372 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* Copyright (C) 2004-2013 MBSim Development Team
 | |
| 
 | |
| Code was converted for the Bullet Continuous Collision Detection and Physics Library
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| //The original version is here
 | |
| //https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
 | |
| //This file is re-distributed under the ZLib license, with permission of the original author
 | |
| //Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
 | |
| //STL/std::vector replaced by btAlignedObjectArray
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "btLemkeAlgorithm.h"
 | |
| 
 | |
| #undef BT_DEBUG_OSTREAM
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| using namespace std;
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
| btScalar btMachEps()
 | |
| {
 | |
| 	static bool calculated=false;
 | |
| 	static btScalar machEps = btScalar(1.);
 | |
| 	if (!calculated)
 | |
| 	{
 | |
| 		do {
 | |
| 			machEps /= btScalar(2.0);
 | |
| 			// If next epsilon yields 1, then break, because current
 | |
| 			// epsilon is the machine epsilon.
 | |
| 		}
 | |
| 		while ((btScalar)(1.0 + (machEps/btScalar(2.0))) != btScalar(1.0));
 | |
| //		printf( "\nCalculated Machine epsilon: %G\n", machEps );
 | |
| 		calculated=true;
 | |
| 	}
 | |
| 	return machEps;
 | |
| }
 | |
| 
 | |
| btScalar btEpsRoot() {
 | |
| 	
 | |
| 	static btScalar epsroot = 0.;
 | |
| 	static bool alreadyCalculated = false;
 | |
| 	
 | |
| 	if (!alreadyCalculated) {
 | |
| 		epsroot = btSqrt(btMachEps());
 | |
| 		alreadyCalculated = true;
 | |
| 	}
 | |
| 	return epsroot;
 | |
| }
 | |
| 
 | |
| 	 
 | |
| 
 | |
|   btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
 | |
| {
 | |
|   
 | |
|     
 | |
|     steps = 0;
 | |
| 
 | |
|     int dim = m_q.size();
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|     if(DEBUGLEVEL >= 1) {
 | |
|       cout << "Dimension = " << dim << endl;
 | |
|     }
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
| 	btVectorXu solutionVector(2 * dim);
 | |
| 	solutionVector.setZero();
 | |
| 	  
 | |
| 	  //, INIT, 0.);
 | |
| 
 | |
| 	btMatrixXu ident(dim, dim);
 | |
| 	ident.setIdentity();
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << m_M << std::endl;
 | |
| #endif
 | |
| 
 | |
| 	btMatrixXu mNeg = m_M.negative();
 | |
| 	  
 | |
|     btMatrixXu A(dim, 2 * dim + 2);
 | |
| 	//
 | |
| 	A.setSubMatrix(0, 0, dim - 1, dim - 1,ident);
 | |
| 	A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1,mNeg);
 | |
| 	A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
 | |
| 	A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1,m_q);
 | |
| 
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << A << std::endl;
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
| 
 | |
|  //   btVectorXu q_;
 | |
|  //   q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
 | |
| 
 | |
|     btAlignedObjectArray<int> basis;
 | |
|     //At first, all w-values are in the basis
 | |
|     for (int i = 0; i < dim; i++)
 | |
|       basis.push_back(i);
 | |
| 
 | |
| 	int pivotRowIndex = -1;
 | |
| 	btScalar minValue = 1e30f;
 | |
| 	bool greaterZero = true;
 | |
| 	for (int i=0;i<dim;i++)
 | |
| 	{
 | |
| 		btScalar v =A(i,2*dim+1);
 | |
| 		if (v<minValue)
 | |
| 		{
 | |
| 			minValue=v;
 | |
| 			pivotRowIndex = i;
 | |
| 		}
 | |
| 		if (v<0)
 | |
| 			greaterZero = false;
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 	
 | |
|   //  int pivotRowIndex = q_.minIndex();//minIndex(q_);     // first row is that with lowest q-value
 | |
|     int z0Row = pivotRowIndex;           // remember the col of z0 for ending algorithm afterwards
 | |
