1365 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1365 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef BT_VECTOR3_H
 | |
| #define BT_VECTOR3_H
 | |
| 
 | |
| //#include <stdint.h>
 | |
| #include "btScalar.h"
 | |
| #include "btMinMax.h"
 | |
| #include "btAlignedAllocator.h"
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btVector3Data btVector3DoubleData
 | |
| #define btVector3DataName "btVector3DoubleData"
 | |
| #else
 | |
| #define btVector3Data btVector3FloatData
 | |
| #define btVector3DataName "btVector3FloatData"
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| #if defined BT_USE_SSE
 | |
| 
 | |
| //typedef  uint32_t __m128i __attribute__ ((vector_size(16)));
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define BT_SHUFFLE(x, y, z, w) (((w) << 6 | (z) << 4 | (y) << 2 | (x)) & 0xff)
 | |
| //#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
 | |
| #define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
 | |
| #define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
 | |
| #define bt_splat_ps( _a, _i )  bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )
 | |
| 
 | |
| #define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
 | |
| #define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
 | |
| #define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
 | |
| #define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
 | |
| #define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
 | |
| #define btvxyzMaskf btvFFF0fMask
 | |
| #define btvAbsfMask btCastiTo128f(btvAbsMask)
 | |
| 
 | |
| //there is an issue with XCode 3.2 (LCx errors)
 | |
| #define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f))
 | |
| #define v1110		 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
 | |
| #define vHalf		 (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
 | |
| #define v1_5		 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))
 | |
| 
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f};
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(v1_5)  = {1.5f, 1.5f, 1.5f, 1.5f};
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef BT_USE_NEON
 | |
| 
 | |
| const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
 | |
| const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF),
 | |
| 	static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
 | |
| const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
 | |
| const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**@brief btVector3 can be used to represent 3D points and vectors.
 | |
|  * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
 | |
|  * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
 | |
|  */
 | |
| ATTRIBUTE_ALIGNED16(class) btVector3
 | |
| {
 | |
| public:
 | |
| 
 | |
| 	BT_DECLARE_ALIGNED_ALLOCATOR();
 | |
| 
 | |
| #if defined (__SPU__) && defined (__CELLOS_LV2__)
 | |
| 		btScalar	m_floats[4];
 | |
| public:
 | |
| 	SIMD_FORCE_INLINE const vec_float4&	get128() const
 | |
| 	{
 | |
| 		return *((const vec_float4*)&m_floats[0]);
 | |
| 	}
 | |
| public:
 | |
| #else //__CELLOS_LV2__ __SPU__
 | |
|     #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
 | |
|         union {
 | |
|             btSimdFloat4      mVec128;
 | |
|             btScalar	m_floats[4];
 | |
|         };
 | |
|         SIMD_FORCE_INLINE	btSimdFloat4	get128() const
 | |
|         {
 | |
|             return mVec128;
 | |
|         }
 | |
|         SIMD_FORCE_INLINE	void	set128(btSimdFloat4 v128)
 | |
|         {
 | |
|             mVec128 = v128;
 | |
|         }
 | |
|     #else
 | |
|         btScalar	m_floats[4];
 | |
|     #endif
 | |
| #endif //__CELLOS_LV2__ __SPU__
 | |
| 
 | |
| 	public:
 | |
| 
 | |
|   /**@brief No initialization constructor */
 | |
| 	SIMD_FORCE_INLINE btVector3() 
 | |
| 	{
 | |
| 
 | |
| 	}
 | |
| 
 | |
|  
 | |
| 	
 | |
|   /**@brief Constructor from scalars 
 | |
|    * @param x X value
 | |
|    * @param y Y value 
 | |
|    * @param z Z value 
 | |
|    */
 | |
| 	SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z)
 | |
| 	{
 | |
