403 lines
16 KiB
Python
403 lines
16 KiB
Python
from typing import Union
|
|
|
|
import bpy
|
|
|
|
import lnx
|
|
import lnx.log as log
|
|
import lnx.material.cycles as c
|
|
import lnx.material.cycles_functions as c_functions
|
|
from lnx.material.parser_state import ParserPass, ParserState
|
|
from lnx.material.shader import floatstr, vec3str
|
|
|
|
if lnx.is_reload(__name__):
|
|
log = lnx.reload_module(log)
|
|
c = lnx.reload_module(c)
|
|
c_functions = lnx.reload_module(c_functions)
|
|
lnx.material.parser_state = lnx.reload_module(lnx.material.parser_state)
|
|
from lnx.material.parser_state import ParserState
|
|
lnx.material.shader = lnx.reload_module(lnx.material.shader)
|
|
from lnx.material.shader import floatstr, vec3str
|
|
else:
|
|
lnx.enable_reload(__name__)
|
|
|
|
|
|
def parse_maprange(node: bpy.types.ShaderNodeMapRange, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
|
|
interp = node.interpolation_type
|
|
|
|
value: str = c.parse_value_input(node.inputs[0]) if node.inputs[0].is_linked else c.to_vec1(node.inputs[0].default_value)
|
|
fromMin = c.parse_value_input(node.inputs[1])
|
|
fromMax = c.parse_value_input(node.inputs[2])
|
|
toMin = c.parse_value_input(node.inputs[3])
|
|
toMax = c.parse_value_input(node.inputs[4])
|
|
|
|
if interp == "LINEAR":
|
|
state.curshader.add_function(c_functions.str_map_range_linear)
|
|
out = f'map_range_linear({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
|
|
|
|
elif interp == "STEPPED":
|
|
steps = float(c.parse_value_input(node.inputs[5]))
|
|
state.curshader.add_function(c_functions.str_map_range_stepped)
|
|
out = f'map_range_stepped({value}, {fromMin}, {fromMax}, {toMin}, {toMax}, {steps})'
|
|
|
|
elif interp == "SMOOTHSTEP":
|
|
state.curshader.add_function(c_functions.str_map_range_smoothstep)
|
|
out = f'map_range_smoothstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
|
|
|
|
elif interp == "SMOOTHERSTEP":
|
|
state.curshader.add_function(c_functions.str_map_range_smootherstep)
|
|
out = f'map_range_smootherstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
|
|
|
|
else:
|
|
log.warn(f'Interpolation mode {interp} not supported for Map Range node')
|
|
return '0.0'
|
|
|
|
if node.clamp:
|
|
out = f'clamp({out}, {toMin}, {toMax})'
|
|
|
|
return out
|
|
|
|
def parse_blackbody(node: bpy.types.ShaderNodeBlackbody, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
|
|
|
|
t = c.parse_value_input(node.inputs[0])
|
|
|
|
state.curshader.add_function(c_functions.str_blackbody)
|
|
return f'blackbody({t})'
|
|
|
|
def parse_clamp(node: bpy.types.ShaderNodeClamp, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
value = c.parse_value_input(node.inputs['Value'])
|
|
minVal = c.parse_value_input(node.inputs['Min'])
|
|
maxVal = c.parse_value_input(node.inputs['Max'])
|
|
|
|
if node.clamp_type == 'MINMAX':
|
|
# Condition is minVal < maxVal, otherwise use 'RANGE' type
|
|
return f'clamp({value}, {minVal}, {maxVal})'
|
|
|
|
elif node.clamp_type == 'RANGE':
|
|
return f'{minVal} < {maxVal} ? clamp({value}, {minVal}, {maxVal}) : clamp({value}, {maxVal}, {minVal})'
|
|
|
|
else:
|
|
log.warn(f'Clamp node: unsupported clamp type {node.clamp_type}.')
