829 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			829 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| ///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
 | |
| ///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
 | |
| ///with reproduction case
 | |
| //#define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
 | |
| //#define ZERO_MARGIN
 | |
| 
 | |
| #include "btConvexConvexAlgorithm.h"
 | |
| 
 | |
| //#include <stdio.h>
 | |
| #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btTriangleShape.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | |
| #include "BulletCollision/CollisionShapes/btBoxShape.h"
 | |
| #include "BulletCollision/CollisionDispatch/btManifoldResult.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
 | |
| #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | |
| 
 | |
| ///////////
 | |
| 
 | |
| 
 | |
| 
 | |
| static SIMD_FORCE_INLINE void segmentsClosestPoints(
 | |
| 	btVector3& ptsVector,
 | |
| 	btVector3& offsetA,
 | |
| 	btVector3& offsetB,
 | |
| 	btScalar& tA, btScalar& tB,
 | |
| 	const btVector3& translation,
 | |
| 	const btVector3& dirA, btScalar hlenA,
 | |
| 	const btVector3& dirB, btScalar hlenB )
 | |
| {
 | |
| 	// compute the parameters of the closest points on each line segment
 | |
| 
 | |
| 	btScalar dirA_dot_dirB = btDot(dirA,dirB);
 | |
| 	btScalar dirA_dot_trans = btDot(dirA,translation);
 | |
| 	btScalar dirB_dot_trans = btDot(dirB,translation);
 | |
| 
 | |
| 	btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
 | |
| 
 | |
| 	if ( denom == 0.0f ) {
 | |
| 		tA = 0.0f;
 | |
| 	} else {
 | |
| 		tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
 | |
| 		if ( tA < -hlenA )
 | |
| 			tA = -hlenA;
 | |
| 		else if ( tA > hlenA )
 | |
| 			tA = hlenA;
 | |
| 	}
 | |
| 
 | |
| 	tB = tA * dirA_dot_dirB - dirB_dot_trans;
 | |
| 
 | |
| 	if ( tB < -hlenB ) {
 | |
| 		tB = -hlenB;
 | |
| 		tA = tB * dirA_dot_dirB + dirA_dot_trans;
 | |
| 
 | |
| 		if ( tA < -hlenA )
 | |
| 			tA = -hlenA;
 | |
| 		else if ( tA > hlenA )
 | |
| 			tA = hlenA;
 | |
| 	} else if ( tB > hlenB ) {
 | |
| 		tB = hlenB;
 | |
| 		tA = tB * dirA_dot_dirB + dirA_dot_trans;
 | |
| 
 | |
| 		if ( tA < -hlenA )
 | |
| 			tA = -hlenA;
 | |
| 		else if ( tA > hlenA )
 | |
| 			tA = hlenA;
 | |
| 	}
 | |
| 
 | |
| 	// compute the closest points relative to segment centers.