| 		m_floats[0] = _x;
 | |
| 		m_floats[1] = _y;
 | |
| 		m_floats[2] = _z;
 | |
| 		m_floats[3] = btScalar(0.f);
 | |
| 	}
 | |
| 
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
 | |
| 	// Set Vector 
 | |
| 	SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
 | |
| 	{
 | |
| 		mVec128 = v;
 | |
| 	}
 | |
| 
 | |
| 	// Copy constructor
 | |
| 	SIMD_FORCE_INLINE btVector3(const btVector3& rhs)
 | |
| 	{
 | |
| 		mVec128 = rhs.mVec128;
 | |
| 	}
 | |
| 
 | |
| 	// Assignment Operator
 | |
| 	SIMD_FORCE_INLINE btVector3& 
 | |
| 	operator=(const btVector3& v) 
 | |
| 	{
 | |
| 		mVec128 = v.mVec128;
 | |
| 		
 | |
| 		return *this;
 | |
| 	}
 | |
| #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 
 | |
|     
 | |
| /**@brief Add a vector to this one 
 | |
|  * @param The vector to add to this one */
 | |
| 	SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_add_ps(mVec128, v.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vaddq_f32(mVec128, v.mVec128);
 | |
| #else
 | |
| 		m_floats[0] += v.m_floats[0]; 
 | |
| 		m_floats[1] += v.m_floats[1];
 | |
| 		m_floats[2] += v.m_floats[2];
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 
 | |
|   /**@brief Subtract a vector from this one
 | |
|    * @param The vector to subtract */
 | |
| 	SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) 
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_sub_ps(mVec128, v.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vsubq_f32(mVec128, v.mVec128);
 | |
| #else
 | |
| 		m_floats[0] -= v.m_floats[0]; 
 | |
| 		m_floats[1] -= v.m_floats[1];
 | |
| 		m_floats[2] -= v.m_floats[2];
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 	
 | |
|   /**@brief Scale the vector
 | |
|    * @param s Scale factor */
 | |
| 	SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
 | |
| 		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
 | |
| 		mVec128 = _mm_mul_ps(mVec128, vs);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vmulq_n_f32(mVec128, s);
 | |
| #else
 | |
| 		m_floats[0] *= s; 
 | |
| 		m_floats[1] *= s;
 | |
| 		m_floats[2] *= s;
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Inversely scale the vector 
 | |
|    * @param s Scale factor to divide by */
 | |
| 	SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) 
 | |
| 	{
 | |
| 		btFullAssert(s != btScalar(0.0));
 | |
| 
 | |
| #if 0 //defined(BT_USE_SSE_IN_API)
 | |
| // this code is not faster !
 | |
| 		__m128 vs = _mm_load_ss(&s);
 | |
| 		vs = _mm_div_ss(v1110, vs);
 | |
| 		vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)
 | |
| 
 | |
| 		mVec128 = _mm_mul_ps(mVec128, vs);
 | |
| 		
 | |
| 		return *this;
 | |
| #else
 | |
| 		return *this *= btScalar(1.0) / s;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the dot product
 | |
|    * @param v The other vector in the dot product */
 | |
| 	SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128 vd = _mm_mul_ps(mVec128, v.mVec128);
 | |
| 		__m128 z = _mm_movehl_ps(vd, vd);
 | |
| 		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
 | |
| 		vd = _mm_add_ss(vd, y);
 | |
| 		vd = _mm_add_ss(vd, z);
 | |
| 		return _mm_cvtss_f32(vd);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
 | |
| 		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));  
 | |
| 		x = vadd_f32(x, vget_high_f32(vd));
 | |
| 		return vget_lane_f32(x, 0);
 | |
| #else	
 | |
| 		return	m_floats[0] * v.m_floats[0] + 
 | |
| 				m_floats[1] * v.m_floats[1] + 
 | |
| 				m_floats[2] * v.m_floats[2];
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the length of the vector squared */
 | |
| 	SIMD_FORCE_INLINE btScalar length2() const
 | |
| 	{
 | |
| 		return dot(*this);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the length of the vector */
 | |
| 	SIMD_FORCE_INLINE btScalar length() const
 | |
| 	{
 | |
| 		return btSqrt(length2());
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the norm (length) of the vector */
 | |
| 	SIMD_FORCE_INLINE btScalar norm() const
 | |
| 	{		
 | |
| 		return length();
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the norm (length) of the vector */
