186 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#if defined (_WIN32) || defined (__i386__)
 | 
						|
#define BT_USE_SSE_IN_API
 | 
						|
#endif
 | 
						|
 | 
						|
#include "btMultiSphereShape.h"
 | 
						|
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
 | 
						|
#include "LinearMath/btQuaternion.h"
 | 
						|
#include "LinearMath/btSerializer.h"
 | 
						|
 | 
						|
btMultiSphereShape::btMultiSphereShape (const btVector3* positions,const btScalar* radi,int numSpheres)
 | 
						|
:btConvexInternalAabbCachingShape ()
 | 
						|
{
 | 
						|
	m_shapeType = MULTI_SPHERE_SHAPE_PROXYTYPE;
 | 
						|
	//btScalar startMargin = btScalar(BT_LARGE_FLOAT);
 | 
						|
 | 
						|
	m_localPositionArray.resize(numSpheres);
 | 
						|
	m_radiArray.resize(numSpheres);
 | 
						|
	for (int i=0;i<numSpheres;i++)
 | 
						|
	{
 | 
						|
		m_localPositionArray[i] = positions[i];
 | 
						|
		m_radiArray[i] = radi[i];
 | 
						|
		
 | 
						|
	}
 | 
						|
 | 
						|
	recalcLocalAabb();
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifndef MIN
 | 
						|
	#define MIN( _a, _b)    ((_a) < (_b) ? (_a) : (_b))
 | 
						|
#endif
 | 
						|
 btVector3	btMultiSphereShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
 | 
						|
{
 | 
						|
	btVector3 supVec(0,0,0);
 | 
						|
 | 
						|
	btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
 | 
						|
 | 
						|
 | 
						|
	btVector3 vec = vec0;
 | 
						|
	btScalar lenSqr = vec.length2();
 | 
						|
	if (lenSqr < (SIMD_EPSILON*SIMD_EPSILON))
 | 
						|
	{
 | 
						|
		vec.setValue(1,0,0);
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
 | 
						|
		vec *= rlen;
 | 
						|
	}
 | 
						|
 | 
						|
	btVector3 vtx;
 | 
						|
	btScalar newDot;
 | 
						|
 | 
						|
	const btVector3* pos = &m_localPositionArray[0];
 | 
						|
	const btScalar* rad = &m_radiArray[0];
 | 
						|
	int numSpheres = m_localPositionArray.size();
 | 
						|
 | 
						|
	for( int k = 0; k < numSpheres; k+= 128 )
 | 
						|
	{
 | 
						|
		btVector3 temp[128];
 | 
						|
		int inner_count = MIN( numSpheres - k, 128 );
 | 
						|
        for( long i = 0; i < inner_count; i++ )
 | 
						|
        {
 | 
						|
            temp[i] = (*pos)*m_localScaling +vec*m_localScaling*(*rad) - vec * getMargin();
 | 
						|
            pos++;
 | 
						|
            rad++;
 | 
						|
        }
 | 
						|
        long i = vec.maxDot( temp, inner_count, newDot);
 | 
						|
        if( newDot > maxDot )
 | 
						|
		{
 | 
						|
			maxDot = newDot;
 | 
						|
			supVec = temp[i];
 | 
						|
		}
 | 
						|
    }
 | 
						|
 | 
						|
	return supVec;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 void	btMultiSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
 | 
						|
{
 | 
						|
 | 
						|
	for (int j=0;j<numVectors;j++)
 | 
						|
	{
 | 
						|
		btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
 | 
						|
 | 
						|
		const btVector3& vec = vectors[j];
 | 
						|
 | 
						|
		btVector3 vtx;
 | 
						|
		btScalar newDot;
 | 
						|
 | 
						|
		const btVector3* pos = &m_localPositionArray[0];
 | 
						|
		const btScalar* rad = &m_radiArray[0];
 | 
						|
		int numSpheres = m_localPositionArray.size();
 | 
						|
 | 
						|
        for( int k = 0; k < numSpheres; k+= 128 )
 | 
						|
        {
 | 
						|
            btVector3 temp[128];
 | 
						|
            int inner_count = MIN( numSpheres - k, 128 );
 | 
						|
            for( long i = 0; i < inner_count; i++ )
 | 
						|
            {
 | 
						|
                temp[i] = (*pos)*m_localScaling +vec*m_localScaling*(*rad) - vec * getMargin();
 | 
						|
                pos++;
 | 
						|
                rad++;
 | 
						|
            }
 | 
						|
            long i = vec.maxDot( temp, inner_count, newDot);
 | 
						|
            if( newDot > maxDot )
 | 
						|
            {
 | 
						|
                maxDot = newDot;
 | 
						|
                supportVerticesOut[j] = temp[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void	btMultiSphereShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
 | 
						|
{
 | 
						|
	//as an approximation, take the inertia of the box that bounds the spheres
 | 
						|
 | 
						|
	btVector3 localAabbMin,localAabbMax;
 | 
						|
	getCachedLocalAabb(localAabbMin,localAabbMax);
 | 
						|
	btVector3 halfExtents = (localAabbMax-localAabbMin)*btScalar(0.5);
 | 
						|
 | 
						|
	btScalar lx=btScalar(2.)*(halfExtents.x());
 | 
						|
	btScalar ly=btScalar(2.)*(halfExtents.y());
 | 
						|
	btScalar lz=btScalar(2.)*(halfExtents.z());
 | 
						|
 | 
						|
	inertia.setValue(mass/(btScalar(12.0)) * (ly*ly + lz*lz),
 | 
						|
					mass/(btScalar(12.0)) * (lx*lx + lz*lz),
 | 
						|
					mass/(btScalar(12.0)) * (lx*lx + ly*ly));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
const char*	btMultiSphereShape::serialize(void* dataBuffer, btSerializer* serializer) const
 | 
						|
{
 | 
						|
	btMultiSphereShapeData* shapeData = (btMultiSphereShapeData*) dataBuffer;
 | 
						|
	btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
 | 
						|
 | 
						|
	int numElem = m_localPositionArray.size();
 | 
						|
	shapeData->m_localPositionArrayPtr = numElem ? (btPositionAndRadius*)serializer->getUniquePointer((void*)&m_localPositionArray[0]):  0;
 | 
						|
	
 | 
						|
	shapeData->m_localPositionArraySize = numElem;
 | 
						|
	if (numElem)
 | 
						|
	{
 | 
						|
		btChunk* chunk = serializer->allocate(sizeof(btPositionAndRadius),numElem);
 | 
						|
		btPositionAndRadius* memPtr = (btPositionAndRadius*)chunk->m_oldPtr;
 | 
						|
		for (int i=0;i<numElem;i++,memPtr++)
 | 
						|
		{
 | 
						|
			m_localPositionArray[i].serializeFloat(memPtr->m_pos);
 | 
						|
			memPtr->m_radius = float(m_radiArray[i]);
 | 
						|
		}
 | 
						|
		serializer->finalizeChunk(chunk,"btPositionAndRadius",BT_ARRAY_CODE,(void*)&m_localPositionArray[0]);
 | 
						|
	}
 | 
						|
 | 
						|
	// Fill padding with zeros to appease msan.
 | 
						|
	memset(shapeData->m_padding, 0, sizeof(shapeData->m_padding));
 | 
						|
 | 
						|
	return "btMultiSphereShapeData";
 | 
						|
}
 | 
						|
 | 
						|
 |