856 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			856 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| /*
 | |
| Added by Roman Ponomarev (rponom@gmail.com)
 | |
| April 04, 2008
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "btSliderConstraint.h"
 | |
| #include "BulletDynamics/Dynamics/btRigidBody.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| #include <new>
 | |
| 
 | |
| #define USE_OFFSET_FOR_CONSTANT_FRAME true
 | |
| 
 | |
| void btSliderConstraint::initParams()
 | |
| {
 | |
|     m_lowerLinLimit = btScalar(1.0);
 | |
|     m_upperLinLimit = btScalar(-1.0);
 | |
|     m_lowerAngLimit = btScalar(0.);
 | |
|     m_upperAngLimit = btScalar(0.);
 | |
| 	m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingDirLin = btScalar(0.);
 | |
| 	m_cfmDirLin = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 	m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingDirAng = btScalar(0.);
 | |
| 	m_cfmDirAng = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 	m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
 | |
| 	m_cfmOrthoLin = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 	m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
 | |
| 	m_cfmOrthoAng = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 	m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
 | |
| 	m_cfmLimLin = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 	m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
 | |
| 	m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
 | |
| 	m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
 | |
| 	m_cfmLimAng = SLIDER_CONSTRAINT_DEF_CFM;
 | |
| 
 | |
| 	m_poweredLinMotor = false;
 | |
|     m_targetLinMotorVelocity = btScalar(0.);
 | |
|     m_maxLinMotorForce = btScalar(0.);
 | |
| 	m_accumulatedLinMotorImpulse = btScalar(0.0);
 | |
| 
 | |
| 	m_poweredAngMotor = false;
 | |
|     m_targetAngMotorVelocity = btScalar(0.);
 | |
|     m_maxAngMotorForce = btScalar(0.);
 | |
| 	m_accumulatedAngMotorImpulse = btScalar(0.0);
 | |
| 
 | |
| 	m_flags = 0;
 | |
| 	m_flags = 0;
 | |
| 
 | |
| 	m_useOffsetForConstraintFrame = USE_OFFSET_FOR_CONSTANT_FRAME;
 | |
| 
 | |
| 	calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
 | |
|         : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB),
 | |
| 		m_useSolveConstraintObsolete(false),
 | |
| 		m_frameInA(frameInA),
 | |
|         m_frameInB(frameInB),
 | |
| 		m_useLinearReferenceFrameA(useLinearReferenceFrameA)
 | |
| {
 | |
| 	initParams();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA)
 | |
|         : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB),
 | |
| 		m_useSolveConstraintObsolete(false),
 | |
| 		m_frameInB(frameInB),
 | |
| 		m_useLinearReferenceFrameA(useLinearReferenceFrameA)
 | |
| {
 | |
| 	///not providing rigidbody A means implicitly using worldspace for body A
 | |
| 	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
 | |
| //	m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin());
 | |
| 
 | |
| 	initParams();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btSliderConstraint::getInfo1(btConstraintInfo1* info)
 | |
| {
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular
 | |
| 		info->nub = 2; 
 | |
| 		//prepare constraint
 | |
| 		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 		testAngLimits();
 | |
| 		testLinLimits();
 | |
| 		if(getSolveLinLimit() || getPoweredLinMotor())
 | |
| 		{
 | |
| 			info->m_numConstraintRows++; // limit 3rd linear as well
 | |
| 			info->nub--; 
 | |
| 		}
 | |
| 		if(getSolveAngLimit() || getPoweredAngMotor())
 | |
| 		{
 | |
| 			info->m_numConstraintRows++; // limit 3rd angular as well
 | |