 | |
| 
 | |
| 	offsetA = dirA * tA;
 | |
| 	offsetB = dirB * tB;
 | |
| 
 | |
| 	ptsVector = translation - offsetA + offsetB;
 | |
| }
 | |
| 
 | |
| 
 | |
| static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
 | |
| 	btVector3& normalOnB,
 | |
| 	btVector3& pointOnB,
 | |
| 	btScalar capsuleLengthA,
 | |
| 	btScalar	capsuleRadiusA,
 | |
| 	btScalar capsuleLengthB,
 | |
| 	btScalar	capsuleRadiusB,
 | |
| 	int capsuleAxisA,
 | |
| 	int capsuleAxisB,
 | |
| 	const btTransform& transformA,
 | |
| 	const btTransform& transformB,
 | |
| 	btScalar distanceThreshold )
 | |
| {
 | |
| 	btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
 | |
| 	btVector3 translationA = transformA.getOrigin();
 | |
| 	btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
 | |
| 	btVector3 translationB = transformB.getOrigin();
 | |
| 
 | |
| 	// translation between centers
 | |
| 
 | |
| 	btVector3 translation = translationB - translationA;
 | |
| 
 | |
| 	// compute the closest points of the capsule line segments
 | |
| 
 | |
| 	btVector3 ptsVector;           // the vector between the closest points
 | |
| 	
 | |
| 	btVector3 offsetA, offsetB;    // offsets from segment centers to their closest points
 | |
| 	btScalar tA, tB;              // parameters on line segment
 | |
| 
 | |
| 	segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation,
 | |
| 						   directionA, capsuleLengthA, directionB, capsuleLengthB );
 | |
| 
 | |
| 	btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
 | |
| 
 | |
| 	if ( distance > distanceThreshold )
 | |
| 		return distance;
 | |
| 
 | |
| 	btScalar lenSqr = ptsVector.length2();
 | |
| 	if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON))
 | |
| 	{
 | |
| 		//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
 | |
| 		btVector3 q;
 | |
| 		btPlaneSpace1(directionA,normalOnB,q);
 | |
| 	} else
 | |
| 	{
 | |
| 		// compute the contact normal
 | |
| 		normalOnB = ptsVector*-btRecipSqrt(lenSqr);
 | |
| 	}
 | |
| 	pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB;
 | |
| 
 | |
| 	return distance;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver)
 | |
| {
 | |
| 	m_numPerturbationIterations = 0;
 | |
| 	m_minimumPointsPerturbationThreshold = 3;
 | |
| 	m_pdSolver = pdSolver;
 | |
| }
 | |
| 
 | |
| btConvexConvexAlgorithm::CreateFunc::~CreateFunc() 
 | |
| { 
 | |
| }
 | |
| 
 | |
| btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
 | |
| : btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
 | |
| m_pdSolver(pdSolver),
 | |
| m_ownManifold (false),
 | |
| m_manifoldPtr(mf),
 | |
| m_lowLevelOfDetail(false),
 | |
| #ifdef USE_SEPDISTANCE_UTIL2
 | |
| m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
 | |
| 			  (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
 | |
| #endif
 | |
| m_numPerturbationIterations(numPerturbationIterations),
 | |
| m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
 | |
| {
 | |
| 	(void)body0Wrap;
 | |
| 	(void)body1Wrap;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
 | |
| {
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		if (m_manifoldPtr)
 | |
| 			m_dispatcher->releaseManifold(m_manifoldPtr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
 | |
| {
 | |
| 	m_lowLevelOfDetail = useLowLevel;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct btPerturbedContactResult : public btManifoldResult
 | |
| {
 | |
| 	btManifoldResult* m_originalManifoldResult;
 | |
| 	btTransform m_transformA;
 | |
| 	btTransform m_transformB;
 | |
| 	btTransform	m_unPerturbedTransform;
 | |
| 	bool	m_perturbA;
 | |
| 	btIDebugDraw*	m_debugDrawer;
 | |
| 
 | |
| 
 | |
| 	btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer)
 | |
| 		:m_originalManifoldResult(originalResult),
 | |
| 		m_transformA(transformA),
 | |
| 		m_transformB(transformB),
 | |
| 		m_unPerturbedTransform(unPerturbedTransform),
 | |
| 		m_perturbA(perturbA),
 | |
| 		m_debugDrawer(debugDrawer)
 | |
| 	{
 | |
| 	}
 | |
| 	virtual ~ btPerturbedContactResult()
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth)
 | |
| 	{
 | |
| 		btVector3 endPt,startPt;
 | |
| 		btScalar newDepth;
 | |
| 		btVector3 newNormal;
 | |
| 
 | |
| 		if (m_perturbA)
 | |
| 		{
 | |
| 			btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth;
 | |
| 			endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg);
 | |
| 			newDepth = (endPt -  pointInWorld).dot(normalOnBInWorld);
 | |
| 			startPt = endPt+normalOnBInWorld*newDepth;
 | |
| 		} else
 | |
| 		{
 | |
| 			endPt = pointInWorld + normalOnBInWorld*orgDepth;
 | |
| 			startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld);
 | |
| 			newDepth = (endPt -  startPt).dot(normalOnBInWorld);
 | |
| 			
 | |
| 		}
 | |
| 
 | |
| //#define DEBUG_CONTACTS 1
 | |
| #ifdef DEBUG_CONTACTS
 | |
| 		m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0));
 | |
| 		m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0));
 | |
| 		m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1));
 | |
| #endif //DEBUG_CONTACTS
 | |
| 
 | |
| 		
 | |
| 		m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth);
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| extern btScalar gContactBreakingThreshold;
 | |
| 
 | |
| 
 | |
| //
 | |
| // Convex-Convex collision algorithm
 | |
| //
 | |
| void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 
 | |
| 	if (!m_manifoldPtr)
 | |
| 	{
 | |
| 		//swapped?