|     int pivotColIndex = 2 * dim;         // first col is that of z0
 | |
| 
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|     if (DEBUGLEVEL >= 3)
 | |
| 	{
 | |
|     //  cout << "A: " << A << endl;
 | |
|       cout << "pivotRowIndex " << pivotRowIndex << endl;
 | |
|       cout << "pivotColIndex " << pivotColIndex << endl;
 | |
|       cout << "Basis: ";
 | |
|       for (int i = 0; i < basis.size(); i++)
 | |
|         cout << basis[i] << " ";
 | |
|       cout << endl;
 | |
|     }
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
| 	if (!greaterZero)
 | |
| 	{
 | |
| 
 | |
|       if (maxloops == 0) {
 | |
| 		  maxloops = 100;
 | |
| //        maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
 | |
|       }
 | |
| 
 | |
|       /*start looping*/
 | |
|       for(steps = 0; steps < maxloops; steps++) {
 | |
| 
 | |
|         GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|         if (DEBUGLEVEL >= 3) {
 | |
|         //  cout << "A: " << A << endl;
 | |
|           cout << "pivotRowIndex " << pivotRowIndex << endl;
 | |
|           cout << "pivotColIndex " << pivotColIndex << endl;
 | |
|           cout << "Basis: ";
 | |
|           for (int i = 0; i < basis.size(); i++)
 | |
|             cout << basis[i] << " ";
 | |
|           cout << endl;
 | |
|         }
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
|         int pivotColIndexOld = pivotColIndex;
 | |
| 
 | |
|         /*find new column index */
 | |
|         if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
 | |
|           pivotColIndex = basis[pivotRowIndex] + dim;
 | |
|         else
 | |
|           //else do it the other way round and get in the corresponding w-value
 | |
|           pivotColIndex = basis[pivotRowIndex] - dim;
 | |
| 
 | |
|         /*the column becomes part of the basis*/
 | |
|         basis[pivotRowIndex] = pivotColIndexOld;
 | |
| 
 | |
|         pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
 | |
| 
 | |
|         if(z0Row == pivotRowIndex) { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
 | |
|           GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
 | |
|           basis[pivotRowIndex] = pivotColIndex; //update basis
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       }
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|       if(DEBUGLEVEL >= 1) {
 | |
|         cout << "Number of loops: " << steps << endl;
 | |
|         cout << "Number of maximal loops: " << maxloops << endl;
 | |
|       }
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
|       if(!validBasis(basis)) {
 | |
|         info = -1;
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|         if(DEBUGLEVEL >= 1)
 | |
|           cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
|         return solutionVector;
 | |
|       }
 | |
| 
 | |
|     }
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
|     if (DEBUGLEVEL >= 2) {
 | |
|      // cout << "A: " << A << endl;
 | |
|       cout << "pivotRowIndex " << pivotRowIndex << endl;
 | |
|       cout << "pivotColIndex " << pivotColIndex << endl;
 | |
|     }
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
| 
 | |
|     for (int i = 0; i < basis.size(); i++)
 | |
| 	{
 | |
|       solutionVector[basis[i]] = A(i,2*dim+1);//q_[i];
 | |
| 	}
 | |
| 
 | |
|     info = 0;
 | |
| 
 | |
|     return solutionVector;
 | |
|   }
 | |
| 
 | |
|   int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int & pivotColIndex) {
 | |
| 	  int RowIndex = 0;
 | |
| 	  int dim = A.rows();
 | |
| 	  btAlignedObjectArray<btVectorXu> Rows;
 | |
| 	  for (int row = 0; row < dim; row++) 
 | |
| 	  {
 | |
| 
 | |
| 		  btVectorXu vec(dim + 1);
 | |
| 		  vec.setZero();//, INIT, 0.)