| 			info->nub--; 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btSliderConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
 | |
| {
 | |
| 
 | |
| 	info->m_numConstraintRows = 6; // Fixed 2 linear + 2 angular + 1 limit (even if not used)
 | |
| 	info->nub = 0; 
 | |
| }
 | |
| 
 | |
| void btSliderConstraint::getInfo2(btConstraintInfo2* info)
 | |
| {
 | |
| 	getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(), m_rbA.getLinearVelocity(),m_rbB.getLinearVelocity(), m_rbA.getInvMass(),m_rbB.getInvMass());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btSliderConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
 | |
| {
 | |
| 	if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete))
 | |
| 	{
 | |
| 		m_calculatedTransformA = transA * m_frameInA;
 | |
| 		m_calculatedTransformB = transB * m_frameInB;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_calculatedTransformA = transB * m_frameInB;
 | |
| 		m_calculatedTransformB = transA * m_frameInA;
 | |
| 	}
 | |
| 	m_realPivotAInW = m_calculatedTransformA.getOrigin();
 | |
| 	m_realPivotBInW = m_calculatedTransformB.getOrigin();
 | |
| 	m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
 | |
| 	if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		m_delta = m_realPivotBInW - m_realPivotAInW;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_delta = m_realPivotAInW - m_realPivotBInW;
 | |
| 	}
 | |
| 	m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
 | |
|     btVector3 normalWorld;
 | |
|     int i;
 | |
|     //linear part
 | |
|     for(i = 0; i < 3; i++)
 | |
|     {
 | |
| 		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
 | |
| 		m_depth[i] = m_delta.dot(normalWorld);
 | |
|     }
 | |
| }
 | |
|  
 | |
| 
 | |
| 
 | |
| void btSliderConstraint::testLinLimits(void)
 | |
| {
 | |
| 	m_solveLinLim = false;
 | |
| 	m_linPos = m_depth[0];
 | |
| 	if(m_lowerLinLimit <= m_upperLinLimit)
 | |
| 	{
 | |
| 		if(m_depth[0] > m_upperLinLimit)
 | |
| 		{
 | |
| 			m_depth[0] -= m_upperLinLimit;
 | |
| 			m_solveLinLim = true;
 | |
| 		}
 | |
| 		else if(m_depth[0] < m_lowerLinLimit)
 | |
| 		{
 | |
| 			m_depth[0] -= m_lowerLinLimit;
 | |
| 			m_solveLinLim = true;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			m_depth[0] = btScalar(0.);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_depth[0] = btScalar(0.);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btSliderConstraint::testAngLimits(void)
 | |
| {
 | |
| 	m_angDepth = btScalar(0.);
 | |
| 	m_solveAngLim = false;
 | |
| 	if(m_lowerAngLimit <= m_upperAngLimit)
 | |
| 	{
 | |
| 		const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
 | |
| 		const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
 | |
| 		const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
 | |
| //		btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));  
 | |
| 		btScalar rot = btAtan2(axisB0.dot(axisA1), axisB0.dot(axisA0));  
 | |
| 		rot = btAdjustAngleToLimits(rot, m_lowerAngLimit, m_upperAngLimit);
 | |
| 		m_angPos = rot;
 | |
| 		if(rot < m_lowerAngLimit)
 | |
| 		{
 | |
| 			m_angDepth = rot - m_lowerAngLimit;
 | |
| 			m_solveAngLim = true;
 | |
| 		} 
 | |
| 		else if(rot > m_upperAngLimit)
 | |
| 		{
 | |
| 			m_angDepth = rot - m_upperAngLimit;
 | |
| 			m_solveAngLim = true;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btVector3 btSliderConstraint::getAncorInA(void)
 | |
| {
 | |
| 	btVector3 ancorInA;
 | |
| 	ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis;
 | |
| 	ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA;
 | |
| 	return ancorInA;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btVector3 btSliderConstraint::getAncorInB(void)
 | |
| {
 | |
| 	btVector3 ancorInB;
 | |
| 	ancorInB = m_frameInB.getOrigin();
 | |
| 	return ancorInB;