|
|
return value
|
|
|
|
|
|
def parse_valtorgb(node: bpy.types.ShaderNodeValToRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]:
|
|
# Alpha (TODO: make ColorRamp calculation vec4-based and split afterwards)
|
|
if out_socket == node.outputs[1]:
|
|
return '1.0'
|
|
|
|
input_fac: bpy.types.NodeSocket = node.inputs[0]
|
|
|
|
fac: str = c.parse_value_input(input_fac) if input_fac.is_linked else c.to_vec1(input_fac.default_value)
|
|
interp = node.color_ramp.interpolation
|
|
elems = node.color_ramp.elements
|
|
|
|
if len(elems) == 1:
|
|
return c.to_vec3(elems[0].color)
|
|
|
|
# Write color array
|
|
# The last entry is included twice so that the interpolation
|
|
# between indices works (no out of bounds error)
|
|
cols_var = c.node_name(node.name).upper() + '_COLS'
|
|
|
|
if state.current_pass == ParserPass.REGULAR:
|
|
cols_entries = ', '.join(f'vec3({elem.color[0]}, {elem.color[1]}, {elem.color[2]})' for elem in elems)
|
|
cols_entries += f', vec3({elems[len(elems) - 1].color[0]}, {elems[len(elems) - 1].color[1]}, {elems[len(elems) - 1].color[2]})'
|
|
state.curshader.add_const("vec3", cols_var, cols_entries, array_size=len(elems) + 1)
|
|
|
|
fac_var = c.node_name(node.name) + '_fac' + state.get_parser_pass_suffix()
|
|
state.curshader.write(f'float {fac_var} = {fac};')
|
|
|
|
# Get index of the nearest left element relative to the factor
|
|
index = '0 + '
|
|
index += ' + '.join([f'(({fac_var} > {elems[i].position}) ? 1 : 0)' for i in range(1, len(elems))])
|
|
|
|
# Write index
|
|
index_var = c.node_name(node.name) + '_i' + state.get_parser_pass_suffix()
|
|
state.curshader.write(f'int {index_var} = {index};')
|
|
|
|
if interp == 'CONSTANT':
|
|
return f'{cols_var}[{index_var}]'
|
|
|
|
# Linear interpolation
|
|
else:
|
|
# Write factor array
|
|
facs_var = c.node_name(node.name).upper() + '_FACS'
|
|
if state.current_pass == ParserPass.REGULAR:
|
|
facs_entries = ', '.join(str(elem.position) for elem in elems)
|
|
# Add one more entry at the rightmost position so that the
|
|
# interpolation between indices works (no out of bounds error)
|
|
facs_entries += ', 1.0'
|
|
state.curshader.add_const("float", facs_var, facs_entries, array_size=len(elems) + 1)
|
|
|
|
# Mix color
|
|
prev_stop_fac = f'{facs_var}[{index_var}]'
|
|
next_stop_fac = f'{facs_var}[{index_var} + 1]'
|
|
prev_stop_col = f'{cols_var}[{index_var}]'
|
|
next_stop_col = f'{cols_var}[{index_var} + 1]'
|
|
rel_pos = f'({fac_var} - {prev_stop_fac}) * (1.0 / ({next_stop_fac} - {prev_stop_fac}))'
|
|
return f'mix({prev_stop_col}, {next_stop_col}, max({rel_pos}, 0.0))'
|
|
|
|
if bpy.app.version > (3, 2, 0):
|
|
def parse_combine_color(node: bpy.types.ShaderNodeCombineColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
if node.mode == 'RGB':
|
|
return parse_combrgb(node, out_socket, state)
|
|
elif node.mode == 'HSV':
|
|
return parse_combhsv(node, out_socket, state)
|
|
elif node.mode == 'HSL':
|
|
log.warn('Combine Color node: HSL mode is not supported, using default value')
|
|
return c.to_vec3((0.0, 0.0, 0.0))
|
|
|
|
|
|
def parse_combhsv(node: bpy.types.ShaderNodeCombineHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
|
|
state.curshader.add_function(c_functions.str_hue_sat)
|
|
h = c.parse_value_input(node.inputs[0])
|
|
s = c.parse_value_input(node.inputs[1])
|
|