 | |
| 		m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
 | |
| 		m_ownManifold = true;
 | |
| 	}
 | |
| 	resultOut->setPersistentManifold(m_manifoldPtr);
 | |
| 
 | |
| 	//comment-out next line to test multi-contact generation
 | |
| 	//resultOut->getPersistentManifold()->clearManifold();
 | |
| 	
 | |
| 
 | |
| 	const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
 | |
| 	const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
 | |
| 
 | |
| 	btVector3  normalOnB;
 | |
| 		btVector3  pointOnBWorld;
 | |
| #ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
 | |
| 	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
 | |
| 	{
 | |
| 		//m_manifoldPtr->clearManifold();
 | |
| 
 | |
| 		btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
 | |
| 		btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
 | |
| 		
 | |
| 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
 | |
| 
 | |
| 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
 | |
| 			capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(),
 | |
| 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
 | |
| 
 | |
| 		if (dist<threshold)
 | |
| 		{
 | |
| 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
 | |
| 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	
 | |
| 		}
 | |
| 		resultOut->refreshContactPoints();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == SPHERE_SHAPE_PROXYTYPE))
 | |
| 	{
 | |
| 		//m_manifoldPtr->clearManifold();
 | |
| 
 | |
| 		btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
 | |
| 		btSphereShape* capsuleB = (btSphereShape*) min1;
 | |
| 		
 | |
| 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
 | |
| 
 | |
| 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
 | |
| 			0.,capsuleB->getRadius(),capsuleA->getUpAxis(),1,
 | |
| 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
 | |
| 
 | |
| 		if (dist<threshold)
 | |
| 		{
 | |
| 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
 | |
| 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	
 | |
| 		}
 | |
| 		resultOut->refreshContactPoints();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((min0->getShapeType() == SPHERE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
 | |
| 	{
 | |
| 		//m_manifoldPtr->clearManifold();
 | |
| 
 | |
| 		btSphereShape* capsuleA = (btSphereShape*) min0;
 | |
| 		btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
 | |
| 		
 | |
| 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
 | |
| 
 | |
| 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,0.,capsuleA->getRadius(),
 | |
| 			capsuleB->getHalfHeight(),capsuleB->getRadius(),1,capsuleB->getUpAxis(),
 | |
| 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
 | |
| 
 | |
| 		if (dist<threshold)
 | |
| 		{
 | |
| 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
 | |
| 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	
 | |
| 		}
 | |
| 		resultOut->refreshContactPoints();
 | |
| 		return;
 | |
| 	}
 | |
| #endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef USE_SEPDISTANCE_UTIL2
 | |
| 	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
 | |
| 	{
 | |
| 		m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
 | |
| 	}
 | |
| 
 | |
| 	if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
 | |
| #endif //USE_SEPDISTANCE_UTIL2
 | |
| 
 | |
| 	{
 | |
| 
 | |
| 	
 | |
| 	btGjkPairDetector::ClosestPointInput input;
 | |
|     btVoronoiSimplexSolver simplexSolver;
 | |
|     btGjkPairDetector	gjkPairDetector( min0, min1, &simplexSolver, m_pdSolver );
 | |
| 	//TODO: if (dispatchInfo.m_useContinuous)
 | |
| 	gjkPairDetector.setMinkowskiA(min0);
 | |
| 	gjkPairDetector.setMinkowskiB(min1);
 | |
| 
 | |
| #ifdef USE_SEPDISTANCE_UTIL2
 | |