 | |
| }
 | |
| 
 | |
| 
 | |
| void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB, const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass  )
 | |
| {
 | |
| 	const btTransform& trA = getCalculatedTransformA();
 | |
| 	const btTransform& trB = getCalculatedTransformB();
 | |
| 	
 | |
| 	btAssert(!m_useSolveConstraintObsolete);
 | |
| 	int i, s = info->rowskip;
 | |
| 	
 | |
| 	btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f);
 | |
| 	
 | |
| 	// difference between frames in WCS
 | |
| 	btVector3 ofs = trB.getOrigin() - trA.getOrigin();
 | |
| 	// now get weight factors depending on masses
 | |
| 	btScalar miA = rbAinvMass;
 | |
| 	btScalar miB = rbBinvMass;
 | |
| 	bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
 | |
| 	btScalar miS = miA + miB;
 | |
| 	btScalar factA, factB;
 | |
| 	if(miS > btScalar(0.f))
 | |
| 	{
 | |
| 		factA = miB / miS;
 | |
| 	}
 | |
| 	else 
 | |
| 	{
 | |
| 		factA = btScalar(0.5f);
 | |
| 	}
 | |
| 	factB = btScalar(1.0f) - factA;
 | |
| 	btVector3 ax1, p, q;
 | |
| 	btVector3 ax1A = trA.getBasis().getColumn(0);
 | |
| 	btVector3 ax1B = trB.getBasis().getColumn(0);
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{
 | |
| 		// get the desired direction of slider axis
 | |
| 		// as weighted sum of X-orthos of frameA and frameB in WCS
 | |
| 		ax1 = ax1A * factA + ax1B * factB;
 | |
| 		ax1.normalize();
 | |
| 		// construct two orthos to slider axis
 | |
| 		btPlaneSpace1 (ax1, p, q);
 | |
| 	}
 | |
| 	else
 | |
| 	{ // old way - use frameA
 | |
| 		ax1 = trA.getBasis().getColumn(0);
 | |
| 		// get 2 orthos to slider axis (Y, Z)
 | |
| 		p = trA.getBasis().getColumn(1);
 | |
| 		q = trA.getBasis().getColumn(2);
 | |
| 	}
 | |
| 	// make rotations around these orthos equal
 | |
| 	// the slider axis should be the only unconstrained
 | |
| 	// rotational axis, the angular velocity of the two bodies perpendicular to
 | |
| 	// the slider axis should be equal. thus the constraint equations are
 | |
| 	//    p*w1 - p*w2 = 0
 | |
| 	//    q*w1 - q*w2 = 0
 | |
| 	// where p and q are unit vectors normal to the slider axis, and w1 and w2
 | |
| 	// are the angular velocity vectors of the two bodies.
 | |
| 	info->m_J1angularAxis[0] = p[0];
 | |
| 	info->m_J1angularAxis[1] = p[1];
 | |
| 	info->m_J1angularAxis[2] = p[2];
 | |
| 	info->m_J1angularAxis[s+0] = q[0];
 | |
| 	info->m_J1angularAxis[s+1] = q[1];
 | |
| 	info->m_J1angularAxis[s+2] = q[2];
 | |
| 
 | |
| 	info->m_J2angularAxis[0] = -p[0];
 | |
| 	info->m_J2angularAxis[1] = -p[1];
 | |
| 	info->m_J2angularAxis[2] = -p[2];
 | |
| 	info->m_J2angularAxis[s+0] = -q[0];
 | |
| 	info->m_J2angularAxis[s+1] = -q[1];
 | |
| 	info->m_J2angularAxis[s+2] = -q[2];
 | |
| 	// compute the right hand side of the constraint equation. set relative
 | |
| 	// body velocities along p and q to bring the slider back into alignment.
 | |
| 	// if ax1A,ax1B are the unit length slider axes as computed from bodyA and
 | |
| 	// bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
 | |
| 	// if "theta" is the angle between ax1 and ax2, we need an angular velocity
 | |
| 	// along u to cover angle erp*theta in one step :
 | |
| 	//   |angular_velocity| = angle/time = erp*theta / stepsize
 | |
| 	//                      = (erp*fps) * theta
 | |
| 	//    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
 | |
| 	//                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
 | |
| 	// ...as ax1 and ax2 are unit length. if theta is smallish,
 | |
| 	// theta ~= sin(theta), so
 | |
| 	//    angular_velocity  = (erp*fps) * (ax1 x ax2)
 | |
| 	// ax1 x ax2 is in the plane space of ax1, so we project the angular
 | |
| 	// velocity to p and q to find the right hand side.