v = c.parse_value_input(node.inputs[2])
|
|
return f'hsv_to_rgb(vec3({h}, {s}, {v}))'
|
|
|
|
|
|
def parse_combrgb(node: bpy.types.ShaderNodeCombineRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
|
|
r = c.parse_value_input(node.inputs[0])
|
|
g = c.parse_value_input(node.inputs[1])
|
|
b = c.parse_value_input(node.inputs[2])
|
|
return f'vec3({r}, {g}, {b})'
|
|
|
|
|
|
def parse_combxyz(node: bpy.types.ShaderNodeCombineXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
|
|
x = c.parse_value_input(node.inputs[0])
|
|
y = c.parse_value_input(node.inputs[1])
|
|
z = c.parse_value_input(node.inputs[2])
|
|
return f'vec3({x}, {y}, {z})'
|
|
|
|
|
|
def parse_wavelength(node: bpy.types.ShaderNodeWavelength, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
|
|
state.curshader.add_function(c_functions.str_wavelength_to_rgb)
|
|
wl = c.parse_value_input(node.inputs[0])
|
|
# Roughly map to cycles - 450 to 600 nanometers
|
|
return f'wavelength_to_rgb(({wl} - 450.0) / 150.0)'
|
|
|
|
|
|
def parse_vectormath(node: bpy.types.ShaderNodeVectorMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]:
|
|
op = node.operation
|
|
|
|
vec1 = c.parse_vector_input(node.inputs[0])
|
|
vec2 = c.parse_vector_input(node.inputs[1])
|
|
|
|
if out_socket.type == 'VECTOR':
|
|
if op == 'ADD':
|
|
return f'({vec1} + {vec2})'
|
|
elif op == 'SUBTRACT':
|
|
return f'({vec1} - {vec2})'
|
|
elif op == 'MULTIPLY':
|
|
return f'({vec1} * {vec2})'
|
|
elif op == 'DIVIDE':
|
|
state.curshader.add_function(c_functions.str_safe_divide)
|
|
return f'safe_divide({vec1}, {vec2})'
|
|
|
|
elif op == 'NORMALIZE':
|
|
return f'normalize({vec1})'
|
|
elif op == 'SCALE':
|
|
# Scale is input 3 despite being visually on another position (see the python tooltip in Blender)
|
|
scale = c.parse_value_input(node.inputs[3])
|
|
return f'{vec1} * {scale}'
|
|
|
|
elif op == 'REFLECT':
|
|
return f'reflect({vec1}, normalize({vec2}))'
|
|
elif op == 'PROJECT':
|
|
state.curshader.add_function(c_functions.str_project)
|
|
return f'project({vec1}, {vec2})'
|
|
elif op == 'CROSS_PRODUCT':
|
|
return f'cross({vec1}, {vec2})'
|
|
|
|
elif op == 'SINE':
|
|
return f'sin({vec1})'
|
|
elif op == 'COSINE':
|
|
return f'cos({vec1})'
|
|
elif op == 'TANGENT':
|
|
return f'tan({vec1})'
|
|
|
|
elif op == 'MODULO':
|
|
return f'mod({vec1}, {vec2})'
|
|
elif op == 'FRACTION':
|
|
return f'fract({vec1})'
|
|
|
|
elif op == 'SNAP':
|
|
state.curshader.add_function(c_functions.str_safe_divide)
|
|
return f'floor(safe_divide({vec1}, {vec2})) * {vec2}'
|
|
elif op == 'WRAP':
|
|
vec3 = c.parse_vector_input(node.inputs[2])
|
|
state.curshader.add_function(c_functions.str_wrap)
|
|
return f'wrap({vec1}, {vec2}, {vec3})'
|
|
elif op == 'CEIL':
|
|
return f'ceil({vec1})'
|
|
elif op == 'FLOOR':
|
|
return f'floor({vec1})'
|
|
elif op == 'MAXIMUM':
|
|
return f'max({vec1}, {vec2})'
|
|
elif op == 'MINIMUM':
|
|
return f'min({vec1}, {vec2})'
|
|
elif op == 'ABSOLUTE':
|
|
return f'abs({vec1})'
|
|
|
|
log.warn(f'Vectormath node: unsupported operation {node.operation}.')
|
|
return vec1
|
|
|
|
# Float output
|
|
if op == 'DOT_PRODUCT':
|
|
return f'dot({vec1}, {vec2})'
|
|
elif op == 'DISTANCE':
|
|
return f'distance({vec1}, {vec2})'
|
|
elif op == 'LENGTH':
|
|
return f'length({vec1})'
|
|
|
|
log.warn(f'Vectormath node: unsupported operation {node.operation}.')
