528 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#include "btRigidBody.h"
 | 
						|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
 | 
						|
#include "LinearMath/btMinMax.h"
 | 
						|
#include "LinearMath/btTransformUtil.h"
 | 
						|
#include "LinearMath/btMotionState.h"
 | 
						|
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
 | 
						|
#include "LinearMath/btSerializer.h"
 | 
						|
 | 
						|
//'temporarily' global variables
 | 
						|
btScalar	gDeactivationTime = btScalar(2.);
 | 
						|
bool	gDisableDeactivation = false;
 | 
						|
static int uniqueId = 0;
 | 
						|
 | 
						|
 | 
						|
btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
 | 
						|
{
 | 
						|
	setupRigidBody(constructionInfo);
 | 
						|
}
 | 
						|
 | 
						|
btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia)
 | 
						|
{
 | 
						|
	btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia);
 | 
						|
	setupRigidBody(cinfo);
 | 
						|
}
 | 
						|
 | 
						|
void	btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
 | 
						|
{
 | 
						|
 | 
						|
	m_internalType=CO_RIGID_BODY;
 | 
						|
 | 
						|
	m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
	m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | 
						|
	m_angularFactor.setValue(1,1,1);
 | 
						|
	m_linearFactor.setValue(1,1,1);
 | 
						|
	m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
	m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
	m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
	m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)),
 | 
						|
    setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);
 | 
						|
 | 
						|
	m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold;
 | 
						|
	m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold;
 | 
						|
	m_optionalMotionState = constructionInfo.m_motionState;
 | 
						|
	m_contactSolverType = 0;
 | 
						|
	m_frictionSolverType = 0;
 | 
						|
	m_additionalDamping = constructionInfo.m_additionalDamping;
 | 
						|
	m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor;
 | 
						|
	m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr;
 | 
						|
	m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr;
 | 
						|
	m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor;
 | 
						|
 | 
						|
	if (m_optionalMotionState)
 | 
						|
	{
 | 
						|
		m_optionalMotionState->getWorldTransform(m_worldTransform);
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		m_worldTransform = constructionInfo.m_startWorldTransform;
 | 
						|
	}
 | 
						|
 | 
						|
	m_interpolationWorldTransform = m_worldTransform;
 | 
						|
	m_interpolationLinearVelocity.setValue(0,0,0);
 | 
						|
	m_interpolationAngularVelocity.setValue(0,0,0);
 | 
						|
	
 | 
						|
	//moved to btCollisionObject
 | 
						|
	m_friction = constructionInfo.m_friction;
 | 
						|
	m_rollingFriction = constructionInfo.m_rollingFriction;
 | 
						|
    m_spinningFriction = constructionInfo.m_spinningFriction;
 | 
						|
    
 | 
						|
	m_restitution = constructionInfo.m_restitution;
 | 
						|
 | 
						|
	setCollisionShape( constructionInfo.m_collisionShape );
 | 
						|
	m_debugBodyId = uniqueId++;
 | 
						|
	
 | 
						|
	setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia);
 | 
						|
	updateInertiaTensor();
 | 
						|
 | 
						|
	m_rigidbodyFlags = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY;
 | 
						|
 | 
						|
 | 
						|
	m_deltaLinearVelocity.setZero();
 | 
						|
	m_deltaAngularVelocity.setZero();
 | 
						|
	m_invMass = m_inverseMass*m_linearFactor;
 | 
						|
	m_pushVelocity.setZero();
 | 
						|
	m_turnVelocity.setZero();
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform) 
 | 
						|
{
 | 
						|
	btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
 | 
						|
}
 | 
						|
 | 
						|
void			btRigidBody::saveKinematicState(btScalar timeStep)
 | 
						|
{
 | 
						|
	//todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
 | 
						|
	if (timeStep != btScalar(0.))
 | 
						|
	{
 | 
						|
		//if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform
 | 
						|
		if (getMotionState())
 | 
						|
			getMotionState()->getWorldTransform(m_worldTransform);
 | 
						|
		btVector3 linVel,angVel;
 | 
						|
		