 | |
| //	btScalar k = info->fps * info->erp * getSoftnessOrthoAng();
 | |
| 	btScalar currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTANG) ? m_softnessOrthoAng : m_softnessOrthoAng * info->erp;
 | |
| 	btScalar k = info->fps * currERP;
 | |
| 
 | |
| 	btVector3 u = ax1A.cross(ax1B);
 | |
| 	info->m_constraintError[0] = k * u.dot(p);
 | |
| 	info->m_constraintError[s] = k * u.dot(q);
 | |
| 	if(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG)
 | |
| 	{
 | |
| 		info->cfm[0] = m_cfmOrthoAng;
 | |
| 		info->cfm[s] = m_cfmOrthoAng;
 | |
| 	}
 | |
| 
 | |
| 	int nrow = 1; // last filled row
 | |
| 	int srow;
 | |
| 	btScalar limit_err;
 | |
| 	int limit;
 | |
| 
 | |
| 	// next two rows. 
 | |
| 	// we want: velA + wA x relA == velB + wB x relB ... but this would
 | |
| 	// result in three equations, so we project along two orthos to the slider axis
 | |
| 
 | |
| 	btTransform bodyA_trans = transA;
 | |
| 	btTransform bodyB_trans = transB;
 | |
| 	nrow++;
 | |
| 	int s2 = nrow * s;
 | |
| 	nrow++;
 | |
| 	int s3 = nrow * s;
 | |
| 	btVector3 tmpA(0,0,0), tmpB(0,0,0), relA(0,0,0), relB(0,0,0), c(0,0,0);
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{
 | |
| 		// get vector from bodyB to frameB in WCS
 | |
| 		relB = trB.getOrigin() - bodyB_trans.getOrigin();
 | |
| 		// get its projection to slider axis
 | |
| 		btVector3 projB = ax1 * relB.dot(ax1);
 | |
| 		// get vector directed from bodyB to slider axis (and orthogonal to it)
 | |
| 		btVector3 orthoB = relB - projB;
 | |
| 		// same for bodyA
 | |
| 		relA = trA.getOrigin() - bodyA_trans.getOrigin();
 | |
| 		btVector3 projA = ax1 * relA.dot(ax1);
 | |
| 		btVector3 orthoA = relA - projA;
 | |
| 		// get desired offset between frames A and B along slider axis
 | |
| 		btScalar sliderOffs = m_linPos - m_depth[0];
 | |
| 		// desired vector from projection of center of bodyA to projection of center of bodyB to slider axis
 | |
| 		btVector3 totalDist = projA + ax1 * sliderOffs - projB;
 | |
| 		// get offset vectors relA and relB
 | |
| 		relA = orthoA + totalDist * factA;
 | |
| 		relB = orthoB - totalDist * factB;
 | |
| 		// now choose average ortho to slider axis
 | |
| 		p = orthoB * factA + orthoA * factB;
 | |
| 		btScalar len2 = p.length2();
 | |
| 		if(len2 > SIMD_EPSILON)
 | |
| 		{
 | |
| 			p /= btSqrt(len2);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			p = trA.getBasis().getColumn(1);
 | |
| 		}
 | |
| 		// make one more ortho
 | |
| 		q = ax1.cross(p);
 | |
| 		// fill two rows
 | |
| 		tmpA = relA.cross(p);
 | |
| 		tmpB = relB.cross(p);
 | |
| 		for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i];
 | |
| 		tmpA = relA.cross(q);
 | |
| 		tmpB = relB.cross(q);
 | |
| 		if(hasStaticBody && getSolveAngLimit())
 | |
| 		{ // to make constraint between static and dynamic objects more rigid
 | |
| 			// remove wA (or wB) from equation if angular limit is hit
 | |
| 			tmpB *= factB;
 | |
| 			tmpA *= factA;
 | |
| 		}
 | |
| 		for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmpA[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i];
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
 | |
| 	}
 | |
| 	else
 | |
| 	{	// old way - maybe incorrect if bodies are not on the slider axis
 | |
| 		// see discussion "Bug in slider constraint" http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4024&start=0
 | |
| 		c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin();
 | |
| 		btVector3 tmp = c.cross(p);
 | |
| 		for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i];
 | |
| 		tmp = c.cross(q);
 | |
| 		for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i];
 | |
| 
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
 | |
| 	}
 | |
| 	// compute two elements of right hand side
 | |
| 
 | |
| 	//	k = info->fps * info->erp * getSoftnessOrthoLin();
 | |