| 	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
 | |
| 	{
 | |
| 		input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
 | |
| 	} else
 | |
| #endif //USE_SEPDISTANCE_UTIL2
 | |
| 	{
 | |
| 		//if (dispatchInfo.m_convexMaxDistanceUseCPT)
 | |
| 		//{
 | |
| 		//	input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
 | |
| 		//} else
 | |
| 		//{
 | |
| 		input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold()+resultOut->m_closestPointDistanceThreshold;
 | |
| //		}
 | |
| 
 | |
| 		input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
 | |
| 	}
 | |
| 
 | |
| 	input.m_transformA = body0Wrap->getWorldTransform();
 | |
| 	input.m_transformB = body1Wrap->getWorldTransform();
 | |
| 
 | |
| 
 | |
| 
 | |
| 	
 | |
| 
 | |
| #ifdef USE_SEPDISTANCE_UTIL2
 | |
| 	btScalar sepDist = 0.f;
 | |
| 	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
 | |
| 	{
 | |
| 		sepDist = gjkPairDetector.getCachedSeparatingDistance();
 | |
| 		if (sepDist>SIMD_EPSILON)
 | |
| 		{
 | |
| 			sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
 | |
| 			//now perturbe directions to get multiple contact points
 | |
| 			
 | |
| 		}
 | |
| 	}
 | |
| #endif //USE_SEPDISTANCE_UTIL2
 | |
| 
 | |
| 	if (min0->isPolyhedral() && min1->isPolyhedral())
 | |
| 	{
 | |
| 
 | |
| 
 | |
| 		struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
 | |
| 		{
 | |
| 			virtual void setShapeIdentifiersA(int partId0,int index0){}
 | |
| 			virtual void setShapeIdentifiersB(int partId1,int index1){}
 | |
| 			virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth) 
 | |
| 			{
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		
 | |
| 		struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
 | |
| 		{
 | |
| 			btDiscreteCollisionDetectorInterface::Result* m_originalResult;
 | |
| 			btVector3	m_reportedNormalOnWorld;
 | |
| 			btScalar m_marginOnA;
 | |
| 			btScalar m_marginOnB;
 | |
| 			btScalar	m_reportedDistance;
 | |
| 			
 | |
| 			bool		m_foundResult;
 | |
| 			btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
 | |
| 			:m_originalResult(result),
 | |
| 			m_marginOnA(marginOnA),
 | |
| 			m_marginOnB(marginOnB),
 | |
| 			m_foundResult(false)
 | |
| 			{
 | |
| 			}
 | |
| 			
 | |
| 			virtual void setShapeIdentifiersA(int partId0,int index0){}
 | |
| 			virtual void setShapeIdentifiersB(int partId1,int index1){}
 | |
| 			virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorldOrg,btScalar depthOrg) 
 | |
| 			{
 | |
| 				m_reportedDistance = depthOrg;
 | |
| 				m_reportedNormalOnWorld = normalOnBInWorld;
 | |
| 				
 | |
| 				btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld*m_marginOnB;
 | |
| 				m_reportedDistance = depthOrg+(m_marginOnA+m_marginOnB);
 | |
| 				if (m_reportedDistance<0.f)
 | |
| 				{
 | |
| 					m_foundResult = true;					
 | |
| 				}
 | |
| 				m_originalResult->addContactPoint(normalOnBInWorld,adjustedPointB,m_reportedDistance);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		
 | |
| 		btDummyResult dummy;
 | |
| 
 | |
| ///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
 | |
| 
 | |
| 		btScalar min0Margin = min0->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min0->getMargin();
 | |
| 		btScalar min1Margin = min1->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min1->getMargin();
 | |
| 
 | |
| 		btWithoutMarginResult	withoutMargin(resultOut, min0Margin,min1Margin);
 | |
| 
 | |
| 		btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0;
 | |
| 		btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1;
 | |
| 		if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
 | |
| 		{
 | |
| 
 | |
| 
 | |
| 			
 | |
| 
 | |
| 			btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