 | 
						|
		btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity);
 | 
						|
		m_interpolationLinearVelocity = m_linearVelocity;
 | 
						|
		m_interpolationAngularVelocity = m_angularVelocity;
 | 
						|
		m_interpolationWorldTransform = m_worldTransform;
 | 
						|
		//printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ());
 | 
						|
	}
 | 
						|
}
 | 
						|
	
 | 
						|
void	btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const
 | 
						|
{
 | 
						|
	getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::setGravity(const btVector3& acceleration) 
 | 
						|
{
 | 
						|
	if (m_inverseMass != btScalar(0.0))
 | 
						|
	{
 | 
						|
		m_gravity = acceleration * (btScalar(1.0) / m_inverseMass);
 | 
						|
	}
 | 
						|
	m_gravity_acceleration = acceleration;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
 | 
						|
{
 | 
						|
	m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
 | 
						|
	m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
 | 
						|
void			btRigidBody::applyDamping(btScalar timeStep)
 | 
						|
{
 | 
						|
	//On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
 | 
						|
	//todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway
 | 
						|
 | 
						|
//#define USE_OLD_DAMPING_METHOD 1
 | 
						|
#ifdef USE_OLD_DAMPING_METHOD
 | 
						|
	m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
 | 
						|
	m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
 | 
						|
#else
 | 
						|
	m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep);
 | 
						|
	m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (m_additionalDamping)
 | 
						|
	{
 | 
						|
		//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
 | 
						|
		//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
 | 
						|
		if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) &&
 | 
						|
			(m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr))
 | 
						|
		{
 | 
						|
			m_angularVelocity *= m_additionalDampingFactor;
 | 
						|
			m_linearVelocity *= m_additionalDampingFactor;
 | 
						|
		}
 | 
						|
	
 | 
						|
 | 
						|
		btScalar speed = m_linearVelocity.length();
 | 
						|
		if (speed < m_linearDamping)
 | 
						|
		{
 | 
						|
			btScalar dampVel = btScalar(0.005);
 | 
						|
			if (speed > dampVel)
 | 
						|
			{
 | 
						|
				btVector3 dir = m_linearVelocity.normalized();
 | 
						|
				m_linearVelocity -=  dir * dampVel;
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		btScalar angSpeed = m_angularVelocity.length();
 | 
						|
		if (angSpeed < m_angularDamping)
 | 
						|
		{
 | 
						|
			btScalar angDampVel = btScalar(0.005);
 | 
						|
			if (angSpeed > angDampVel)
 | 
						|
			{
 | 
						|
				btVector3 dir = m_angularVelocity.normalized();
 | 
						|
				m_angularVelocity -=  dir * angDampVel;
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::applyGravity()
 | 
						|
{
 | 
						|
	if (isStaticOrKinematicObject())
 | 
						|
		return;
 | 
						|
	
 | 
						|
	applyCentralForce(m_gravity);	
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void btRigidBody::proceedToTransform(const btTransform& newTrans)
 | 
						|
{
 | 
						|
	setCenterOfMassTransform( newTrans );
 | 
						|
}
 | 
						|
	
 | 
						|
 | 
						|
void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
 | 
						|
{
 | 
						|
	if (mass == btScalar(0.))
 | 
						|
	{
 | 
						|
		m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
 | 
						|
		m_inverseMass = btScalar(0.);
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
 | 
						|
		m_inverseMass = btScalar(1.0) / mass;
 | 
						|
	}
 | 
						|
 | 
						|
	//Fg = m * a
 | 
						|
	m_gravity = mass * m_gravity_acceleration;
 | 
						|
	