| 	currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN) ? m_softnessOrthoLin : m_softnessOrthoLin * info->erp;
 | |
| 	k = info->fps * currERP;
 | |
| 
 | |
| 	btScalar rhs = k * p.dot(ofs);
 | |
| 	info->m_constraintError[s2] = rhs;
 | |
| 	rhs = k * q.dot(ofs);
 | |
| 	info->m_constraintError[s3] = rhs;
 | |
| 	if(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN)
 | |
| 	{
 | |
| 		info->cfm[s2] = m_cfmOrthoLin;
 | |
| 		info->cfm[s3] = m_cfmOrthoLin;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// check linear limits
 | |
| 	limit_err = btScalar(0.0);
 | |
| 	limit = 0;
 | |
| 	if(getSolveLinLimit())
 | |
| 	{
 | |
| 		limit_err = getLinDepth() *  signFact;
 | |
| 		limit = (limit_err > btScalar(0.0)) ? 2 : 1;
 | |
| 	}
 | |
| 	bool powered = getPoweredLinMotor();
 | |
| 	// if the slider has joint limits or motor, add in the extra row
 | |
| 	if (limit || powered)
 | |
| 	{
 | |
| 		nrow++;
 | |
| 		srow = nrow * info->rowskip;
 | |
| 		info->m_J1linearAxis[srow+0] = ax1[0];
 | |
| 		info->m_J1linearAxis[srow+1] = ax1[1];
 | |
| 		info->m_J1linearAxis[srow+2] = ax1[2];
 | |
| 		info->m_J2linearAxis[srow+0] = -ax1[0];
 | |
| 		info->m_J2linearAxis[srow+1] = -ax1[1];
 | |
| 		info->m_J2linearAxis[srow+2] = -ax1[2];
 | |
| 		// linear torque decoupling step:
 | |
| 		//
 | |
| 		// we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies
 | |
| 		// do not create a torque couple. in other words, the points that the
 | |
| 		// constraint force is applied at must lie along the same ax1 axis.
 | |
| 		// a torque couple will result in limited slider-jointed free
 | |
| 		// bodies from gaining angular momentum.
 | |
| 		if(m_useOffsetForConstraintFrame)
 | |
| 		{
 | |
| 			// this is needed only when bodyA and bodyB are both dynamic.
 | |
| 			if(!hasStaticBody)
 | |
| 			{
 | |
| 				tmpA = relA.cross(ax1);
 | |
| 				tmpB = relB.cross(ax1);
 | |
| 				info->m_J1angularAxis[srow+0] = tmpA[0];
 | |
| 				info->m_J1angularAxis[srow+1] = tmpA[1];
 | |
| 				info->m_J1angularAxis[srow+2] = tmpA[2];
 | |
| 				info->m_J2angularAxis[srow+0] = -tmpB[0];
 | |
| 				info->m_J2angularAxis[srow+1] = -tmpB[1];
 | |
| 				info->m_J2angularAxis[srow+2] = -tmpB[2];
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{ // The old way. May be incorrect if bodies are not on the slider axis
 | |
| 			btVector3 ltd;	// Linear Torque Decoupling vector (a torque)
 | |
| 			ltd = c.cross(ax1);
 | |
| 			info->m_J1angularAxis[srow+0] = factA*ltd[0];
 | |
| 			info->m_J1angularAxis[srow+1] = factA*ltd[1];
 | |
| 			info->m_J1angularAxis[srow+2] = factA*ltd[2];
 | |
| 			info->m_J2angularAxis[srow+0] = factB*ltd[0];
 | |
| 			info->m_J2angularAxis[srow+1] = factB*ltd[1];
 | |
| 			info->m_J2angularAxis[srow+2] = factB*ltd[2];
 | |
| 		}
 | |
| 		// right-hand part
 | |
| 		btScalar lostop = getLowerLinLimit();
 | |
| 		btScalar histop = getUpperLinLimit();
 | |
| 		if(limit && (lostop == histop))
 | |
| 		{  // the joint motor is ineffective
 | |
| 			powered = false;
 | |
| 		}
 | |
| 		info->m_constraintError[srow] = 0.;
 | |
| 		info->m_lowerLimit[srow] = 0.;
 | |
| 		info->m_upperLimit[srow] = 0.;
 | |
| 		currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN) ? m_softnessLimLin : info->erp;
 | |
| 		if(powered)
 | |
| 		{
 | |
| 			if(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_cfmDirLin;
 | |
| 			}
 | |
| 			btScalar tag_vel = getTargetLinMotorVelocity();
 | |
| 			btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * currERP);
 | |
| 			info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity();
 | |
| 			info->m_lowerLimit[srow] += -getMaxLinMotorForce() / info->fps;
 | |
| 			info->m_upperLimit[srow] += getMaxLinMotorForce() / info->fps;
 | |
| 		}
 | |
| 		if(limit)
 | |
| 		{
 | |
| 			k = info->fps * currERP;
 | |
| 			info->m_constraintError[srow] += k * limit_err;
 | |