 | |
| 		  Rows.push_back(vec);
 | |
| 		  btScalar a = A(row, pivotColIndex);
 | |
| 		  if (a > 0) {
 | |
| 			  Rows[row][0] = A(row, 2 * dim + 1) / a;
 | |
| 			  Rows[row][1] = A(row, 2 * dim) / a;
 | |
| 			  for (int j = 2; j < dim + 1; j++)
 | |
| 				  Rows[row][j] = A(row, j - 1) / a;
 | |
| 
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 		//		if (DEBUGLEVEL) {
 | |
| 			//	  cout << "Rows(" << row << ") = " << Rows[row] << endl;
 | |
| 				// }
 | |
| #endif 
 | |
| 		  }
 | |
| 	  }
 | |
| 
 | |
| 	  for (int i = 0; i < Rows.size(); i++) 
 | |
| 	  {
 | |
| 		  if (Rows[i].nrm2() > 0.) {
 | |
| 
 | |
| 			  int j = 0;
 | |
| 			  for (; j < Rows.size(); j++) 
 | |
| 			  {
 | |
| 				  if(i != j)
 | |
| 				  {
 | |
| 					  if(Rows[j].nrm2() > 0.)
 | |
| 					  {
 | |
| 						  btVectorXu test(dim + 1);
 | |
| 						  for (int ii=0;ii<dim+1;ii++)
 | |
| 						  {
 | |
| 							  test[ii] = Rows[j][ii] - Rows[i][ii];
 | |
| 						  }
 | |
| 
 | |
| 						  //=Rows[j] - Rows[i]
 | |
| 						  if (! LexicographicPositive(test))
 | |
| 							  break;
 | |
| 					  }
 | |
| 				  }
 | |
| 			  }
 | |
| 
 | |
| 			  if (j == Rows.size()) 
 | |
| 			  {
 | |
| 				  RowIndex += i;
 | |
| 				  break;
 | |
| 			  }
 | |
| 		  }
 | |
| 	  }
 | |
| 
 | |
| 	  return RowIndex;
 | |
|   }
 | |
| 
 | |
|   bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu & v)
 | |
| {
 | |
|     int i = 0;
 | |
|   //  if (DEBUGLEVEL)
 | |
|     //  cout << "v " << v << endl;
 | |
| 
 | |
|     while(i < v.size()-1 && fabs(v[i]) < btMachEps())
 | |
|       i++;
 | |
|     if (v[i] > 0)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis) 
 | |
| {
 | |
| 
 | |
| 	btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << A << std::endl;
 | |
| #endif
 | |
| 
 | |
|     for (int i = 0; i < A.rows(); i++)
 | |
| 	{
 | |
|       if (i != pivotRowIndex)
 | |
| 	  {
 | |
|         for (int j = 0; j < A.cols(); j++)
 | |
| 		{
 | |
|           if (j != pivotColumnIndex)
 | |
| 		  {
 | |
| 			  btScalar v = A(i, j);
 | |
| 			  v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
 | |
|             A.setElem(i, j, v);
 | |
| 		  }
 | |
| 		}
 | |
| 	  }
 | |
| 	}
 | |
| 
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << A << std::endl;
 | |
| #endif //BT_DEBUG_OSTREAM
 | |
|     for (int i = 0; i < A.cols(); i++) 
 | |
| 	{
 | |
|       A.mulElem(pivotRowIndex, i,-a);
 | |
|     }
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << A << std::endl;
 | |
| #endif //#ifdef BT_DEBUG_OSTREAM
 | |
| 
 | |
|     for (int i = 0; i < A.rows(); i++)
 | |
| 	{
 | |
|       if (i != pivotRowIndex)
 | |
| 	  {
 | |
|         A.setElem(i, pivotColumnIndex,0);
 | |
| 	  }
 | |
| 	}
 | |
| #ifdef BT_DEBUG_OSTREAM
 | |
| 	cout << A << std::endl;
 | |
| #endif //#ifdef BT_DEBUG_OSTREAM
 | |
|   }
 | |
| 
 | |
|   bool btLemkeAlgorithm::greaterZero(const btVectorXu & vector)
 | |
| {
 | |
|     bool isGreater = true;
 | |
|     for (int i = 0; i < vector.size(); i++) {
 | |
|       if (vector[i] < 0) {
 | |
|         isGreater = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return isGreater;
 | |
|   }
 | |
| 
 | |
|   bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis) 
 | |
|   {
 | |
|     bool isValid = true;
 | |
|     for (int i = 0; i < basis.size(); i++) {
 | |
|       if (basis[i] >= basis.size() * 2) { //then z0 is in the base
 | |
|         isValid = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return isValid;
 | |
|   }
 | |
| 
 | |
| 
 |