 | 
						|
	m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0),
 | 
						|
				   inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0),
 | 
						|
				   inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0));
 | 
						|
 | 
						|
	m_invMass = m_linearFactor*m_inverseMass;
 | 
						|
}
 | 
						|
 | 
						|
	
 | 
						|
void btRigidBody::updateInertiaTensor() 
 | 
						|
{
 | 
						|
	m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
btVector3 btRigidBody::getLocalInertia() const
 | 
						|
{
 | 
						|
 | 
						|
	btVector3 inertiaLocal;
 | 
						|
	const btVector3 inertia = m_invInertiaLocal;
 | 
						|
	inertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0),
 | 
						|
		inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
 | 
						|
		inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
 | 
						|
	return inertiaLocal;
 | 
						|
}
 | 
						|
 | 
						|
inline btVector3 evalEulerEqn(const btVector3& w1, const btVector3& w0, const btVector3& T, const btScalar dt,
 | 
						|
	const btMatrix3x3 &I)
 | 
						|
{
 | 
						|
	const btVector3 w2 = I*w1 + w1.cross(I*w1)*dt - (T*dt + I*w0);
 | 
						|
	return w2;
 | 
						|
}
 | 
						|
 | 
						|
inline btMatrix3x3 evalEulerEqnDeriv(const btVector3& w1, const btVector3& w0, const btScalar dt,
 | 
						|
	const btMatrix3x3 &I)
 | 
						|
{
 | 
						|
 | 
						|
	btMatrix3x3 w1x, Iw1x;
 | 
						|
	const btVector3 Iwi = (I*w1);
 | 
						|
	w1.getSkewSymmetricMatrix(&w1x[0], &w1x[1], &w1x[2]);
 | 
						|
	Iwi.getSkewSymmetricMatrix(&Iw1x[0], &Iw1x[1], &Iw1x[2]);
 | 
						|
 | 
						|
	const btMatrix3x3 dfw1 = I + (w1x*I - Iw1x)*dt;
 | 
						|
	return dfw1;
 | 
						|
}
 | 
						|
 | 
						|
btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const
 | 
						|
{
 | 
						|
	btVector3 inertiaLocal = getLocalInertia();
 | 
						|
	btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
 | 
						|
	btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
 | 
						|
	btVector3 gf = getAngularVelocity().cross(tmp);
 | 
						|
	btScalar l2 = gf.length2();
 | 
						|
	if (l2>maxGyroscopicForce*maxGyroscopicForce)
 | 
						|
	{
 | 
						|
		gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
 | 
						|
	}
 | 
						|
	return gf;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const
 | 
						|
{	
 | 
						|
	btVector3 idl = getLocalInertia();
 | 
						|
	btVector3 omega1 = getAngularVelocity();
 | 
						|
	btQuaternion q = getWorldTransform().getRotation();
 | 
						|
	
 | 
						|
	// Convert to body coordinates
 | 
						|
	btVector3 omegab = quatRotate(q.inverse(), omega1);
 | 
						|
	btMatrix3x3 Ib;
 | 
						|
	Ib.setValue(idl.x(),0,0,
 | 
						|
				0,idl.y(),0,
 | 
						|
				0,0,idl.z());
 | 
						|
	
 | 
						|
	btVector3 ibo = Ib*omegab;
 | 
						|
 | 
						|
	// Residual vector
 | 
						|
	btVector3 f = step * omegab.cross(ibo);
 | 
						|
	
 | 
						|
	btMatrix3x3 skew0;
 | 
						|
	omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]);
 | 
						|
	btVector3 om = Ib*omegab;
 | 
						|
	btMatrix3x3 skew1;
 | 
						|
	om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]);
 | 
						|
	
 | 
						|
	// Jacobian
 | 
						|
	btMatrix3x3 J = Ib +  (skew0*Ib - skew1)*step;
 | 
						|
	
 | 
						|
//	btMatrix3x3 Jinv = J.inverse();
 | 
						|
//	btVector3 omega_div = Jinv*f;
 | 
						|
	btVector3 omega_div = J.solve33(f);
 | 
						|
	
 | 
						|
	// Single Newton-Raphson update
 | 
						|
	omegab = omegab - omega_div;//Solve33(J, f);
 | 
						|
	// Back to world coordinates
 | 
						|
	btVector3 omega2 = quatRotate(q,omegab);
 | 
						|
	btVector3 gf = omega2-omega1;
 | 
						|
	return gf;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const
 | 
						|
{
 | 
						|
	// use full newton-euler equations.  common practice to drop the wxIw term. want it for better tumbling behavior.
 | 
						|
	// calculate using implicit euler step so it's stable.
 | 
						|
 | 
						|
	const btVector3 inertiaLocal = getLocalInertia();
 | 
						|
	const btVector3 w0 = getAngularVelocity();
 | 
						|
 | 
						|
	btMatrix3x3 I;
 | 
						|
 | 
						|
	I = m_worldTransform.getBasis().scaled(inertiaLocal) *
 | 
						|
		m_worldTransform.getBasis().transpose();
 | 
						|
 | 
						|
	// use newtons method to find implicit solution for new angular velocity (w')
 | 
						|
	// f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0 
 | 
						|
	// df/dw' = I + 1xIw'*step + w'xI*step
 | 
						|
 | 
						|
	btVector3 w1 = w0;
 | 
						|
 | 
						|
	// one step of newton's method
 | 
						|
	{
 | 
						|
		const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I);
 | 
						|
		const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I);
 | 
						|
 | 
						|
		btVector3 dw;
 | 
						|
		dw = dfw.solve33(fw);
 | 
						|
		//const btMatrix3x3 dfw_inv = dfw.inverse();
 | 
						|
		//dw = dfw_inv*fw;
 | 
						|
 | 
						|
		w1 -= dw;
 | 
						|
	}
 | 
						|
 | 
						|
	btVector3 gf = (w1 - w0);
 | 
						|
	return gf;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::integrateVelocities(btScalar step) 
 | 
						|
{
 | 
						|
	if (isStaticOrKinematicObject())
 | 
						|
		return;
 | 
						|
 | 
						|
	m_linearVelocity += m_totalForce * (m_inverseMass * step);
 | 
						|
	m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;
 | 
						|
 | 
						|
#define MAX_ANGVEL SIMD_HALF_PI
 | 
						|
	/// clamp angular velocity. collision calculations will fail on higher angular velocities	
 | 
						|
	btScalar angvel = m_angularVelocity.length();
 | 
						|
	if (angvel*step > MAX_ANGVEL)
 | 
						|
	{
 | 
						|
		m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
btQuaternion btRigidBody::getOrientation() const
 | 
						|
{
 | 
						|
		btQuaternion orn;
 | 
						|
		m_worldTransform.getBasis().getRotation(orn);
 | 
						|
		return orn;
 | 
						|
}
 | 
						|
	