|
|
return '0.0'
|
|
|
|
|
|
def parse_math(node: bpy.types.ShaderNodeMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
val1 = c.parse_value_input(node.inputs[0])
|
|
val2 = c.parse_value_input(node.inputs[1])
|
|
op = node.operation
|
|
if op == 'ADD':
|
|
out_val = '({0} + {1})'.format(val1, val2)
|
|
elif op == 'SUBTRACT':
|
|
out_val = '({0} - {1})'.format(val1, val2)
|
|
elif op == 'MULTIPLY':
|
|
out_val = '({0} * {1})'.format(val1, val2)
|
|
elif op == 'DIVIDE':
|
|
out_val = '({0} / {1})'.format(val1, val2)
|
|
elif op == 'MULTIPLY_ADD':
|
|
val3 = c.parse_value_input(node.inputs[2])
|
|
out_val = '({0} * {1} + {2})'.format(val1, val2, val3)
|
|
elif op == 'POWER':
|
|
out_val = 'pow({0}, {1})'.format(val1, val2)
|
|
elif op == 'LOGARITHM':
|
|
out_val = 'log({0})'.format(val1)
|
|
elif op == 'SQRT':
|
|
out_val = 'sqrt({0})'.format(val1)
|
|
elif op == 'INVERSE_SQRT':
|
|
out_val = 'inversesqrt({0})'.format(val1)
|
|
elif op == 'ABSOLUTE':
|
|
out_val = 'abs({0})'.format(val1)
|
|
elif op == 'EXPONENT':
|
|
out_val = 'exp({0})'.format(val1)
|
|
elif op == 'MINIMUM':
|
|
out_val = 'min({0}, {1})'.format(val1, val2)
|
|
elif op == 'MAXIMUM':
|
|
out_val = 'max({0}, {1})'.format(val1, val2)
|
|
elif op == 'LESS_THAN':
|
|
out_val = 'float({0} < {1})'.format(val1, val2)
|
|
elif op == 'GREATER_THAN':
|
|
out_val = 'float({0} > {1})'.format(val1, val2)
|
|
elif op == 'SIGN':
|
|
out_val = 'sign({0})'.format(val1)
|
|
elif op == 'COMPARE':
|
|
val3 = c.parse_value_input(node.inputs[2])
|
|
out_val = 'float((abs({0} - {1}) <= max({2}, 1e-5)) ? 1.0 : 0.0)'.format(val1, val2, val3)
|
|
elif op == 'SMOOTH_MIN':
|
|
val3 = c.parse_value_input(node.inputs[2])
|
|
out_val = 'float(float({2} != 0.0 ? min({0},{1}) - (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * {2} * (1.0 / 6.0) : min({0}, {1})))'.format(val1, val2, val3)
|
|
elif op == 'SMOOTH_MAX':
|
|
val3 = c.parse_value_input(node.inputs[2])
|
|
out_val = 'float(0-(float({2} != 0.0 ? min(-{0},-{1}) - (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * {2} * (1.0 / 6.0) : min(-{0}, (-{1})))))'.format(val1, val2, val3)
|
|
elif op == 'ROUND':
|
|
# out_val = 'round({0})'.format(val1)
|
|
out_val = 'floor({0} + 0.5)'.format(val1)
|
|
elif op == 'FLOOR':
|
|
out_val = 'floor({0})'.format(val1)
|
|
elif op == 'CEIL':
|
|
out_val = 'ceil({0})'.format(val1)
|
|
elif op == 'TRUNC':
|
|
out_val = 'trunc({0})'.format(val1)
|
|
elif op == 'FRACT':
|
|
out_val = 'fract({0})'.format(val1)
|
|
elif op == 'MODULO':
|
|
# out_val = 'float({0} % {1})'.format(val1, val2)
|
|
out_val = 'mod({0}, {1})'.format(val1, val2)
|
|
elif op == 'WRAP':
|
|
val3 = c.parse_value_input(node.inputs[2])
|
|
out_val = 'float((({1}-{2}) != 0.0) ? {0} - (({1}-{2}) * floor(({0} - {2}) / ({1}-{2}))) : {2})'.format(val1, val2, val3)
|
|
elif op == 'SNAP':
|
|
out_val = 'floor(({1} != 0.0) ? {0} / {1} : 0.0) * {1}'.format(val1, val2)
|
|
elif op == 'PINGPONG':
|
|
out_val = 'float(({1} != 0.0) ? abs(fract(({0} - {1}) / ({1} * 2.0)) * {1} * 2.0 - {1}) : 0.0)'.format(val1, val2)
|
|
elif op == 'SINE':
|
|
out_val = 'sin({0})'.format(val1)
|
|
elif op == 'COSINE':
|
|
out_val = 'cos({0})'.format(val1)
|
|
elif op == 'TANGENT':
|
|
out_val = 'tan({0})'.format(val1)
|
|
elif op == 'ARCSINE':
|
|
out_val = 'asin({0})'.format(val1)
|
|
elif op == 'ARCCOSINE':
|
|
out_val = 'acos({0})'.format(val1)
|
|
elif op == 'ARCTANGENT':
|
|
out_val = 'atan({0})'.format(val1)
|
|
elif op == 'ARCTAN2':
|
|
out_val = 'atan({0}, {1})'.format(val1, val2)
|
|
elif op == 'SINH':
|
|
out_val = 'sinh({0})'.format(val1)
|
|
elif op == 'COSH':
|
|
out_val = 'cosh({0})'.format(val1)
|
|
elif op == 'TANH':
|
|
out_val = 'tanh({0})'.format(val1)
|
|
elif op == 'RADIANS':
|
|
out_val = 'radians({0})'.format(val1)
|
|
elif op == 'DEGREES':
|
|
out_val = 'degrees({0})'.format(val1)
|
|
|
|
if node.use_clamp:
|
|
return 'clamp({0}, 0.0, 1.0)'.format(out_val)
|
|
else:
|
|
return out_val
|
|
|
|
|
|
def parse_rgbtobw(node: bpy.types.ShaderNodeRGBToBW, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
return c.rgb_to_bw(c.parse_vector_input(node.inputs[0]))
|
|
|
|
if bpy.app.version > (3, 2, 0):
|
|
def parse_separate_color(node: bpy.types.ShaderNodeSeparateColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
if node.mode == 'RGB':
|
|
return parse_seprgb(node, out_socket, state)
|
|
elif node.mode == 'HSV':
|
|
return parse_sephsv(node, out_socket, state)
|
|
elif node.mode == 'HSL':
|
|
log.warn('Separate Color node: HSL mode is not supported, using default value')
|
|
return '0.0'
|
|
|
|
|
|
def parse_sephsv(node: bpy.types.ShaderNodeSeparateHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
state.curshader.add_function(c_functions.str_hue_sat)
|
|
|
|
hsv_var = c.node_name(node.name) + '_hsv' + state.get_parser_pass_suffix()
|
|
if not state.curshader.contains(hsv_var): # Already written if a second output is parsed
|
|
state.curshader.write(f'const vec3 {hsv_var} = rgb_to_hsv({c.parse_vector_input(node.inputs["Color"])}.rgb);')
|
|
|
|
if out_socket == node.outputs[0]:
|
|
return f'{hsv_var}.x'
|
|
elif out_socket == node.outputs[1]:
|
|
return f'{hsv_var}.y'
|
|
elif out_socket == node.outputs[2]:
|
|
return f'{hsv_var}.z'
|
|
|
|
|
|
def parse_seprgb(node: bpy.types.ShaderNodeSeparateRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
col = c.parse_vector_input(node.inputs[0])
|
|
if out_socket == node.outputs[0]:
|
|
return '{0}.r'.format(col)
|
|
elif out_socket == node.outputs[1]:
|
|
return '{0}.g'.format(col)
|
|
elif out_socket == node.outputs[2]:
|
|
return '{0}.b'.format(col)
|
|
|
|
|
|
def parse_sepxyz(node: bpy.types.ShaderNodeSeparateXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
|
|
vec = c.parse_vector_input(node.inputs[0])
|
|
if out_socket == node.outputs[0]:
|
|
return '{0}.x'.format(vec)
|
|
elif out_socket == node.outputs[1]:
|
|
return '{0}.y'.format(vec)
|
|
elif out_socket == node.outputs[2]:
|
|
return '{0}.z'.format(vec)
|