| 			if(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_cfmLimLin;
 | |
| 			}
 | |
| 			if(lostop == histop) 
 | |
| 			{	// limited low and high simultaneously
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else if(limit == 1) 
 | |
| 			{ // low limit
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = 0;
 | |
| 			}
 | |
| 			else 
 | |
| 			{ // high limit
 | |
| 				info->m_lowerLimit[srow] = 0;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that)
 | |
| 			btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin());
 | |
| 			if(bounce > btScalar(0.0))
 | |
| 			{
 | |
| 				btScalar vel = linVelA.dot(ax1);
 | |
| 				vel -= linVelB.dot(ax1);
 | |
| 				vel *= signFact;
 | |
| 				// only apply bounce if the velocity is incoming, and if the
 | |
| 				// resulting c[] exceeds what we already have.
 | |
| 				if(limit == 1)
 | |
| 				{	// low limit
 | |
| 					if(vel < 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if (newc > info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else
 | |
| 				{ // high limit - all those computations are reversed
 | |
| 					if(vel > 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc < info->m_constraintError[srow]) 
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			info->m_constraintError[srow] *= getSoftnessLimLin();
 | |
| 		} // if(limit)
 | |
| 	} // if linear limit
 | |
| 	// check angular limits
 | |
| 	limit_err = btScalar(0.0);
 | |
| 	limit = 0;
 | |
| 	if(getSolveAngLimit())
 | |
| 	{
 | |
| 		limit_err = getAngDepth();
 | |
| 		limit = (limit_err > btScalar(0.0)) ? 1 : 2;
 | |
| 	}
 | |
| 	// if the slider has joint limits, add in the extra row
 | |
| 	powered = getPoweredAngMotor();
 | |
| 	if(limit || powered)
 | |
| 	{
 | |
| 		nrow++;
 | |
| 		srow = nrow * info->rowskip;
 | |
| 		info->m_J1angularAxis[srow+0] = ax1[0];
 | |
| 		info->m_J1angularAxis[srow+1] = ax1[1];
 | |
| 		info->m_J1angularAxis[srow+2] = ax1[2];
 | |
| 
 | |
| 		info->m_J2angularAxis[srow+0] = -ax1[0];
 | |
| 		info->m_J2angularAxis[srow+1] = -ax1[1];
 | |
| 		info->m_J2angularAxis[srow+2] = -ax1[2];
 | |
| 
 | |
| 		btScalar lostop = getLowerAngLimit();
 | |
| 		btScalar histop = getUpperAngLimit();
 | |
| 		if(limit && (lostop == histop))
 | |
| 		{  // the joint motor is ineffective
 | |
| 			powered = false;
 | |
| 		}
 | |
| 		currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMANG) ? m_softnessLimAng : info->erp;
 | |
| 		if(powered)
 | |
| 		{
 | |
| 			if(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_cfmDirAng;
 | |
| 			}
 | |
| 			btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * currERP);
 | |
| 			info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity();
 | |
| 			info->m_lowerLimit[srow] = -getMaxAngMotorForce() / info->fps;
 | |
| 			info->m_upperLimit[srow] = getMaxAngMotorForce() / info->fps;
 | |
| 		}
 | |
| 		if(limit)
 | |
| 		{
 | |
| 			k = info->fps * currERP;
 | |
| 			info->m_constraintError[srow] += k * limit_err;
 | |
| 			if(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_cfmLimAng;
 | |
| 			}
 | |
| 			if(lostop == histop) 
 | |
| 			{
 | |
| 				// limited low and high simultaneously
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else if(limit == 1) 
 | |
| 			{ // low limit
 | |
| 				info->m_lowerLimit[srow] = 0;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else 
 | |
| 			{ // high limit
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = 0;
 | |
| 			}
 | |
| 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
 | |
| 			btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng());
 | |
| 			if(bounce > btScalar(0.0))
 | |
| 			{
 | |
| 				btScalar vel = m_rbA.getAngularVelocity().dot(ax1);
 | |
| 				vel -= m_rbB.getAngularVelocity().dot(ax1);
 | |
| 				// only apply bounce if the velocity is incoming, and if the
 | |
| 				// resulting c[] exceeds what we already have.
