |
| 		}
 | |
| 
 | |
| 		solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
 | |
| 		solverConstraint.m_rhsPenetration = 0.f;
 | |
| 		solverConstraint.m_cfm = cfmSlip;
 | |
| 		solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | |
| 		solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btSolverConstraint&	btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
| 	btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
 | |
| 	solverConstraint.m_frictionIndex = frictionIndex;
 | |
| 	setupFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
 | |
| 							colObj0, colObj1, relaxation, infoGlobal, desiredVelocity, cfmSlip);
 | |
| 	return solverConstraint;
 | |
| }
 | |
| 
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint(	btSolverConstraint& solverConstraint, const btVector3& normalAxis1,int solverBodyIdA,int  solverBodyIdB,
 | |
| 									btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
 | |
| 									btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
 | |
| 									btScalar desiredVelocity, btScalar cfmSlip)
 | |
| 
 | |
| {
 | |
| 	btVector3 normalAxis(0,0,0);
 | |
| 
 | |
| 
 | |
| 	solverConstraint.m_contactNormal1 = normalAxis;
 | |
| 	solverConstraint.m_contactNormal2 = -normalAxis;
 | |
| 	btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
 | |
| 	btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 	btRigidBody* body0 = m_tmpSolverBodyPool[solverBodyIdA].m_originalBody;
 | |
| 	btRigidBody* body1 = m_tmpSolverBodyPool[solverBodyIdB].m_originalBody;
 | |
| 
 | |
| 	solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
| 	solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
| 
 | |
|     solverConstraint.m_friction = combinedTorsionalFriction;
 | |
|     solverConstraint.m_originalContactPoint = 0;
 | |
| 
 | |
| 	solverConstraint.m_appliedImpulse = 0.f;
 | |
| 	solverConstraint.m_appliedPushImpulse = 0.f;
 | |
| 
 | |
| 	{
 | |
| 		btVector3 ftorqueAxis1 = -normalAxis1;
 | |
| 		solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
 | |
| 		solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
 | |
| 	}
 | |
| 	{
 | |
| 		btVector3 ftorqueAxis1 = normalAxis1;
 | |
| 		solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
 | |
| 		solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	{
 | |
| 		btVector3 iMJaA = body0?body0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
 | |
| 		btVector3 iMJaB = body1?body1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
 | |
| 		btScalar sum = 0;
 | |
| 		sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
 | |
| 		sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
 | |
| 		solverConstraint.m_jacDiagABInv = btScalar(1.)/sum;
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 
 | |
| 
 | |
| 		btScalar rel_vel;
 | |
| 		btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
 | |
| 			+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
 | |
| 		btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
 | |
| 			+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
 | |
| 
 | |
| 		rel_vel = vel1Dotn+vel2Dotn;
 | |
| 
 | |
| //		btScalar positionalError = 0.f;
 | |
| 
 | |
| 		btSimdScalar velocityError =  desiredVelocity - rel_vel;
 | |
| 		btSimdScalar	velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
 | |
| 		solverConstraint.m_rhs = velocityImpulse;
 | |
| 		solverConstraint.m_cfm = cfmSlip;
 | |
| 		solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | |
| 		solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btSolverConstraint&	btSequentialImpulseConstraintSolver::addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
| 	btSolverConstraint& solverConstraint = m_tmpSolverContactRollingFrictionConstraintPool.expandNonInitializing();
 | |
| 	solverConstraint.m_frictionIndex = frictionIndex;
 | |
| 	setupTorsionalFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, combinedTorsionalFriction,rel_pos1, rel_pos2,
 | |
| 							colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
 | |
| 	return solverConstraint;
 | |
| }
 | |
| 
 | |
| 
 | |
| int	btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body,btScalar timeStep)
 | |
| {
 | |
| #if BT_THREADSAFE
 | |
|     int solverBodyId = -1;
 | |
|     if ( !body.isStaticOrKinematicObject() )
 | |
|     {
 | |
|         // dynamic body
 | |
|         // Dynamic bodies can only be in one island, so it's safe to write to the companionId
 | |
|         solverBodyId = body.getCompanionId();
 | |
|         if ( solverBodyId < 0 )
 | |
|         {
 | |
|             if ( btRigidBody* rb = btRigidBody::upcast( &body ) )
 | |
|             {
 | |
|                 solverBodyId = m_tmpSolverBodyPool.size();
 | |
|                 btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
 | |
|                 initSolverBody( &solverBody, &body, timeStep );
 | |
|                 body.setCompanionId( solverBodyId );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else if (body.isKinematicObject())
 | |
|     {
 | |
|         //
 | |
|         // NOTE: must test for kinematic before static because some kinematic objects also
 | |
|         //   identify as "static"
 | |
|         //
 | |
|         // Kinematic bodies can be in multiple islands at once, so it is a
 | |
|         // race condition to write to them, so we use an alternate method
 | |
|         // to record the solverBodyId
 | |
|         int uniqueId = body.getWorldArrayIndex();
 | |
|         const int INVALID_SOLVER_BODY_ID = -1;
 | |
|         if (uniqueId >= m_kinematicBodyUniqueIdToSolverBodyTable.size())
 | |
|         {
 | |
|             m_kinematicBodyUniqueIdToSolverBodyTable.resize(uniqueId + 1, INVALID_SOLVER_BODY_ID);
 | |
|         }
 | |
|         solverBodyId = m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ];
 | |
|         // if no table entry yet,
 | |
|         if ( solverBodyId == INVALID_SOLVER_BODY_ID )
 | |
|         {
 | |
|             // create a table entry for this body
 | |
|             btRigidBody* rb = btRigidBody::upcast( &body );
 | |
|             solverBodyId = m_tmpSolverBodyPool.size();
 | |
|             btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
 | |
|             initSolverBody( &solverBody, &body, timeStep );
 | |
|             m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ] = solverBodyId;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // all fixed bodies (inf mass) get mapped to a single solver id
 | |
|         if ( m_fixedBodyId < 0 )
 | |
|         {
 | |
|             m_fixedBodyId = m_tmpSolverBodyPool.size();
 | |
|             btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
 | |
|             initSolverBody( &fixedBody, 0, timeStep );
 | |
|         }
 | |
|         solverBodyId = m_fixedBodyId;
 | |
|     }
 | |
|     btAssert( solverBodyId < m_tmpSolverBodyPool.size() );
 | |
| 	return solverBodyId;
 | |
| #else // BT_THREADSAFE
 | |
| 
 | |
|     int solverBodyIdA = -1;
 | |
| 
 | |
| 	if (body.getCompanionId() >= 0)
 | |
| 	{
 | |
| 		//body has already been converted
 | |
| 		solverBodyIdA = body.getCompanionId();
 | |
|         btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
 | |
| 	} else
 | |
| 	{
 | |
| 		btRigidBody* rb = btRigidBody::upcast(&body);
 | |
| 		//convert both active and kinematic objects (for their velocity)
 | |
| 		if (rb && (rb->getInvMass() || rb->isKinematicObject()))
 | |
| 		{
 | |
| 			solverBodyIdA = m_tmpSolverBodyPool.size();
 | |
| 			btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
 | |
| 			initSolverBody(&solverBody,&body,timeStep);
 | |
| 			body.setCompanionId(solverBodyIdA);
 | |
| 		} else
 | |
| 		{
 | |
| 
 | |
| 			if (m_fixedBodyId<0)
 | |
| 			{
 | |
| 				m_fixedBodyId = m_tmpSolverBodyPool.size();
 | |
| 				btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
 | |
| 				initSolverBody(&fixedBody,0,timeStep);
 | |
| 			}
 | |
| 			return m_fixedBodyId;
 | |
| //			return 0;//assume first one is a fixed solver body
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return solverBodyIdA;
 | |
| #endif // BT_THREADSAFE
 | |
| 
 | |
| }
 | |
| #include <stdio.h>
 | |
| 
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
 | |
| 																 int solverBodyIdA, int solverBodyIdB,
 | |
| 																 btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
 | |
| 																 btScalar& relaxation,
 | |
| 																 const btVector3& rel_pos1, const btVector3& rel_pos2)
 | |
| {
 | |
| 
 | |
| 		//	const btVector3& pos1 = cp.getPositionWorldOnA();
 | |
| 		//	const btVector3& pos2 = cp.getPositionWorldOnB();
 | |
| 
 | |
| 			btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
 | |
| 			btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 			btRigidBody* rb0 = bodyA->m_originalBody;
 | |
| 			btRigidBody* rb1 = bodyB->m_originalBody;
 | |
| 
 | |
| //			btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
 | |
| //			btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
 | |
| 			//rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
 | |
| 			//rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
 | |
| 
 | |
| 			relaxation = infoGlobal.m_sor;
 | |
| 			btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
 | |
| 
 | |
|             //cfm = 1 /       ( dt * kp + kd )
 | |
|             //erp = dt * kp / ( dt * kp + kd )
 | |
|             
 | |
|             btScalar cfm = infoGlobal.m_globalCfm;
 | |
|             btScalar erp = infoGlobal.m_erp2;
 | |
| 
 | |
|             if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
 | |
|             {
 | |
|                 if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
 | |
|                     cfm  = cp.m_contactCFM;
 | |
|                 if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
 | |
|                     erp = cp.m_contactERP;                
 | |
|             } else
 | |
|             {
 | |
|                 if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
 | |
|                 {
 | |
|                     btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
 | |
|                     if (denom < SIMD_EPSILON)
 | |
|                     {
 | |
|                         denom = SIMD_EPSILON;
 | |
|                     }
 | |
|                     cfm = btScalar(1) / denom; 
 | |
|                     erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             cfm *= invTimeStep;
 | |
|             
 | |
| 
 | |
| 			btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
 | |
| 			solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
 | |
| 			btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
 | |
| 			solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
 | |
| 
 | |
| 				{
 | |
| #ifdef COMPUTE_IMPULSE_DENOM
 | |
| 					btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
 | |
| 					btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
 | |
| #else
 | |
| 					btVector3 vec;
 | |
| 					btScalar denom0 = 0.f;
 | |
| 					btScalar denom1 = 0.f;
 | |
| 					if (rb0)
 | |
| 					{
 | |
| 						vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
 | |
| 						denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
 | |
| 					}
 | |
| 					if (rb1)
 | |
| 					{
 | |
| 						vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
 | |
| 						denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
 | |
| 					}
 | |
| #endif //COMPUTE_IMPULSE_DENOM
 | |
| 
 | |
| 					btScalar denom = relaxation/(denom0+denom1+cfm);
 | |
| 					solverConstraint.m_jacDiagABInv = denom;
 | |
| 				}
 | |
| 
 | |
| 				if (rb0)
 | |
| 				{
 | |
| 					solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
 | |
| 					solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | |
| 				} else
 | |
| 				{
 | |
| 					solverConstraint.m_contactNormal1.setZero();
 | |
| 					solverConstraint.m_relpos1CrossNormal.setZero();
 | |
| 				}
 | |
| 				if (rb1)
 | |
| 				{
 | |
| 					solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
 | |
| 					solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
 | |
| 				}else
 | |
| 				{
 | |
| 					solverConstraint.m_contactNormal2.setZero();
 | |
| 					solverConstraint.m_relpos2CrossNormal.setZero();
 | |
| 				}
 | |
| 
 | |
| 				btScalar restitution = 0.f;
 | |
| 				btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
 | |
| 
 | |
| 				{
 | |
| 					btVector3 vel1,vel2;
 | |
| 
 | |
| 					vel1 = rb0? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
 | |
| 					vel2 = rb1? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
 | |
| 
 | |
| 	//			btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
 | |
| 					btVector3 vel  = vel1 - vel2;
 | |
| 					btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
 | |
| 
 | |
| 
 | |
| 
 | |
| 					solverConstraint.m_friction = cp.m_combinedFriction;
 | |
| 
 | |
| 
 | |
| 					restitution =  restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
 | |
| 					if (restitution <= btScalar(0.))
 | |
| 					{
 | |
| 						restitution = 0.f;
 | |
| 					};
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				///warm starting (or zero if disabled)
 | |
| 				if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 				{
 | |
| 					solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
 | |
| 					if (rb0)
 | |
| 						bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
 | |
| 					if (rb1)
 | |
| 						bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
 | |
| 				} else
 | |
| 				{
 | |
| 					solverConstraint.m_appliedImpulse = 0.f;
 | |
| 				}
 | |
| 
 | |
| 				solverConstraint.m_appliedPushImpulse = 0.f;
 | |
| 
 | |
| 				{
 | |
| 
 | |
| 					btVector3 externalForceImpulseA = bodyA->m_originalBody ? bodyA->m_externalForceImpulse: btVector3(0,0,0);
 | |
| 					btVector3 externalTorqueImpulseA = bodyA->m_originalBody ? bodyA->m_externalTorqueImpulse: btVector3(0,0,0);
 | |
| 					btVector3 externalForceImpulseB = bodyB->m_originalBody ? bodyB->m_externalForceImpulse: btVector3(0,0,0);
 | |
| 					btVector3 externalTorqueImpulseB = bodyB->m_originalBody ?bodyB->m_externalTorqueImpulse : btVector3(0,0,0);
 | |
| 
 | |
| 
 | |
| 					btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(bodyA->m_linearVelocity+externalForceImpulseA)
 | |
| 						+ solverConstraint.m_relpos1CrossNormal.dot(bodyA->m_angularVelocity+externalTorqueImpulseA);
 | |
| 					btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyB->m_linearVelocity+externalForceImpulseB)
 | |
| 						+ solverConstraint.m_relpos2CrossNormal.dot(bodyB->m_angularVelocity+externalTorqueImpulseB);
 | |
| 					btScalar rel_vel = vel1Dotn+vel2Dotn;
 | |
| 
 | |
| 					btScalar positionalError = 0.f;
 | |
| 					btScalar	velocityError = restitution - rel_vel;// * damping;
 | |
| 
 | |
| 
 | |
| 				
 | |
| 					if (penetration>0)
 | |
| 					{
 | |
| 						positionalError = 0;
 | |
| 
 | |
| 						velocityError -= penetration *invTimeStep;
 | |
| 					} else
 | |
| 					{
 | |
| 						positionalError = -penetration * erp*invTimeStep;
 | |
| 
 | |
| 					}
 | |
| 
 | |
| 					btScalar  penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
 | |
| 					btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
 | |
| 
 | |
| 					if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
 | |
| 					{
 | |
| 						//combine position and velocity into rhs
 | |
| 						solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;//-solverConstraint.m_contactNormal1.dot(bodyA->m_externalForce*bodyA->m_invMass-bodyB->m_externalForce/bodyB->m_invMass)*solverConstraint.m_jacDiagABInv;
 | |
| 						solverConstraint.m_rhsPenetration = 0.f;
 | |
| 
 | |
| 					} else
 | |
| 					{
 | |
| 						//split position and velocity into rhs and m_rhsPenetration
 | |
| 						solverConstraint.m_rhs = velocityImpulse;
 | |
| 						solverConstraint.m_rhsPenetration = penetrationImpulse;
 | |
| 					}
 | |
| 					solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
 | |
| 					solverConstraint.m_lowerLimit = 0;
 | |
| 					solverConstraint.m_upperLimit = 1e10f;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint,
 | |
| 																		int solverBodyIdA, int solverBodyIdB,
 | |
| 																 btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 
 | |
| 	btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
 | |
| 	btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 	btRigidBody* rb0 = bodyA->m_originalBody;
 | |
| 	btRigidBody* rb1 = bodyB->m_originalBody;
 | |
| 
 | |
| 	{
 | |
| 		btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
 | |
| 		if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 		{
 | |
| 			frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
 | |
| 			if (rb0)
 | |
| 				bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal1*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
 | |
| 			if (rb1)
 | |
| 				bodyB->internalApplyImpulse(-frictionConstraint1.m_contactNormal2*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse);
 | |
| 		} else
 | |
| 		{
 | |
| 			frictionConstraint1.m_appliedImpulse = 0.f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 	{
 | |
| 		btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
 | |
| 		if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 		{
 | |
| 			frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2  * infoGlobal.m_warmstartingFactor;
 | |
| 			if (rb0)
 | |
| 				bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal1*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
 | |
| 			if (rb1)
 | |
| 				bodyB->internalApplyImpulse(-frictionConstraint2.m_contactNormal2*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse);
 | |
| 		} else
 | |
| 		{
 | |
| 			frictionConstraint2.m_appliedImpulse = 0.f;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	btCollisionObject* colObj0=0,*colObj1=0;
 | |
| 
 | |
| 	colObj0 = (btCollisionObject*)manifold->getBody0();
 | |
| 	colObj1 = (btCollisionObject*)manifold->getBody1();
 | |
| 
 | |
| 	int solverBodyIdA = getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | |
| 	int solverBodyIdB = getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | |
| 
 | |
| //	btRigidBody* bodyA = btRigidBody::upcast(colObj0);
 | |
| //	btRigidBody* bodyB = btRigidBody::upcast(colObj1);
 | |
| 
 | |
| 	btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverBodyIdA];
 | |
| 	btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 
 | |
| 
 | |
| 	///avoid collision response between two static objects
 | |
| 	if (!solverBodyA || (solverBodyA->m_invMass.fuzzyZero() && (!solverBodyB || solverBodyB->m_invMass.fuzzyZero())))
 | |
| 		return;
 | |
| 
 | |
| 	int rollingFriction=1;
 | |
| 	for (int j=0;j<manifold->getNumContacts();j++)
 | |
| 	{
 | |
| 
 | |
| 		btManifoldPoint& cp = manifold->getContactPoint(j);
 | |
| 
 | |
| 		if (cp.getDistance() <= manifold->getContactProcessingThreshold())
 | |
| 		{
 | |
| 			btVector3 rel_pos1;
 | |
| 			btVector3 rel_pos2;
 | |
| 			btScalar relaxation;
 | |
| 
 | |
| 
 | |
| 			int frictionIndex = m_tmpSolverContactConstraintPool.size();
 | |
| 			btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
 | |
| 			solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
| 			solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
| 
 | |
| 			solverConstraint.m_originalContactPoint = &cp;
 | |
| 
 | |
| 			const btVector3& pos1 = cp.getPositionWorldOnA();
 | |
| 			const btVector3& pos2 = cp.getPositionWorldOnB();
 | |
| 
 | |
| 			rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
 | |
| 			rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
 | |
| 
 | |
| 			btVector3 vel1;
 | |
| 			btVector3 vel2;
 | |
| 			
 | |
| 			solverBodyA->getVelocityInLocalPointNoDelta(rel_pos1,vel1);
 | |
| 			solverBodyB->getVelocityInLocalPointNoDelta(rel_pos2,vel2 );
 | |
| 
 | |
| 			btVector3 vel  = vel1 - vel2;
 | |
| 			btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
 | |
| 
 | |
| 			setupContactConstraint(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, relaxation, rel_pos1, rel_pos2);
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 			/////setup the friction constraints
 | |
| 
 | |
| 			solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
 | |
| 
 | |
| 			if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
 | |
| 			{
 | |
|                
 | |
| 				{
 | |
| 					addTorsionalFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,cp.m_combinedSpinningFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | |
| 					btVector3 axis0,axis1;
 | |
| 					btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
 | |
| 					axis0.normalize();
 | |
| 					axis1.normalize();
 | |
| 					
 | |
| 					applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					if (axis0.length()>0.001)
 | |
| 						addTorsionalFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
 | |
|                                                        cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | |
| 					if (axis1.length()>0.001)
 | |
| 						addTorsionalFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
 | |
|                                                        cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | |
| 
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			///Bullet has several options to set the friction directions
 | |
| 			///By default, each contact has only a single friction direction that is recomputed automatically very frame
 | |
| 			///based on the relative linear velocity.
 | |
| 			///If the relative velocity it zero, it will automatically compute a friction direction.
 | |
| 
 | |
| 			///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
 | |
| 			///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
 | |
| 			///
 | |
| 			///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
 | |
| 			///
 | |
| 			///The user can manually override the friction directions for certain contacts using a contact callback,
 | |
| 			///and set the cp.m_lateralFrictionInitialized to true
 | |
| 			///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
 | |
| 			///this will give a conveyor belt effect
 | |
| 			///
 | |
| 		
 | |
| 			if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
 | |
| 			{
 | |
| 				cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
 | |
| 				btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
 | |
| 				if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
 | |
| 				{
 | |
| 					cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,infoGlobal);
 | |
| 
 | |
| 					if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					{
 | |
| 						cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
 | |
| 						cp.m_lateralFrictionDir2.normalize();//??
 | |
| 						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
 | |
| 					}
 | |
| 
 | |
| 				} else
 | |
| 				{
 | |
| 					btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
 | |
| 
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
 | |
| 
 | |
| 					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					{
 | |
| 						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
 | |
| 					}
 | |
| 
 | |
| 
 | |
| 					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
 | |
| 					{
 | |
| 						cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 			} else
 | |
| 			{
 | |
| 				addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
 | |
| 
 | |
| 				if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
 | |
| 
 | |
| 			}
 | |
| 			setFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	int i;
 | |
| 	btPersistentManifold* manifold = 0;
 | |
| //			btCollisionObject* colObj0=0,*colObj1=0;
 | |
| 
 | |
| 
 | |
| 	for (i=0;i<numManifolds;i++)
 | |
| 	{
 | |
| 		manifold = manifoldPtr[i];
 | |
| 		convertContact(manifold,infoGlobal);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	m_fixedBodyId = -1;
 | |
| 	BT_PROFILE("solveGroupCacheFriendlySetup");
 | |
| 	(void)debugDrawer;
 | |
| 
 | |
|     // if solver mode has changed,
 | |
|     if ( infoGlobal.m_solverMode != m_cachedSolverMode )
 | |
|     {
 | |
|         // update solver functions to use SIMD or non-SIMD
 | |
|         bool useSimd = !!( infoGlobal.m_solverMode & SOLVER_SIMD );
 | |
|         setupSolverFunctions( useSimd );
 | |
|         m_cachedSolverMode = infoGlobal.m_solverMode;
 | |
|     }
 | |
| 	m_maxOverrideNumSolverIterations = 0;
 | |
| 
 | |
| #ifdef BT_ADDITIONAL_DEBUG
 | |
| 	 //make sure that dynamic bodies exist for all (enabled) constraints
 | |
| 	for (int i=0;i<numConstraints;i++)
 | |
| 	{
 | |
| 		btTypedConstraint* constraint = constraints[i];
 | |
| 		if (constraint->isEnabled())
 | |
| 		{
 | |
| 			if (!constraint->getRigidBodyA().isStaticOrKinematicObject())
 | |
| 			{
 | |
| 				bool found=false;
 | |
| 				for (int b=0;b<numBodies;b++)
 | |
| 				{
 | |
| 
 | |
| 					if (&constraint->getRigidBodyA()==bodies[b])
 | |
| 					{
 | |
| 						found = true;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				btAssert(found);
 | |
| 			}
 | |
| 			if (!constraint->getRigidBodyB().isStaticOrKinematicObject())
 | |
| 			{
 | |
| 				bool found=false;
 | |
| 				for (int b=0;b<numBodies;b++)
 | |
| 				{
 | |
| 					if (&constraint->getRigidBodyB()==bodies[b])
 | |
| 					{
 | |
| 						found = true;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				btAssert(found);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
|     //make sure that dynamic bodies exist for all contact manifolds
 | |
|     for (int i=0;i<numManifolds;i++)
 | |
|     {
 | |
|         if (!manifoldPtr[i]->getBody0()->isStaticOrKinematicObject())
 | |
|         {
 | |
|             bool found=false;
 | |
|             for (int b=0;b<numBodies;b++)
 | |
|             {
 | |
| 
 | |
|                 if (manifoldPtr[i]->getBody0()==bodies[b])
 | |
|                 {
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             btAssert(found);
 | |
|         }
 | |
|         if (!manifoldPtr[i]->getBody1()->isStaticOrKinematicObject())
 | |
|         {
 | |
|             bool found=false;
 | |
|             for (int b=0;b<numBodies;b++)
 | |
|             {
 | |
|                 if (manifoldPtr[i]->getBody1()==bodies[b])
 | |
|                 {
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             btAssert(found);
 | |
|         }
 | |
|     }
 | |
| #endif //BT_ADDITIONAL_DEBUG
 | |
| 
 | |
| 
 | |
| 	for (int i = 0; i < numBodies; i++)
 | |
| 	{
 | |
| 		bodies[i]->setCompanionId(-1);
 | |
| 	}
 | |
| #if BT_THREADSAFE
 | |
|     m_kinematicBodyUniqueIdToSolverBodyTable.resize( 0 );
 | |
| #endif // BT_THREADSAFE
 | |
| 
 | |
| 	m_tmpSolverBodyPool.reserve(numBodies+1);
 | |
| 	m_tmpSolverBodyPool.resize(0);
 | |
| 
 | |
| 	//btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
 | |
|     //initSolverBody(&fixedBody,0);
 | |
| 
 | |
| 	//convert all bodies
 | |
| 
 | |
| 
 | |
| 	for (int i=0;i<numBodies;i++)
 | |
| 	{
 | |
| 		int bodyId = getOrInitSolverBody(*bodies[i],infoGlobal.m_timeStep);
 | |
| 
 | |
| 		btRigidBody* body = btRigidBody::upcast(bodies[i]);
 | |
| 		if (body && body->getInvMass())
 | |
| 		{
 | |
| 			btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
 | |
| 			btVector3 gyroForce (0,0,0);
 | |
| 			if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT)
 | |
| 			{
 | |
| 				gyroForce = body->computeGyroscopicForceExplicit(infoGlobal.m_maxGyroscopicForce);
 | |
| 				solverBody.m_externalTorqueImpulse -= gyroForce*body->getInvInertiaTensorWorld()*infoGlobal.m_timeStep;
 | |
| 			}
 | |
| 			if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD)
 | |
| 			{
 | |
| 				gyroForce = body->computeGyroscopicImpulseImplicit_World(infoGlobal.m_timeStep);
 | |
| 				solverBody.m_externalTorqueImpulse += gyroForce;
 | |
| 			}
 | |
| 			if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY)
 | |
| 			{
 | |
| 				gyroForce = body->computeGyroscopicImpulseImplicit_Body(infoGlobal.m_timeStep);
 | |
| 				solverBody.m_externalTorqueImpulse += gyroForce;
 | |
| 
 | |
| 			}
 | |
| 			
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (1)
 | |
| 	{
 | |
| 		int j;
 | |
| 		for (j=0;j<numConstraints;j++)
 | |
| 		{
 | |
| 			btTypedConstraint* constraint = constraints[j];
 | |
| 			constraint->buildJacobian();
 | |
| 			constraint->internalSetAppliedImpulse(0.0f);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//btRigidBody* rb0=0,*rb1=0;
 | |
| 
 | |
| 	//if (1)
 | |
| 	{
 | |
| 		{
 | |
| 
 | |
| 			int totalNumRows = 0;
 | |
| 			int i;
 | |
| 
 | |
| 			m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints);
 | |
| 			//calculate the total number of contraint rows
 | |
| 			for (i=0;i<numConstraints;i++)
 | |
| 			{
 | |
| 				btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
 | |
| 				btJointFeedback* fb = constraints[i]->getJointFeedback();
 | |
| 				if (fb)
 | |
| 				{
 | |
| 					fb->m_appliedForceBodyA.setZero();
 | |
| 					fb->m_appliedTorqueBodyA.setZero();
 | |
| 					fb->m_appliedForceBodyB.setZero();
 | |
| 					fb->m_appliedTorqueBodyB.setZero();
 | |
| 				}
 | |
| 
 | |
| 				if (constraints[i]->isEnabled())
 | |
| 				{
 | |
| 				}
 | |
| 				if (constraints[i]->isEnabled())
 | |
| 				{
 | |
| 					constraints[i]->getInfo1(&info1);
 | |
| 				} else
 | |
| 				{
 | |
| 					info1.m_numConstraintRows = 0;
 | |
| 					info1.nub = 0;
 | |
| 				}
 | |
| 				totalNumRows += info1.m_numConstraintRows;
 | |
| 			}
 | |
| 			m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows);
 | |
| 
 | |
| 
 | |
| 			///setup the btSolverConstraints
 | |
| 			int currentRow = 0;
 | |
| 
 | |
| 			for (i=0;i<numConstraints;i++)
 | |
| 			{
 | |
| 				const btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
 | |
| 
 | |
| 				if (info1.m_numConstraintRows)
 | |
| 				{
 | |
| 					btAssert(currentRow<totalNumRows);
 | |
| 
 | |
| 					btSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
 | |
| 					btTypedConstraint* constraint = constraints[i];
 | |
| 					btRigidBody& rbA = constraint->getRigidBodyA();
 | |
| 					btRigidBody& rbB = constraint->getRigidBodyB();
 | |
| 
 | |
| 					int solverBodyIdA = getOrInitSolverBody(rbA,infoGlobal.m_timeStep);
 | |
|                     int solverBodyIdB = getOrInitSolverBody(rbB,infoGlobal.m_timeStep);
 | |
| 
 | |
|                     btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
 | |
|                     btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 					int overrideNumSolverIterations = constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
 | |
| 					if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
 | |
| 						m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
 | |
| 
 | |
| 
 | |
| 					int j;
 | |
| 					for ( j=0;j<info1.m_numConstraintRows;j++)
 | |
| 					{
 | |
| 						memset(¤tConstraintRow[j],0,sizeof(btSolverConstraint));
 | |
| 						currentConstraintRow[j].m_lowerLimit = -SIMD_INFINITY;
 | |
| 						currentConstraintRow[j].m_upperLimit = SIMD_INFINITY;
 | |
| 						currentConstraintRow[j].m_appliedImpulse = 0.f;
 | |
| 						currentConstraintRow[j].m_appliedPushImpulse = 0.f;
 | |
| 						currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
 | |
| 						currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
 | |
| 						currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
 | |
| 					}
 | |
| 
 | |
| 					bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyAPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyAPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyBPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
 | |
| 					bodyBPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
 | |
| 
 | |
| 
 | |
| 					btTypedConstraint::btConstraintInfo2 info2;
 | |
| 					info2.fps = 1.f/infoGlobal.m_timeStep;
 | |
| 					info2.erp = infoGlobal.m_erp;
 | |
| 					info2.m_J1linearAxis = currentConstraintRow->m_contactNormal1;
 | |
| 					info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
 | |
| 					info2.m_J2linearAxis = currentConstraintRow->m_contactNormal2;
 | |
| 					info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
 | |
| 					info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
 | |
| 					///the size of btSolverConstraint needs be a multiple of btScalar
 | |
| 		            btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint));
 | |
| 					info2.m_constraintError = ¤tConstraintRow->m_rhs;
 | |
| 					currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
 | |
| 					info2.m_damping = infoGlobal.m_damping;
 | |
| 					info2.cfm = ¤tConstraintRow->m_cfm;
 | |
| 					info2.m_lowerLimit = ¤tConstraintRow->m_lowerLimit;
 | |
| 					info2.m_upperLimit = ¤tConstraintRow->m_upperLimit;
 | |
| 					info2.m_numIterations = infoGlobal.m_numIterations;
 | |
| 					constraints[i]->getInfo2(&info2);
 | |
| 
 | |
| 					///finalize the constraint setup
 | |
| 					for ( j=0;j<info1.m_numConstraintRows;j++)
 | |
| 					{
 | |
| 						btSolverConstraint& solverConstraint = currentConstraintRow[j];
 | |
| 
 | |
| 						if (solverConstraint.m_upperLimit>=constraints[i]->getBreakingImpulseThreshold())
 | |
| 						{
 | |
| 							solverConstraint.m_upperLimit = constraints[i]->getBreakingImpulseThreshold();
 | |
| 						}
 | |
| 
 | |
| 						if (solverConstraint.m_lowerLimit<=-constraints[i]->getBreakingImpulseThreshold())
 | |
| 						{
 | |
| 							solverConstraint.m_lowerLimit = -constraints[i]->getBreakingImpulseThreshold();
 | |
| 						}
 | |
| 
 | |
| 						solverConstraint.m_originalContactPoint = constraint;
 | |
| 
 | |
| 						{
 | |
| 							const btVector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
 | |
| 							solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor();
 | |
| 						}
 | |
| 						{
 | |
| 							const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
 | |
| 							solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor();
 | |
| 						}
 | |
| 
 | |
| 						{
 | |
| 							btVector3 iMJlA = solverConstraint.m_contactNormal1*rbA.getInvMass();
 | |
| 							btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
 | |
| 							btVector3 iMJlB = solverConstraint.m_contactNormal2*rbB.getInvMass();//sign of normal?
 | |
| 							btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
 | |
| 
 | |
| 							btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal1);
 | |
| 							sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
 | |
| 							sum += iMJlB.dot(solverConstraint.m_contactNormal2);
 | |
| 							sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
 | |
| 							btScalar fsum = btFabs(sum);
 | |
| 							btAssert(fsum > SIMD_EPSILON);
 | |
| 							btScalar sorRelaxation = 1.f;//todo: get from globalInfo?
 | |
| 							solverConstraint.m_jacDiagABInv = fsum>SIMD_EPSILON?sorRelaxation/sum : 0.f;
 | |
| 						}
 | |
| 
 | |
| 
 | |
| 
 | |
| 						{
 | |
| 							btScalar rel_vel;
 | |
| 							btVector3 externalForceImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalForceImpulse : btVector3(0,0,0);
 | |
| 							btVector3 externalTorqueImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalTorqueImpulse : btVector3(0,0,0);
 | |
| 
 | |
| 							btVector3 externalForceImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalForceImpulse : btVector3(0,0,0);
 | |
| 							btVector3 externalTorqueImpulseB = bodyBPtr->m_originalBody ?bodyBPtr->m_externalTorqueImpulse : btVector3(0,0,0);
 | |
| 
 | |
| 							btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()+externalForceImpulseA)
 | |
| 												+ solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()+externalTorqueImpulseA);
 | |
| 
 | |
| 							btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()+externalForceImpulseB)
 | |
| 																+ solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()+externalTorqueImpulseB);
 | |
| 
 | |
| 							rel_vel = vel1Dotn+vel2Dotn;
 | |
| 							btScalar restitution = 0.f;
 | |
| 							btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
 | |
| 							btScalar	velocityError = restitution - rel_vel * info2.m_damping;
 | |
| 							btScalar	penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
 | |
| 							btScalar	velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
 | |
| 							solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
 | |
| 							solverConstraint.m_appliedImpulse = 0.f;
 | |
| 
 | |
| 
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		convertContacts(manifoldPtr,numManifolds,infoGlobal);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| //	btContactSolverInfo info = infoGlobal;
 | |
| 
 | |
| 
 | |
| 	int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
 | |
| 	int numConstraintPool = m_tmpSolverContactConstraintPool.size();
 | |
| 	int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
 | |
| 
 | |
| 	///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
 | |
| 	m_orderNonContactConstraintPool.resizeNoInitialize(numNonContactPool);
 | |
| 	if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 		m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool*2);
 | |
| 	else
 | |
| 		m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool);
 | |
| 
 | |
| 	m_orderFrictionConstraintPool.resizeNoInitialize(numFrictionPool);
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i=0;i<numNonContactPool;i++)
 | |
| 		{
 | |
| 			m_orderNonContactConstraintPool[i] = i;
 | |
| 		}
 | |
| 		for (i=0;i<numConstraintPool;i++)
 | |
| 		{
 | |
| 			m_orderTmpConstraintPool[i] = i;
 | |
| 		}
 | |
| 		for (i=0;i<numFrictionPool;i++)
 | |
| 		{
 | |
| 			m_orderFrictionConstraintPool[i] = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
 | |
| {
 | |
| 	btScalar leastSquaresResidual = 0.f;
 | |
| 
 | |
| 	int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
 | |
| 	int numConstraintPool = m_tmpSolverContactConstraintPool.size();
 | |
| 	int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
 | |
| 
 | |
| 	if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
 | |
| 	{
 | |
| 		if (1)			// uncomment this for a bit less random ((iteration & 7) == 0)
 | |
| 		{
 | |
| 
 | |
| 			for (int j=0; j<numNonContactPool; ++j) {
 | |
| 				int tmp = m_orderNonContactConstraintPool[j];
 | |
| 				int swapi = btRandInt2(j+1);
 | |
| 				m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
 | |
| 				m_orderNonContactConstraintPool[swapi] = tmp;
 | |
| 			}
 | |
| 
 | |
| 			//contact/friction constraints are not solved more than
 | |
| 			if (iteration< infoGlobal.m_numIterations)
 | |
| 			{
 | |
| 				for (int j=0; j<numConstraintPool; ++j) {
 | |
| 					int tmp = m_orderTmpConstraintPool[j];
 | |
| 					int swapi = btRandInt2(j+1);
 | |
| 					m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
 | |
| 					m_orderTmpConstraintPool[swapi] = tmp;
 | |
| 				}
 | |
| 
 | |
| 				for (int j=0; j<numFrictionPool; ++j) {
 | |
| 					int tmp = m_orderFrictionConstraintPool[j];
 | |
| 					int swapi = btRandInt2(j+1);
 | |
| 					m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
 | |
| 					m_orderFrictionConstraintPool[swapi] = tmp;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 		///solve all joint constraints
 | |
| 		for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
 | |
| 		{
 | |
| 			btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
 | |
| 			if (iteration < constraint.m_overrideNumSolverIterations)
 | |
| 			{
 | |
| 				btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
 | |
| 				leastSquaresResidual += residual*residual;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (iteration< infoGlobal.m_numIterations)
 | |
| 		{
 | |
| 			for (int j=0;j<numConstraints;j++)
 | |
| 			{
 | |
| 				if (constraints[j]->isEnabled())
 | |
| 				{
 | |
| 					int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
 | |
| 					int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
 | |
| 					btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
 | |
| 					btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
 | |
| 					constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			///solve all contact constraints
 | |
| 			if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
 | |
| 			{
 | |
| 				int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
 | |
| 				int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
 | |
| 
 | |
| 				for (int c=0;c<numPoolConstraints;c++)
 | |
| 				{
 | |
| 					btScalar totalImpulse =0;
 | |
| 
 | |
| 					{
 | |
| 						const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
 | |
| 						btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 						leastSquaresResidual += residual*residual;
 | |
| 
 | |
| 						totalImpulse = solveManifold.m_appliedImpulse;
 | |
| 					}
 | |
| 					bool applyFriction = true;
 | |
| 					if (applyFriction)
 | |
| 					{
 | |
| 						{
 | |
| 
 | |
| 							btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
 | |
| 
 | |
| 							if (totalImpulse>btScalar(0))
 | |
| 							{
 | |
| 								solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
 | |
| 								solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
 | |
| 
 | |
| 								btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 								leastSquaresResidual += residual*residual;
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
 | |
| 						{
 | |
| 
 | |
| 							btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
 | |
| 
 | |
| 							if (totalImpulse>btScalar(0))
 | |
| 							{
 | |
| 								solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
 | |
| 								solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
 | |
| 
 | |
| 								btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 								leastSquaresResidual += residual*residual;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 			}
 | |
| 			else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
 | |
| 			{
 | |
| 				//solve the friction constraints after all contact constraints, don't interleave them
 | |
| 				int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
 | |
| 				int j;
 | |
| 
 | |
| 				for (j=0;j<numPoolConstraints;j++)
 | |
| 				{
 | |
| 					const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
 | |
| 					btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 					leastSquaresResidual += residual*residual;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 
 | |
| 				///solve all friction constraints
 | |
| 
 | |
| 				int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
 | |
| 				for (j=0;j<numFrictionPoolConstraints;j++)
 | |
| 				{
 | |
| 					btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
 | |
| 					btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
 | |
| 
 | |
| 					if (totalImpulse>btScalar(0))
 | |
| 					{
 | |
| 						solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
 | |
| 						solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
 | |
| 
 | |
| 						btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 						leastSquaresResidual += residual*residual;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 
 | |
| 				int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
 | |
| 				for (int j=0;j<numRollingFrictionPoolConstraints;j++)
 | |
| 				{
 | |
| 
 | |
| 					btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
 | |
| 					btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
 | |
| 					if (totalImpulse>btScalar(0))
 | |
| 					{
 | |
| 						btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
 | |
| 						if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
 | |
| 							rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
 | |
| 
 | |
| 						rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
 | |
| 						rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
 | |
| 
 | |
| 						btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
 | |
| 						leastSquaresResidual += residual*residual;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 		}
 | |
| 	return leastSquaresResidual;
 | |
| }
 | |
| 
 | |
| 
 | |
| void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	int iteration;
 | |
| 	if (infoGlobal.m_splitImpulse)
 | |
| 	{
 | |
| 		{
 | |
| 			for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
 | |
| 			{
 | |
| 				btScalar leastSquaresResidual =0.f;
 | |
| 				{
 | |
| 					int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
 | |
| 					int j;
 | |
| 					for (j=0;j<numPoolConstraints;j++)
 | |
| 					{
 | |
| 						const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
 | |
| 
 | |
| 						btScalar residual = resolveSplitPenetrationImpulse(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
 | |
| 						leastSquaresResidual += residual*residual;
 | |
| 					}
 | |
| 				}
 | |
| 				if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration>=(infoGlobal.m_numIterations-1))
 | |
| 				{
 | |
| #ifdef VERBOSE_RESIDUAL_PRINTF
 | |
| 					printf("residual = %f at iteration #%d\n",leastSquaresResidual,iteration);
 | |
| #endif
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
|         }
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	BT_PROFILE("solveGroupCacheFriendlyIterations");
 | |
| 
 | |
| 	{
 | |
| 		///this is a special step to resolve penetrations (just for contacts)
 | |
| 		solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
 | |
| 
 | |
| 		int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
 | |
| 
 | |
| 		for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
 | |
| 		//for ( int iteration = maxIterations-1  ; iteration >= 0;iteration--)
 | |
| 		{
 | |
| 			m_leastSquaresResidual = solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
 | |
| 
 | |
| 			if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration>= (maxIterations-1)))
 | |
| 			{
 | |
| #ifdef VERBOSE_RESIDUAL_PRINTF
 | |
| 						printf("residual = %f at iteration #%d\n",m_leastSquaresResidual,iteration);
 | |
| #endif
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0.f;
 | |
| }
 | |
| 
 | |
| btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
 | |
| 	int i,j;
 | |
| 
 | |
| 	if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 	{
 | |
| 		for (j=0;j<numPoolConstraints;j++)
 | |
| 		{
 | |
| 			const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
 | |
| 			btManifoldPoint* pt = (btManifoldPoint*) solveManifold.m_originalContactPoint;
 | |
| 			btAssert(pt);
 | |
| 			pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
 | |
| 		//	float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
 | |
| 			//	printf("pt->m_appliedImpulseLateral1 = %f\n", f);
 | |
| 			pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
 | |
| 			//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
 | |
| 			if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 			{
 | |
| 				pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse;
 | |
| 			}
 | |
| 			//do a callback here?
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	numPoolConstraints = m_tmpSolverNonContactConstraintPool.size();
 | |
| 	for (j=0;j<numPoolConstraints;j++)
 | |
| 	{
 | |
| 		const btSolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j];
 | |
| 		btTypedConstraint* constr = (btTypedConstraint*)solverConstr.m_originalContactPoint;
 | |
| 		btJointFeedback* fb = constr->getJointFeedback();
 | |
| 		if (fb)
 | |
| 		{
 | |
| 			fb->m_appliedForceBodyA += solverConstr.m_contactNormal1*solverConstr.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedForceBodyB += solverConstr.m_contactNormal2*solverConstr.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedTorqueBodyB += solverConstr.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		constr->internalSetAppliedImpulse(solverConstr.m_appliedImpulse);
 | |
| 		if (btFabs(solverConstr.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
 | |
| 		{
 | |
| 			constr->setEnabled(false);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	for ( i=0;i<m_tmpSolverBodyPool.size();i++)
 | |
| 	{
 | |
| 		btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
 | |
| 		if (body)
 | |
| 		{
 | |
| 			if (infoGlobal.m_splitImpulse)
 | |
| 				m_tmpSolverBodyPool[i].writebackVelocityAndTransform(infoGlobal.m_timeStep, infoGlobal.m_splitImpulseTurnErp);
 | |
| 			else
 | |
| 				m_tmpSolverBodyPool[i].writebackVelocity();
 | |
| 
 | |
| 			m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(
 | |
| 				m_tmpSolverBodyPool[i].m_linearVelocity+
 | |
| 				m_tmpSolverBodyPool[i].m_externalForceImpulse);
 | |
| 
 | |
| 			m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(
 | |
| 				m_tmpSolverBodyPool[i].m_angularVelocity+
 | |
| 				m_tmpSolverBodyPool[i].m_externalTorqueImpulse);
 | |
| 
 | |
| 			if (infoGlobal.m_splitImpulse)
 | |
| 				m_tmpSolverBodyPool[i].m_originalBody->setWorldTransform(m_tmpSolverBodyPool[i].m_worldTransform);
 | |
| 
 | |
| 			m_tmpSolverBodyPool[i].m_originalBody->setCompanionId(-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	m_tmpSolverContactConstraintPool.resizeNoInitialize(0);
 | |
| 	m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0);
 | |
| 	m_tmpSolverContactFrictionConstraintPool.resizeNoInitialize(0);
 | |
| 	m_tmpSolverContactRollingFrictionConstraintPool.resizeNoInitialize(0);
 | |
| 
 | |
| 	m_tmpSolverBodyPool.resizeNoInitialize(0);
 | |
| 	return 0.f;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// btSequentialImpulseConstraintSolver Sequentially applies impulses
 | |
| btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btDispatcher* /*dispatcher*/)
 | |
| {
 | |
| 
 | |
| 	BT_PROFILE("solveGroup");
 | |
| 	//you need to provide at least some bodies
 | |
| 
 | |
| 	solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr,  numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
 | |
| 
 | |
| 	solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr,  numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
 | |
| 
 | |
| 	solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
 | |
| 
 | |
| 	return 0.f;
 | |
| }
 | |
| 
 | |
| void	btSequentialImpulseConstraintSolver::reset()
 | |
| {
 | |
| 	m_btSeed2 = 0;
 | |
| }
 |