 | |
| 
 | |
| 			btScalar minDist = -1e30f;
 | |
| 			btVector3 sepNormalWorldSpace;
 | |
| 			bool foundSepAxis  = true;
 | |
| 
 | |
| 			if (dispatchInfo.m_enableSatConvex)
 | |
| 			{
 | |
| 				foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
 | |
| 					*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
 | |
| 					body0Wrap->getWorldTransform(), 
 | |
| 					body1Wrap->getWorldTransform(),
 | |
| 					sepNormalWorldSpace,*resultOut);
 | |
| 			} else
 | |
| 			{
 | |
| #ifdef ZERO_MARGIN
 | |
| 				gjkPairDetector.setIgnoreMargin(true);
 | |
| 				gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
 | |
| #else
 | |
| 
 | |
| 
 | |
| 				gjkPairDetector.getClosestPoints(input,withoutMargin,dispatchInfo.m_debugDraw);
 | |
| 				//gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
 | |
| #endif //ZERO_MARGIN
 | |
| 				//btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
 | |
| 				//if (l2>SIMD_EPSILON)
 | |
| 				{
 | |
| 					sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld;//gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
 | |
| 					//minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
 | |
| 					minDist = withoutMargin.m_reportedDistance;//gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
 | |
| 	
 | |
| #ifdef ZERO_MARGIN
 | |
| 					foundSepAxis = true;//gjkPairDetector.getCachedSeparatingDistance()<0.f;
 | |
| #else
 | |
| 					foundSepAxis = withoutMargin.m_foundResult && minDist<0;//-(min0->getMargin()+min1->getMargin());
 | |
| #endif
 | |
| 				}
 | |
| 			}
 | |
| 			if (foundSepAxis)
 | |
| 			{
 | |
| 				
 | |
| //				printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
 | |
| 
 | |
| 				worldVertsB1.resize(0);
 | |
| 				btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
 | |
| 					body0Wrap->getWorldTransform(), 
 | |
| 																 body1Wrap->getWorldTransform(), minDist-threshold, threshold, worldVertsB1,worldVertsB2,
 | |
| 																 *resultOut);
 | |
|  				
 | |
| 			}
 | |
| 			if (m_ownManifold)
 | |
| 			{
 | |
| 				resultOut->refreshContactPoints();
 | |
| 			}
 | |
| 			return;
 | |
| 
 | |
| 		} else
 | |
| 		{
 | |
| 			//we can also deal with convex versus triangle (without connectivity data)
 | |
| 			if (polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType()==TRIANGLE_SHAPE_PROXYTYPE)
 | |
| 			{
 | |
| 
 | |
| 				btVertexArray vertices;
 | |
| 				btTriangleShape* tri = (btTriangleShape*)polyhedronB;
 | |
| 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[0]);
 | |
| 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[1]);
 | |
| 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[2]);
 | |
| 				
 | |
| 				//tri->initializePolyhedralFeatures();
 | |
| 
 | |
| 				btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
 | |
| 
 | |
| 				btVector3 sepNormalWorldSpace;
 | |
| 				btScalar minDist =-1e30f;
 | |
| 				btScalar maxDist = threshold;
 | |
| 				
 | |
| 				bool foundSepAxis = false;
 | |
| 				if (0)
 | |
| 				{
 | |
| 					polyhedronB->initializePolyhedralFeatures();
 | |
| 					 foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
 | |
| 					*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
 | |
| 					body0Wrap->getWorldTransform(), 
 | |
| 					body1Wrap->getWorldTransform(),
 | |
| 					sepNormalWorldSpace,*resultOut);
 | |
| 				//	 printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
 | |
| 
 | |
| 				} else
 | |
| 				{
 | |
| #ifdef ZERO_MARGIN
 | |
| 					gjkPairDetector.setIgnoreMargin(true);
 | |
| 					gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
 | |
| #else
 | |
| 					gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
 | |
| #endif//ZERO_MARGIN
 | |
| 					
 | |
| 					btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
 | |
| 					if (l2>SIMD_EPSILON)
 | |
| 					{
 | |
| 						sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
 | |
| 						//minDist = gjkPairDetector.getCachedSeparatingDistance();
 | |
| 						//maxDist = threshold;
 | |
| 						minDist = gjkPairDetector.getCachedSeparatingDistance()-min0->getMargin()-min1->getMargin();
 | |
| 						foundSepAxis = true;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				
 | |
| 			if (foundSepAxis)
 | |
| 			{
 | |
| 				worldVertsB2.resize(0);
 | |
| 				btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), 
 | |
| 					body0Wrap->getWorldTransform(), vertices, worldVertsB2,minDist-threshold, maxDist, *resultOut);
 | |
| 			}
 | |
| 				
 | |
| 				
 | |
| 				if (m_ownManifold)
 | |
| 				{
 | |
| 					resultOut->refreshContactPoints();
 | |
| 				}
 | |
| 				
 | |
| 				return;
 | |
| 			}
 | |
| 			
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 	
 | |
| 	gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
 | |
| 
 | |
| 	//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
 | |
| 	
 | |
| 	//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
 | |
| 	if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
 | |
| 	{
 | |
| 		
 | |
| 		int i;
 | |
| 		btVector3 v0,v1;
 | |
| 		btVector3 sepNormalWorldSpace;
 | |
| 		btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
 | |
| 	
 | |
| 		if (l2>SIMD_EPSILON)
 | |
| 		{
 | |
| 			sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
 | |
| 			
 | |
| 			btPlaneSpace1(sepNormalWorldSpace,v0,v1);
 | |
| 
 | |
| 
 | |
| 			bool perturbeA = true;
 | |
| 			const btScalar angleLimit = 0.125f * SIMD_PI;
 | |
| 			btScalar perturbeAngle;
 | |
| 			btScalar radiusA = min0->getAngularMotionDisc();
 | |
| 			btScalar radiusB = min1->getAngularMotionDisc();
 | |
| 			if (radiusA < radiusB)
 | |
| 			{
 | |
| 				perturbeAngle = gContactBreakingThreshold /radiusA;
 | |
| 				perturbeA = true;
 | |
| 			} else
 | |
| 			{
 | |
| 				perturbeAngle = gContactBreakingThreshold / radiusB;
 | |
| 				perturbeA = false;
 | |
| 			}
 | |
| 			if ( perturbeAngle > angleLimit ) 
 | |
| 					perturbeAngle = angleLimit;
 | |
| 
 | |
| 			btTransform unPerturbedTransform;
 | |
| 			if (perturbeA)
 | |
| 			{
 | |
| 				unPerturbedTransform = input.m_transformA;
 | |
| 			} else
 | |
| 			{
 | |
| 				unPerturbedTransform = input.m_transformB;
 | |
| 			}
 | |
| 			
 | |
| 			for ( i=0;i<m_numPerturbationIterations;i++)
 | |
| 			{
 | |
| 				if (v0.length2()>SIMD_EPSILON)
 | |
| 				{
 | |
| 				btQuaternion perturbeRot(v0,perturbeAngle);
 | |
| 				btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
 | |
| 				btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
 | |
| 				
 | |
| 				
 | |
| 				if (perturbeA)
 | |
| 				{
 | |
| 					input.m_transformA.setBasis(  btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0Wrap->getWorldTransform().getBasis());
 | |
| 					input.m_transformB = body1Wrap->getWorldTransform();
 | |
| 	#ifdef DEBUG_CONTACTS
 | |
| 					dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0);
 | |
| 	#endif //DEBUG_CONTACTS
 | |
| 				} else
 | |
| 				{
 | |
| 					input.m_transformA = body0Wrap->getWorldTransform();
 | |
| 					input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1Wrap->getWorldTransform().getBasis());
 | |
| 	#ifdef DEBUG_CONTACTS
 | |
| 					dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0);
 | |
| 	#endif
 | |
| 				}
 | |
| 				
 | |
| 				btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw);
 | |
| 				gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| #ifdef USE_SEPDISTANCE_UTIL2
 | |
| 	if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON))
 | |
| 	{
 | |
| 		m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
 | |
| 	}
 | |
| #endif //USE_SEPDISTANCE_UTIL2
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		resultOut->refreshContactPoints();
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool disableCcd = false;
 | |
| btScalar	btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 	(void)resultOut;
 | |
| 	(void)dispatchInfo;
 | |
| 	///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
 | |
|     
 | |
| 	///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
 | |
| 	///col0->m_worldTransform,
 | |
| 	btScalar resultFraction = btScalar(1.);
 | |
| 
 | |
| 
 | |
| 	btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
 | |
| 	btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
 | |
|     
 | |
| 	if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
 | |
| 		squareMot1 < col1->getCcdSquareMotionThreshold())
 | |
| 		return resultFraction;
 | |
| 
 | |
| 	if (disableCcd)
 | |
| 		return btScalar(1.);
 | |
| 
 | |
| 
 | |
| 	//An adhoc way of testing the Continuous Collision Detection algorithms
 | |
| 	//One object is approximated as a sphere, to simplify things
 | |
| 	//Starting in penetration should report no time of impact
 | |
| 	//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
 | |
| 	//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
 | |
| 
 | |
| 		
 | |
| 	/// Convex0 against sphere for Convex1
 | |
| 	{
 | |
| 		btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
 | |
| 
 | |
| 		btSphereShape	sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | |
| 		btConvexCast::CastResult result;
 | |
| 		btVoronoiSimplexSolver voronoiSimplex;
 | |
| 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | |
| 		///Simplification, one object is simplified as a sphere
 | |
| 		btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
 | |
| 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | |
| 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
 | |
| 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
 | |
| 		{
 | |
| 		
 | |
| 			//store result.m_fraction in both bodies
 | |
| 		
 | |
| 			if (col0->getHitFraction()> result.m_fraction)
 | |
| 				col0->setHitFraction( result.m_fraction );
 | |
| 
 | |
| 			if (col1->getHitFraction() > result.m_fraction)
 | |
| 				col1->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (resultFraction > result.m_fraction)
 | |
| 				resultFraction = result.m_fraction;
 | |
| 
 | |
| 		}
 | |
| 		
 | |
| 		
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/// Sphere (for convex0) against Convex1
 | |
| 	{
 | |
| 		btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
 | |
| 
 | |
| 		btSphereShape	sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | |
| 		btConvexCast::CastResult result;
 | |
| 		btVoronoiSimplexSolver voronoiSimplex;
 | |
| 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | |
| 		///Simplification, one object is simplified as a sphere
 | |
| 		btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
 | |
| 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | |
| 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
 | |
| 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
 | |
| 		{
 | |
| 		
 | |
| 			//store result.m_fraction in both bodies
 | |
| 		
 | |
| 			if (col0->getHitFraction()	> result.m_fraction)
 | |
| 				col0->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (col1->getHitFraction() > result.m_fraction)
 | |
| 				col1->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (resultFraction > result.m_fraction)
 | |
| 				resultFraction = result.m_fraction;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return resultFraction;
 | |
| 
 | |
| }
 | |
| 
 |