 | |
| 				if(limit == 1)
 | |
| 				{	// low limit
 | |
| 					if(vel < 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc > info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else
 | |
| 				{	// high limit - all those computations are reversed
 | |
| 					if(vel > 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc < info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			info->m_constraintError[srow] *= getSoftnessLimAng();
 | |
| 		} // if(limit)
 | |
| 	} // if angular limit or powered
 | |
| }
 | |
| 
 | |
| 
 | |
| ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | |
| ///If no axis is provided, it uses the default axis for this constraint.
 | |
| void btSliderConstraint::setParam(int num, btScalar value, int axis)
 | |
| {
 | |
| 	switch(num)
 | |
| 	{
 | |
| 	case BT_CONSTRAINT_STOP_ERP :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			m_softnessLimLin = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_ERP_LIMLIN;
 | |
| 		}
 | |
| 		else if(axis < 3)
 | |
| 		{
 | |
| 			m_softnessOrthoLin = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_ERP_ORTLIN;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			m_softnessLimAng = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_ERP_LIMANG;
 | |
| 		}
 | |
| 		else if(axis < 6)
 | |
| 		{
 | |
| 			m_softnessOrthoAng = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_ERP_ORTANG;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	case BT_CONSTRAINT_CFM :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			m_cfmDirLin = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_DIRLIN;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			m_cfmDirAng = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_DIRANG;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	case BT_CONSTRAINT_STOP_CFM :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			m_cfmLimLin = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_LIMLIN;
 | |
| 		}
 | |
| 		else if(axis < 3)
 | |
| 		{
 | |
| 			m_cfmOrthoLin = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_ORTLIN;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			m_cfmLimAng = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_LIMANG;
 | |
| 		}
 | |
| 		else if(axis < 6)
 | |
| 		{
 | |
| 			m_cfmOrthoAng = value;
 | |
| 			m_flags |= BT_SLIDER_FLAGS_CFM_ORTANG;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ///return the local value of parameter
 | |
| btScalar btSliderConstraint::getParam(int num, int axis) const 
 | |
| {
 | |
| 	btScalar retVal(SIMD_INFINITY);
 | |
| 	switch(num)
 | |
| 	{
 | |
| 	case BT_CONSTRAINT_STOP_ERP :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN);
 | |
| 			retVal = m_softnessLimLin;
 | |
| 		}
 | |
| 		else if(axis < 3)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN);
 | |
| 			retVal = m_softnessOrthoLin;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMANG);
 | |
| 			retVal = m_softnessLimAng;
 | |
| 		}
 | |
| 		else if(axis < 6)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTANG);
 | |
| 			retVal = m_softnessOrthoAng;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	case BT_CONSTRAINT_CFM :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN);
 | |
| 			retVal = m_cfmDirLin;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG);
 | |
| 			retVal = m_cfmDirAng;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	case BT_CONSTRAINT_STOP_CFM :
 | |
| 		if(axis < 1)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN);
 | |
| 			retVal = m_cfmLimLin;
 | |
| 		}
 | |
| 		else if(axis < 3)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN);
 | |
| 			retVal = m_cfmOrthoLin;
 | |
| 		}
 | |
| 		else if(axis == 3)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG);
 | |
| 			retVal = m_cfmLimAng;
 | |
| 		}
 | |
| 		else if(axis < 6)
 | |
| 		{
 | |
| 			btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG);
 | |
| 			retVal = m_cfmOrthoAng;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			btAssertConstrParams(0);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return retVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |