674 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			674 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import bpy, math, os, gpu, bgl, importlib
 | |
| import numpy as np
 | |
| from . import utility
 | |
| from fractions import Fraction
 | |
| from gpu_extras.batch import batch_for_shader
 | |
| 
 | |
| def splitLogLuvAlphaAtlas(imageIn, outDir, quality):
 | |
|     pass
 | |
| 
 | |
| def splitLogLuvAlpha(imageIn, outDir, quality):
 | |
|     
 | |
|     bpy.app.driver_namespace["logman"].append("Starting LogLuv split for: " + str(imageIn))
 | |
| 
 | |
|     cv2 = importlib.util.find_spec("cv2")
 | |
| 
 | |
|     if cv2 is None:
 | |
|         print("CV2 not found - Ignoring filtering")
 | |
|         return 0
 | |
|     else:
 | |
|         cv2 = importlib.__import__("cv2")
 | |
| 
 | |
|     print(imageIn)
 | |
|     image = cv2.imread(imageIn, cv2.IMREAD_UNCHANGED)
 | |
|     #cv2.imshow('image', image)
 | |
|     split = cv2.split(image)
 | |
|     merged = cv2.merge([split[0], split[1], split[2]])
 | |
|     alpha = split[3]
 | |
|     #b,g,r = cv2.split(image)
 | |
|     #merged = cv2.merge([b, g, r])
 | |
|     #alpha = cv2.merge([a,a,a])
 | |
|     image_name = os.path.basename(imageIn)[:-4]
 | |
|     #os.path.join(outDir, image_name+"_XYZ.png")
 | |
| 
 | |
|     cv2.imwrite(os.path.join(outDir, image_name+"_XYZ.png"), merged)
 | |
|     cv2.imwrite(os.path.join(outDir, image_name+"_W.png"), alpha)
 | |
| 
 | |
| def encodeLogLuvGPU(image, outDir, quality):
 | |
| 
 | |
|     bpy.app.driver_namespace["logman"].append("Starting LogLuv encode for: " + str(image.name))
 | |
| 
 | |
|     input_image = bpy.data.images[image.name]
 | |
|     image_name = input_image.name
 | |
| 
 | |
|     offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | |
| 
 | |
|     image = input_image
 | |
| 
 | |
|     vertex_shader = '''
 | |
| 
 | |
|         uniform mat4 ModelViewProjectionMatrix;
 | |
| 
 | |
|         in vec2 texCoord;
 | |
|         in vec2 pos;
 | |
|         out vec2 texCoord_interp;
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
|         //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | |
|         //gl_Position.z = 1.0;
 | |
|         gl_Position = vec4(pos.xy, 100, 100);
 | |
|         texCoord_interp = texCoord;
 | |
|         }
 | |
| 
 | |
|     '''
 | |
|     fragment_shader = '''
 | |
|         in vec2 texCoord_interp;
 | |
|         out vec4 fragColor;
 | |
| 
 | |
|         uniform sampler2D image;
 | |
|         
 | |
|         const mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );
 | |
|         vec4 LinearToLogLuv( in vec4 value )  {
 | |
|             vec3 Xp_Y_XYZp = cLogLuvM * value.rgb;
 | |
|             Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );
 | |
|             vec4 vResult;
 | |
|             vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;
 | |
|             float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;
 | |
|             vResult.w = fract( Le );
 | |
|             vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;
 | |
|             return vResult;
 | |
|             //return vec4(Xp_Y_XYZp,1);
 | |
|         }
 | |
|         
 | |
|         const mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );
 | |
|         vec4 LogLuvToLinear( in vec4 value ) {
 | |
|             float Le = value.z * 255.0 + value.w;
 | |
|             vec3 Xp_Y_XYZp;
 | |
|             Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );
 | |
|             Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;
 | |
|             Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;
 | |
|             vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;
 | |
|             //return vec4( max( vRGB, 0.0 ), 1.0 );
 | |
|             return vec4( max( Xp_Y_XYZp, 0.0 ), 1.0 );
 | |
|         }
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
|         //fragColor = LinearToLogLuv(pow(texture(image, texCoord_interp), vec4(0.454)));
 | |
|         fragColor = LinearToLogLuv(texture(image, texCoord_interp));
 | |
|         //fragColor = LogLuvToLinear(LinearToLogLuv(texture(image, texCoord_interp)));
 | |
|         }
 | |
| 
 | |
|     '''
 | |
| 
 | |
|     x_screen = 0
 | |
|     off_x = -100
 | |
|     off_y = -100
 | |
|     y_screen_flip = 0
 | |
|     sx = 200
 | |
|     sy = 200
 | |
| 
 | |
|     vertices = (
 | |
|                 (x_screen + off_x, y_screen_flip - off_y), 
 | |
|                 (x_screen + off_x, y_screen_flip - sy - off_y), 
 | |
|                 (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | |
|                 (x_screen + off_x + sx, y_screen_flip - off_x))
 | |
| 
 | |
|     if input_image.colorspace_settings.name != 'Linear':
 | |
|         input_image.colorspace_settings.name = 'Linear'
 | |
| 
 | |
|     # Removing .exr or .hdr prefix
 | |
|     if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | |
|         image_name = image_name[:-4]
 | |
| 
 | |
|     target_image = bpy.data.images.get(image_name + '_encoded')
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(image_name + '_encoded')
 | |
|     if not target_image:
 | |
|         target_image = bpy.data.images.new(
 | |
|                 name = image_name + '_encoded',
 | |
|                 width = input_image.size[0],
 | |
|                 height = input_image.size[1],
 | |
|                 alpha = True,
 | |
|                 float_buffer = False
 | |
|                 )
 | |
| 
 | |
|     shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | |
|     batch = batch_for_shader(
 | |
|         shader, 'TRI_FAN',
 | |
|         {
 | |
|             "pos": vertices,
 | |
|             "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     if image.gl_load():
 | |
|         raise Exception()
 | |
|     
 | |
|     with offscreen.bind():
 | |
|         bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | |
|         bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | |
| 
 | |
|         shader.bind()
 | |
|         shader.uniform_int("image", 0)
 | |
|         batch.draw(shader)
 | |
|         
 | |
|         buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | |
|         bgl.glReadBuffer(bgl.GL_BACK)
 | |
|         bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | |
| 
 | |
|     offscreen.free()
 | |
|     
 | |
|     target_image.pixels = [v / 255 for v in buffer]
 | |
|     input_image = target_image
 | |
|     
 | |
|     #Save LogLuv
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(input_image.name)
 | |
|     input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | |
|     #input_image.filepath_raw = outDir + "_encoded.png"
 | |
|     input_image.file_format = "PNG"
 | |
|     bpy.context.scene.render.image_settings.quality = quality
 | |
|     #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | |
|     input_image.save()
 | |
| 
 | |
| def encodeImageRGBDGPU(image, maxRange, outDir, quality):
 | |
|     input_image = bpy.data.images[image.name]
 | |
|     image_name = input_image.name
 | |
| 
 | |
|     offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | |
| 
 | |
|     image = input_image
 | |
| 
 | |
|     vertex_shader = '''
 | |
| 
 | |
|         uniform mat4 ModelViewProjectionMatrix;
 | |
| 
 | |
|         in vec2 texCoord;
 | |
|         in vec2 pos;
 | |
|         out vec2 texCoord_interp;
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
|         //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | |
|         //gl_Position.z = 1.0;
 | |
|         gl_Position = vec4(pos.xy, 100, 100);
 | |
|         texCoord_interp = texCoord;
 | |
|         }
 | |
| 
 | |
|     '''
 | |
|     fragment_shader = '''
 | |
|         in vec2 texCoord_interp;
 | |
|         out vec4 fragColor;
 | |
| 
 | |
|         uniform sampler2D image;
 | |
| 
 | |
|         //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
 | |
| 
 | |
|         const float PI = 3.1415926535897932384626433832795;
 | |
|         const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
 | |
| 
 | |
|         const float LinearEncodePowerApprox = 2.2;
 | |
|         const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
 | |
|         const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
 | |
| 
 | |
|         const float Epsilon = 0.0000001;
 | |
|         #define saturate(x)         clamp(x, 0.0, 1.0)
 | |
| 
 | |
|         float maxEps(float x) {
 | |
|             return max(x, Epsilon);
 | |
|         }
 | |
| 
 | |
|         float toLinearSpace(float color)
 | |
|         {
 | |
|             return pow(color, LinearEncodePowerApprox);
 | |
|         }
 | |
| 
 | |
|         vec3 toLinearSpace(vec3 color)
 | |
|         {
 | |
|             return pow(color, vec3(LinearEncodePowerApprox));
 | |
|         }
 | |
| 
 | |
|         vec4 toLinearSpace(vec4 color)
 | |
|         {
 | |
|             return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
 | |
|         }
 | |
| 
 | |
|         vec3 toGammaSpace(vec3 color)
 | |
|         {
 | |
|             return pow(color, vec3(GammaEncodePowerApprox));
 | |
|         }
 | |
| 
 | |
|         vec4 toGammaSpace(vec4 color)
 | |
|         {
 | |
|             return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
 | |
|         }
 | |
| 
 | |
|         float toGammaSpace(float color)
 | |
|         {
 | |
|             return pow(color, GammaEncodePowerApprox);
 | |
|         }
 | |
| 
 | |
|         float square(float value)
 | |
|         {
 | |
|             return value * value;
 | |
|         }
 | |
| 
 | |
|         // Check if configurable value is needed.
 | |
|         const float rgbdMaxRange = 255.0;
 | |
| 
 | |
|         vec4 toRGBD(vec3 color) {
 | |
|             float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
 | |
|             float D      = max(rgbdMaxRange / maxRGB, 1.);
 | |
|             D            = clamp(floor(D) / 255.0, 0., 1.);
 | |
|             vec3 rgb = color.rgb * D;
 | |
|             
 | |
|             // Helps with png quantization.
 | |
|             rgb = toGammaSpace(rgb);
 | |
| 
 | |
|             return vec4(rgb, D); 
 | |
|         }
 | |
| 
 | |
|         vec3 fromRGBD(vec4 rgbd) {
 | |
|             // Helps with png quantization.
 | |
|             rgbd.rgb = toLinearSpace(rgbd.rgb);
 | |
| 
 | |
|             // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
 | |
| 
 | |
|             return rgbd.rgb / rgbd.a;
 | |
|         }
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
| 
 | |
|         fragColor = toRGBD(texture(image, texCoord_interp).rgb);
 | |
| 
 | |
|         }
 | |
| 
 | |
|     '''
 | |
| 
 | |
|     x_screen = 0
 | |
|     off_x = -100
 | |
|     off_y = -100
 | |
|     y_screen_flip = 0
 | |
|     sx = 200
 | |
|     sy = 200
 | |
| 
 | |
|     vertices = (
 | |
|                 (x_screen + off_x, y_screen_flip - off_y), 
 | |
|                 (x_screen + off_x, y_screen_flip - sy - off_y), 
 | |
|                 (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | |
|                 (x_screen + off_x + sx, y_screen_flip - off_x))
 | |
| 
 | |
|     if input_image.colorspace_settings.name != 'Linear':
 | |
|         input_image.colorspace_settings.name = 'Linear'
 | |
| 
 | |
|     # Removing .exr or .hdr prefix
 | |
|     if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | |
|         image_name = image_name[:-4]
 | |
| 
 | |
|     target_image = bpy.data.images.get(image_name + '_encoded')
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(image_name + '_encoded')
 | |
|     if not target_image:
 | |
|         target_image = bpy.data.images.new(
 | |
|                 name = image_name + '_encoded',
 | |
|                 width = input_image.size[0],
 | |
|                 height = input_image.size[1],
 | |
|                 alpha = True,
 | |
|                 float_buffer = False
 | |
|                 )
 | |
| 
 | |
|     shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | |
|     batch = batch_for_shader(
 | |
|         shader, 'TRI_FAN',
 | |
|         {
 | |
|             "pos": vertices,
 | |
|             "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     if image.gl_load():
 | |
|         raise Exception()
 | |
|     
 | |
|     with offscreen.bind():
 | |
|         bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | |
|         bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | |
| 
 | |
|         shader.bind()
 | |
|         shader.uniform_int("image", 0)
 | |
|         batch.draw(shader)
 | |
|         
 | |
|         buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | |
|         bgl.glReadBuffer(bgl.GL_BACK)
 | |
|         bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | |
| 
 | |
|     offscreen.free()
 | |
|     
 | |
|     target_image.pixels = [v / 255 for v in buffer]
 | |
|     input_image = target_image
 | |
|     
 | |
|     #Save LogLuv
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(input_image.name)
 | |
|     input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | |
|     #input_image.filepath_raw = outDir + "_encoded.png"
 | |
|     input_image.file_format = "PNG"
 | |
|     bpy.context.scene.render.image_settings.quality = quality
 | |
|     #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | |
|     input_image.save()
 | |
|     
 | |
|     #Todo - Find a way to save
 | |
|     #bpy.ops.image.save_all_modified()
 | |
| 
 | |
| #TODO - FINISH THIS
 | |
| def encodeImageRGBMGPU(image, maxRange, outDir, quality):
 | |
|     input_image = bpy.data.images[image.name]
 | |
|     image_name = input_image.name
 | |
| 
 | |
|     offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | |
| 
 | |
|     image = input_image
 | |
| 
 | |
|     vertex_shader = '''
 | |
| 
 | |
|         uniform mat4 ModelViewProjectionMatrix;
 | |
| 
 | |
|         in vec2 texCoord;
 | |
|         in vec2 pos;
 | |
|         out vec2 texCoord_interp;
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
|         //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | |
|         //gl_Position.z = 1.0;
 | |
|         gl_Position = vec4(pos.xy, 100, 100);
 | |
|         texCoord_interp = texCoord;
 | |
|         }
 | |
| 
 | |
|     '''
 | |
|     fragment_shader = '''
 | |
|         in vec2 texCoord_interp;
 | |
|         out vec4 fragColor;
 | |
| 
 | |
|         uniform sampler2D image;
 | |
| 
 | |
|         //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
 | |
| 
 | |
|         const float PI = 3.1415926535897932384626433832795;
 | |
|         const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
 | |
| 
 | |
|         const float LinearEncodePowerApprox = 2.2;
 | |
|         const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
 | |
|         const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
 | |
| 
 | |
|         const float Epsilon = 0.0000001;
 | |
|         #define saturate(x)         clamp(x, 0.0, 1.0)
 | |
| 
 | |
|         float maxEps(float x) {
 | |
|             return max(x, Epsilon);
 | |
|         }
 | |
| 
 | |
|         float toLinearSpace(float color)
 | |
|         {
 | |
|             return pow(color, LinearEncodePowerApprox);
 | |
|         }
 | |
| 
 | |
|         vec3 toLinearSpace(vec3 color)
 | |
|         {
 | |
|             return pow(color, vec3(LinearEncodePowerApprox));
 | |
|         }
 | |
| 
 | |
|         vec4 toLinearSpace(vec4 color)
 | |
|         {
 | |
|             return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
 | |
|         }
 | |
| 
 | |
|         vec3 toGammaSpace(vec3 color)
 | |
|         {
 | |
|             return pow(color, vec3(GammaEncodePowerApprox));
 | |
|         }
 | |
| 
 | |
|         vec4 toGammaSpace(vec4 color)
 | |
|         {
 | |
|             return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
 | |
|         }
 | |
| 
 | |
|         float toGammaSpace(float color)
 | |
|         {
 | |
|             return pow(color, GammaEncodePowerApprox);
 | |
|         }
 | |
| 
 | |
|         float square(float value)
 | |
|         {
 | |
|             return value * value;
 | |
|         }
 | |
| 
 | |
|         // Check if configurable value is needed.
 | |
|         const float rgbdMaxRange = 255.0;
 | |
| 
 | |
|         vec4 toRGBM(vec3 color) {
 | |
| 
 | |
|             vec4 rgbm;
 | |
|             color *= 1.0/6.0;
 | |
|             rgbm.a = saturate( max( max( color.r, color.g ), max( color.b, 1e-6 ) ) );
 | |
|             rgbm.a = clamp(floor(D) / 255.0, 0., 1.);
 | |
|             rgbm.rgb = color / rgbm.a;
 | |
| 
 | |
|             return 
 | |
| 
 | |
|             float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
 | |
|             float D      = max(rgbdMaxRange / maxRGB, 1.);
 | |
|             D            = clamp(floor(D) / 255.0, 0., 1.);
 | |
|             vec3 rgb = color.rgb * D;
 | |
|             
 | |
|             // Helps with png quantization.
 | |
|             rgb = toGammaSpace(rgb);
 | |
| 
 | |
|             return vec4(rgb, D); 
 | |
|         }
 | |
| 
 | |
|         vec3 fromRGBD(vec4 rgbd) {
 | |
|             // Helps with png quantization.
 | |
|             rgbd.rgb = toLinearSpace(rgbd.rgb);
 | |
| 
 | |
|             // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
 | |
| 
 | |
|             return rgbd.rgb / rgbd.a;
 | |
|         }
 | |
| 
 | |
|         void main()
 | |
|         {
 | |
| 
 | |
|         fragColor = toRGBM(texture(image, texCoord_interp).rgb);
 | |
| 
 | |
|         }
 | |
| 
 | |
|     '''
 | |
| 
 | |
|     x_screen = 0
 | |
|     off_x = -100
 | |
|     off_y = -100
 | |
|     y_screen_flip = 0
 | |
|     sx = 200
 | |
|     sy = 200
 | |
| 
 | |
|     vertices = (
 | |
|                 (x_screen + off_x, y_screen_flip - off_y), 
 | |
|                 (x_screen + off_x, y_screen_flip - sy - off_y), 
 | |
|                 (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | |
|                 (x_screen + off_x + sx, y_screen_flip - off_x))
 | |
| 
 | |
|     if input_image.colorspace_settings.name != 'Linear':
 | |
|         input_image.colorspace_settings.name = 'Linear'
 | |
| 
 | |
|     # Removing .exr or .hdr prefix
 | |
|     if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | |
|         image_name = image_name[:-4]
 | |
| 
 | |
|     target_image = bpy.data.images.get(image_name + '_encoded')
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(image_name + '_encoded')
 | |
|     if not target_image:
 | |
|         target_image = bpy.data.images.new(
 | |
|                 name = image_name + '_encoded',
 | |
|                 width = input_image.size[0],
 | |
|                 height = input_image.size[1],
 | |
|                 alpha = True,
 | |
|                 float_buffer = False
 | |
|                 )
 | |
| 
 | |
|     shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | |
|     batch = batch_for_shader(
 | |
|         shader, 'TRI_FAN',
 | |
|         {
 | |
|             "pos": vertices,
 | |
|             "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     if image.gl_load():
 | |
|         raise Exception()
 | |
|     
 | |
|     with offscreen.bind():
 | |
|         bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | |
|         bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | |
| 
 | |
|         shader.bind()
 | |
|         shader.uniform_int("image", 0)
 | |
|         batch.draw(shader)
 | |
|         
 | |
|         buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | |
|         bgl.glReadBuffer(bgl.GL_BACK)
 | |
|         bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | |
| 
 | |
|     offscreen.free()
 | |
|     
 | |
|     target_image.pixels = [v / 255 for v in buffer]
 | |
|     input_image = target_image
 | |
|     
 | |
|     #Save LogLuv
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(input_image.name)
 | |
|     input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | |
|     #input_image.filepath_raw = outDir + "_encoded.png"
 | |
|     input_image.file_format = "PNG"
 | |
|     bpy.context.scene.render.image_settings.quality = quality
 | |
|     #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | |
|     input_image.save()
 | |
|     
 | |
|     #Todo - Find a way to save
 | |
|     #bpy.ops.image.save_all_modified()
 | |
| 
 | |
| def encodeImageRGBMCPU(image, maxRange, outDir, quality):
 | |
|     input_image = bpy.data.images[image.name]
 | |
|     image_name = input_image.name
 | |
| 
 | |
|     if input_image.colorspace_settings.name != 'Linear':
 | |
|         input_image.colorspace_settings.name = 'Linear'
 | |
| 
 | |
|     # Removing .exr or .hdr prefix
 | |
|     if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | |
|         image_name = image_name[:-4]
 | |
| 
 | |
|     target_image = bpy.data.images.get(image_name + '_encoded')
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(image_name + '_encoded')
 | |
|     if not target_image:
 | |
|         target_image = bpy.data.images.new(
 | |
|                 name = image_name + '_encoded',
 | |
|                 width = input_image.size[0],
 | |
|                 height = input_image.size[1],
 | |
|                 alpha = True,
 | |
|                 float_buffer = False
 | |
|                 )
 | |
|     
 | |
|     num_pixels = len(input_image.pixels)
 | |
|     result_pixel = list(input_image.pixels)
 | |
| 
 | |
|     for i in range(0,num_pixels,4):
 | |
|         for j in range(3):
 | |
|             result_pixel[i+j] *= 1.0 / maxRange;
 | |
|         result_pixel[i+3] = saturate(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2], 1e-6))
 | |
|         result_pixel[i+3] = math.ceil(result_pixel[i+3] * 255.0) / 255.0
 | |
|         for j in range(3):
 | |
|             result_pixel[i+j] /= result_pixel[i+3]
 | |
|     
 | |
|     target_image.pixels = result_pixel
 | |
|     input_image = target_image
 | |
|     
 | |
|     #Save RGBM
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(input_image.name)
 | |
|     input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | |
|     input_image.file_format = "PNG"
 | |
|     bpy.context.scene.render.image_settings.quality = quality
 | |
|     input_image.save()
 | |
| 
 | |
|     #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | |
|     # input_image.filepath_raw = outDir + "_encoded.png"
 | |
|     # input_image.file_format = "PNG"
 | |
|     # bpy.context.scene.render.image_settings.quality = quality
 | |
|     # input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | |
|     #input_image.
 | |
|     #input_image.save()
 | |
| 
 | |
| def saturate(num, floats=True):
 | |
|     if num <= 0:
 | |
|         num = 0
 | |
|     elif num > (1 if floats else 255):
 | |
|         num = (1 if floats else 255)
 | |
|     return num
 | |
| 
 | |
| def maxEps(x):
 | |
|     return max(x, 1e-6)
 | |
| 
 | |
| def encodeImageRGBDCPU(image, maxRange, outDir, quality):
 | |
|     input_image = bpy.data.images[image.name]
 | |
|     image_name = input_image.name
 | |
| 
 | |
|     if input_image.colorspace_settings.name != 'Linear':
 | |
|         input_image.colorspace_settings.name = 'Linear'
 | |
| 
 | |
|     # Removing .exr or .hdr prefix
 | |
|     if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | |
|         image_name = image_name[:-4]
 | |
| 
 | |
|     target_image = bpy.data.images.get(image_name + '_encoded')
 | |
|     if not target_image:
 | |
|         target_image = bpy.data.images.new(
 | |
|                 name = image_name + '_encoded',
 | |
|                 width = input_image.size[0],
 | |
|                 height = input_image.size[1],
 | |
|                 alpha = True,
 | |
|                 float_buffer = False
 | |
|                 )
 | |
|     
 | |
|     num_pixels = len(input_image.pixels)
 | |
|     result_pixel = list(input_image.pixels)
 | |
| 
 | |
|     rgbdMaxRange = 255.0
 | |
| 
 | |
|     for i in range(0,num_pixels,4):
 | |
| 
 | |
|         maxRGB = maxEps(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2]))
 | |
|         D = max(rgbdMaxRange/maxRGB, 1.0)
 | |
|         D = np.clip((math.floor(D) / 255.0), 0.0, 1.0)
 | |
| 
 | |
|         result_pixel[i] = math.pow(result_pixel[i] * D, 1/2.2)
 | |
|         result_pixel[i+1] = math.pow(result_pixel[i+1] * D, 1/2.2)
 | |
|         result_pixel[i+2] = math.pow(result_pixel[i+2] * D, 1/2.2)
 | |
|         result_pixel[i+3] = D
 | |
|     
 | |
|     target_image.pixels = result_pixel
 | |
|     
 | |
|     input_image = target_image
 | |
| 
 | |
|     #Save RGBD
 | |
|     if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | |
|         print(input_image.name)
 | |
|     input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | |
|     input_image.file_format = "PNG"
 | |
|     bpy.context.scene.render.image_settings.quality = quality
 | |
|     input_image.save() |