 | 
						|
	
 | 
						|
void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
 | 
						|
{
 | 
						|
 | 
						|
	if (isKinematicObject())
 | 
						|
	{
 | 
						|
		m_interpolationWorldTransform = m_worldTransform;
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		m_interpolationWorldTransform = xform;
 | 
						|
	}
 | 
						|
	m_interpolationLinearVelocity = getLinearVelocity();
 | 
						|
	m_interpolationAngularVelocity = getAngularVelocity();
 | 
						|
	m_worldTransform = xform;
 | 
						|
	updateInertiaTensor();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::addConstraintRef(btTypedConstraint* c)
 | 
						|
{
 | 
						|
	///disable collision with the 'other' body
 | 
						|
 | 
						|
	int index = m_constraintRefs.findLinearSearch(c);
 | 
						|
	//don't add constraints that are already referenced
 | 
						|
	//btAssert(index == m_constraintRefs.size());
 | 
						|
	if (index == m_constraintRefs.size())
 | 
						|
	{
 | 
						|
		m_constraintRefs.push_back(c);
 | 
						|
		btCollisionObject* colObjA = &c->getRigidBodyA();
 | 
						|
		btCollisionObject* colObjB = &c->getRigidBodyB();
 | 
						|
		if (colObjA == this)
 | 
						|
		{
 | 
						|
			colObjA->setIgnoreCollisionCheck(colObjB, true);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			colObjB->setIgnoreCollisionCheck(colObjA, true);
 | 
						|
		}
 | 
						|
	} 
 | 
						|
}
 | 
						|
 | 
						|
void btRigidBody::removeConstraintRef(btTypedConstraint* c)
 | 
						|
{
 | 
						|
	int index = m_constraintRefs.findLinearSearch(c);
 | 
						|
	//don't remove constraints that are not referenced
 | 
						|
	if(index < m_constraintRefs.size())
 | 
						|
    {
 | 
						|
        m_constraintRefs.remove(c);
 | 
						|
        btCollisionObject* colObjA = &c->getRigidBodyA();
 | 
						|
        btCollisionObject* colObjB = &c->getRigidBodyB();
 | 
						|
        if (colObjA == this)
 | 
						|
        {
 | 
						|
            colObjA->setIgnoreCollisionCheck(colObjB, false);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            colObjB->setIgnoreCollisionCheck(colObjA, false);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int	btRigidBody::calculateSerializeBufferSize()	const
 | 
						|
{
 | 
						|
	int sz = sizeof(btRigidBodyData);
 | 
						|
	return sz;
 | 
						|
}
 | 
						|
 | 
						|
	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
const char*	btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
 | 
						|
{
 | 
						|
	btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer;
 | 
						|
 | 
						|
	btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer);
 | 
						|
 | 
						|
	m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld);
 | 
						|
	m_linearVelocity.serialize(rbd->m_linearVelocity);
 | 
						|
	m_angularVelocity.serialize(rbd->m_angularVelocity);
 | 
						|
	rbd->m_inverseMass = m_inverseMass;
 | 
						|
	m_angularFactor.serialize(rbd->m_angularFactor);
 | 
						|
	m_linearFactor.serialize(rbd->m_linearFactor);
 | 
						|
	m_gravity.serialize(rbd->m_gravity);
 | 
						|
	m_gravity_acceleration.serialize(rbd->m_gravity_acceleration);
 | 
						|
	m_invInertiaLocal.serialize(rbd->m_invInertiaLocal);
 | 
						|
	m_totalForce.serialize(rbd->m_totalForce);
 | 
						|
	m_totalTorque.serialize(rbd->m_totalTorque);
 | 
						|
	rbd->m_linearDamping = m_linearDamping;
 | 
						|
	rbd->m_angularDamping = m_angularDamping;
 | 
						|
	rbd->m_additionalDamping = m_additionalDamping;
 | 
						|
	rbd->m_additionalDampingFactor = m_additionalDampingFactor;
 | 
						|
	rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr;
 | 
						|
	rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr;
 | 
						|
	rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor;
 | 
						|
	rbd->m_linearSleepingThreshold=m_linearSleepingThreshold;
 | 
						|
	rbd->m_angularSleepingThreshold = m_angularSleepingThreshold;
 | 
						|
 | 
						|
	// Fill padding with zeros to appease msan.
 | 
						|
#ifdef BT_USE_DOUBLE_PRECISION
 | 
						|
	memset(rbd->m_padding, 0, sizeof(rbd->m_padding));
 | 
						|
#endif
 | 
						|
 | 
						|
	return btRigidBodyDataName;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void btRigidBody::serializeSingleObject(class btSerializer* serializer) const
 | 
						|
{
 | 
						|
	btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1);
 | 
						|
	const char* structType = serialize(chunk->m_oldPtr, serializer);
 | 
						|
	serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this);
 | 
						|
}
 | 
						|
 | 
						|
 |