 | |
| 	SIMD_FORCE_INLINE btScalar safeNorm() const
 | |
| 	{
 | |
| 		btScalar d = length2();
 | |
| 		//workaround for some clang/gcc issue of sqrtf(tiny number) = -INF
 | |
| 		if (d>SIMD_EPSILON)
 | |
| 			return btSqrt(d);
 | |
| 		return btScalar(0);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the distance squared between the ends of this and another vector
 | |
|    * This is symantically treating the vector like a point */
 | |
| 	SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
 | |
| 
 | |
|   /**@brief Return the distance between the ends of this and another vector
 | |
|    * This is symantically treating the vector like a point */
 | |
| 	SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector3& safeNormalize() 
 | |
| 	{
 | |
| 		btScalar l2 = length2();
 | |
| 		//triNormal.normalize();
 | |
| 		if (l2 >= SIMD_EPSILON*SIMD_EPSILON)
 | |
| 		{
 | |
| 			(*this) /= btSqrt(l2);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			setValue(1, 0, 0);
 | |
| 		}
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
|   /**@brief Normalize this vector 
 | |
|    * x^2 + y^2 + z^2 = 1 */
 | |
| 	SIMD_FORCE_INLINE btVector3& normalize() 
 | |
| 	{
 | |
| 		
 | |
| 		btAssert(!fuzzyZero());
 | |
| 
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)		
 | |
|         // dot product first
 | |
| 		__m128 vd = _mm_mul_ps(mVec128, mVec128);
 | |
| 		__m128 z = _mm_movehl_ps(vd, vd);
 | |
| 		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
 | |
| 		vd = _mm_add_ss(vd, y);
 | |
| 		vd = _mm_add_ss(vd, z);
 | |
| 		
 | |
|         #if 0
 | |
|         vd = _mm_sqrt_ss(vd);
 | |
| 		vd = _mm_div_ss(v1110, vd);
 | |
| 		vd = bt_splat_ps(vd, 0x80);
 | |
| 		mVec128 = _mm_mul_ps(mVec128, vd);
 | |
|         #else
 | |
|         
 | |
|         // NR step 1/sqrt(x) - vd is x, y is output 
 | |
|         y = _mm_rsqrt_ss(vd); // estimate 
 | |
|         
 | |
|         //  one step NR 
 | |
|         z = v1_5;
 | |
|         vd = _mm_mul_ss(vd, vHalf); // vd * 0.5	
 | |
|         //x2 = vd;
 | |
|         vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
 | |
|         vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
 | |
|         z = _mm_sub_ss(z, vd);  // 1.5 - vd * 0.5 * y0 * y0 
 | |
| 
 | |
|         y = _mm_mul_ss(y, z);   // y0 * (1.5 - vd * 0.5 * y0 * y0)
 | |
| 
 | |
| 		y = bt_splat_ps(y, 0x80);
 | |
| 		mVec128 = _mm_mul_ps(mVec128, y);
 | |
| 
 | |
|         #endif
 | |
| 
 | |
| 		
 | |
| 		return *this;
 | |
| #else	
 | |
| 		return *this /= length();
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return a normalized version of this vector */
 | |
| 	SIMD_FORCE_INLINE btVector3 normalized() const;
 | |
| 
 | |
|   /**@brief Return a rotated version of this vector
 | |
|    * @param wAxis The axis to rotate about 
 | |
|    * @param angle The angle to rotate by */
 | |
| 	SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;
 | |
| 
 | |
|   /**@brief Return the angle between this and another vector
 | |
|    * @param v The other vector */
 | |
| 	SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const 
 | |
| 	{
 | |
| 		btScalar s = btSqrt(length2() * v.length2());
 | |
| 		btFullAssert(s != btScalar(0.0));
 | |
| 		return btAcos(dot(v) / s);
 | |
| 	}
 | |
| 	
 | |
|   /**@brief Return a vector will the absolute values of each element */
 | |
| 	SIMD_FORCE_INLINE btVector3 absolute() const 
 | |
| 	{
 | |
| 
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
 | |
| 		return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		return btVector3(vabsq_f32(mVec128));
 | |
| #else	
 | |
| 		return btVector3(
 | |
| 			btFabs(m_floats[0]), 
 | |
| 			btFabs(m_floats[1]), 
 | |
| 			btFabs(m_floats[2]));
 | |
| #endif
 | |
| 	}
 | |
| 	
 | |
|   /**@brief Return the cross product between this and another vector 
 | |
|    * @param v The other vector */
 | |
| 	SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	T, V;
 | |
| 		
 | |
| 		T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
 | |
| 		V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
 | |
| 		
 | |
| 		V = _mm_mul_ps(V, mVec128);
 | |
| 		T = _mm_mul_ps(T, v.mVec128);
 | |
| 		V = _mm_sub_ps(V, T);
 | |
| 		
 | |
| 		V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
 | |
| 		return btVector3(V);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		float32x4_t T, V;
 | |
| 		// form (Y, Z, X, _) of mVec128 and v.mVec128
 | |
| 		float32x2_t Tlow = vget_low_f32(mVec128);
 | |
| 		float32x2_t Vlow = vget_low_f32(v.mVec128);
 | |
| 		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
 | |
| 		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
 | |
| 		
 | |
| 		V = vmulq_f32(V, mVec128);
 | |
| 		T = vmulq_f32(T, v.mVec128);
 | |
| 		V = vsubq_f32(V, T);
 | |
| 		Vlow = vget_low_f32(V);
 | |
| 		// form (Y, Z, X, _);
 | |
| 		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
 | |
| 		V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
 | |
| 		
 | |
| 		return btVector3(V);
 | |
| #else
 | |
| 		return btVector3(
 | |
| 			m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
 | |
| 			m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
 | |
| 			m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		// cross:
 | |
| 		__m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
 | |
| 		__m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
 | |
| 		
 | |
| 		V = _mm_mul_ps(V, v1.mVec128);
 | |
| 		T = _mm_mul_ps(T, v2.mVec128);
 | |
| 		V = _mm_sub_ps(V, T);
 | |
| 		
 | |
| 		V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
 | |
| 
 | |
| 		// dot: 
 | |
| 		V = _mm_mul_ps(V, mVec128);
 | |
| 		__m128 z = _mm_movehl_ps(V, V);
 | |
| 		__m128 y = _mm_shuffle_ps(V, V, 0x55);
 | |
| 		V = _mm_add_ss(V, y);
 | |
| 		V = _mm_add_ss(V, z);
 | |
| 		return _mm_cvtss_f32(V);
 | |
| 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		// cross:
 | |
| 		float32x4_t T, V;
 | |
| 		// form (Y, Z, X, _) of mVec128 and v.mVec128
 | |
| 		float32x2_t Tlow = vget_low_f32(v1.mVec128);
 | |
| 		float32x2_t Vlow = vget_low_f32(v2.mVec128);
 | |
| 		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
 | |
| 		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
 | |
| 		
 | |
| 		V = vmulq_f32(V, v1.mVec128);
 | |
| 		T = vmulq_f32(T, v2.mVec128);
 | |
| 		V = vsubq_f32(V, T);
 | |
| 		Vlow = vget_low_f32(V);
 | |
| 		// form (Y, Z, X, _);
 | |
| 		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
 | |
| 
 | |
| 		// dot: 
 | |
| 		V = vmulq_f32(mVec128, V);
 | |
| 		float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));  
 | |
| 		x = vadd_f32(x, vget_high_f32(V));
 | |
| 		return vget_lane_f32(x, 0);
 | |
| #else
 | |
| 		return 
 | |
| 			m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + 
 | |
| 			m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + 
 | |
| 			m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the axis with the smallest value 
 | |
|    * Note return values are 0,1,2 for x, y, or z */
 | |
| 	SIMD_FORCE_INLINE int minAxis() const
 | |
| 	{
 | |
| 		return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the axis with the largest value 
 | |
|    * Note return values are 0,1,2 for x, y, or z */
 | |
| 	SIMD_FORCE_INLINE int maxAxis() const 
 | |
| 	{
 | |
| 		return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE int furthestAxis() const
 | |
| 	{
 | |
| 		return absolute().minAxis();
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE int closestAxis() const 
 | |
| 	{
 | |
| 		return absolute().maxAxis();
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vrt = _mm_load_ss(&rt);	//	(rt 0 0 0)
 | |
| 		btScalar s = btScalar(1.0) - rt;
 | |
| 		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
 | |
| 		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
 | |
| 		__m128 r0 = _mm_mul_ps(v0.mVec128, vs);
 | |
| 		vrt = bt_pshufd_ps(vrt, 0x80);	//	(rt rt rt 0.0)
 | |
| 		__m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
 | |
| 		__m128 tmp3 = _mm_add_ps(r0,r1);
 | |
| 		mVec128 = tmp3;
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128);
 | |
| 		vl = vmulq_n_f32(vl, rt);
 | |
| 		mVec128 = vaddq_f32(vl, v0.mVec128);
 | |
| #else
 | |
| 		btScalar s = btScalar(1.0) - rt;
 | |
| 		m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
 | |
| 		m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
 | |
| 		m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
 | |
| 		//don't do the unused w component
 | |
| 		//		m_co[3] = s * v0[3] + rt * v1[3];
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Return the linear interpolation between this and another vector 
 | |
|    * @param v The other vector 
 | |
|    * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
 | |
| 	SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const 
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		__m128	vt = _mm_load_ss(&t);	//	(t 0 0 0)
 | |
| 		vt = bt_pshufd_ps(vt, 0x80);	//	(rt rt rt 0.0)
 | |
| 		__m128 vl = _mm_sub_ps(v.mVec128, mVec128);
 | |
| 		vl = _mm_mul_ps(vl, vt);
 | |
| 		vl = _mm_add_ps(vl, mVec128);
 | |
| 		
 | |
| 		return btVector3(vl);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
 | |
| 		vl = vmulq_n_f32(vl, t);
 | |
| 		vl = vaddq_f32(vl, mVec128);
 | |
| 		
 | |
| 		return btVector3(vl);
 | |
| #else	
 | |
| 		return 
 | |
| 			btVector3(	m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
 | |
| 						m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
 | |
| 						m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Elementwise multiply this vector by the other 
 | |
|    * @param v The other vector */
 | |
| 	SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_mul_ps(mVec128, v.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vmulq_f32(mVec128, v.mVec128);
 | |
| #else	
 | |
| 		m_floats[0] *= v.m_floats[0]; 
 | |
| 		m_floats[1] *= v.m_floats[1];
 | |
| 		m_floats[2] *= v.m_floats[2];
 | |
| #endif
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	 /**@brief Return the x value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
 | |
|   /**@brief Return the y value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
 | |
|   /**@brief Return the z value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
 | |
|   /**@brief Set the x value */
 | |
| 		SIMD_FORCE_INLINE void	setX(btScalar _x) { m_floats[0] = _x;};
 | |
|   /**@brief Set the y value */
 | |
| 		SIMD_FORCE_INLINE void	setY(btScalar _y) { m_floats[1] = _y;};
 | |
|   /**@brief Set the z value */
 | |
| 		SIMD_FORCE_INLINE void	setZ(btScalar _z) { m_floats[2] = _z;};
 | |
|   /**@brief Set the w value */
 | |
| 		SIMD_FORCE_INLINE void	setW(btScalar _w) { m_floats[3] = _w;};
 | |
|   /**@brief Return the x value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
 | |
|   /**@brief Return the y value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
 | |
|   /**@brief Return the z value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
 | |
|   /**@brief Return the w value */
 | |
| 		SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
 | |
| 
 | |
| 	//SIMD_FORCE_INLINE btScalar&       operator[](int i)       { return (&m_floats[0])[i];	}      
 | |
| 	//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
 | |
| 	///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
 | |
| 	SIMD_FORCE_INLINE	operator       btScalar *()       { return &m_floats[0]; }
 | |
| 	SIMD_FORCE_INLINE	operator const btScalar *() const { return &m_floats[0]; }
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	bool	operator==(const btVector3& other) const
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
|         return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
 | |
| #else 
 | |
| 		return ((m_floats[3]==other.m_floats[3]) && 
 | |
|                 (m_floats[2]==other.m_floats[2]) && 
 | |
|                 (m_floats[1]==other.m_floats[1]) && 
 | |
|                 (m_floats[0]==other.m_floats[0]));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	bool	operator!=(const btVector3& other) const
 | |
| 	{
 | |
| 		return !(*this == other);
 | |
| 	}
 | |
| 
 | |
|   /**@brief Set each element to the max of the current values and the values of another btVector3
 | |
|    * @param other The other btVector3 to compare with 
 | |
|    */
 | |
| 	SIMD_FORCE_INLINE void	setMax(const btVector3& other)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_max_ps(mVec128, other.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vmaxq_f32(mVec128, other.mVec128);
 | |
| #else
 | |
| 		btSetMax(m_floats[0], other.m_floats[0]);
 | |
| 		btSetMax(m_floats[1], other.m_floats[1]);
 | |
| 		btSetMax(m_floats[2], other.m_floats[2]);
 | |
| 		btSetMax(m_floats[3], other.w());
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
|   /**@brief Set each element to the min of the current values and the values of another btVector3
 | |
|    * @param other The other btVector3 to compare with 
 | |
|    */
 | |
| 	SIMD_FORCE_INLINE void	setMin(const btVector3& other)
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = _mm_min_ps(mVec128, other.mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		mVec128 = vminq_f32(mVec128, other.mVec128);
 | |
| #else
 | |
| 		btSetMin(m_floats[0], other.m_floats[0]);
 | |
| 		btSetMin(m_floats[1], other.m_floats[1]);
 | |
| 		btSetMin(m_floats[2], other.m_floats[2]);
 | |
| 		btSetMin(m_floats[3], other.w());
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void 	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
 | |
| 	{
 | |
| 		m_floats[0]=_x;
 | |
| 		m_floats[1]=_y;
 | |
| 		m_floats[2]=_z;
 | |
| 		m_floats[3] = btScalar(0.f);
 | |
| 	}
 | |
| 
 | |
| 	void	getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
|  
 | |
| 		__m128 V  = _mm_and_ps(mVec128, btvFFF0fMask);
 | |
| 		__m128 V0 = _mm_xor_ps(btvMzeroMask, V);
 | |
| 		__m128 V2 = _mm_movelh_ps(V0, V);
 | |
| 		
 | |
| 		__m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
 | |
| 		
 | |
|         V0 = _mm_shuffle_ps(V0, V, 0xDB);
 | |
| 		V2 = _mm_shuffle_ps(V2, V, 0xF9);
 | |
| 		
 | |
| 		v0->mVec128 = V0;
 | |
| 		v1->mVec128 = V1;
 | |
| 		v2->mVec128 = V2;
 | |
| #else
 | |
| 		v0->setValue(0.		,-z()		,y());
 | |
| 		v1->setValue(z()	,0.			,-x());
 | |
| 		v2->setValue(-y()	,x()	,0.);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	void setZero()
 | |
| 	{
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 		mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		int32x4_t vi = vdupq_n_s32(0); 
 | |
| 		mVec128 = vreinterpretq_f32_s32(vi);
 | |
| #else	
 | |
| 		setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE bool isZero() const 
 | |
| 	{
 | |
| 		return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE bool fuzzyZero() const 
 | |
| 	{
 | |
| 		return length2() < SIMD_EPSILON*SIMD_EPSILON;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serialize(struct	btVector3Data& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerialize(const struct	btVector3Data& dataIn);
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serializeFloat(struct	btVector3FloatData& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btVector3FloatData& dataIn);
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	serializeDouble(struct	btVector3DoubleData& dataOut) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btVector3DoubleData& dataIn);
 | |
|     
 | |
|         /**@brief returns index of maximum dot product between this and vectors in array[]
 | |
|          * @param array The other vectors 
 | |
|          * @param array_count The number of other vectors 
 | |
|          * @param dotOut The maximum dot product */
 | |
|         SIMD_FORCE_INLINE   long    maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 
 | |
| 
 | |
|         /**@brief returns index of minimum dot product between this and vectors in array[]
 | |
|          * @param array The other vectors 
 | |
|          * @param array_count The number of other vectors 
 | |
|          * @param dotOut The minimum dot product */    
 | |
|         SIMD_FORCE_INLINE   long    minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 
 | |
| 
 | |
|     /* create a vector as  btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 ))  */
 | |
|     SIMD_FORCE_INLINE btVector3  dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
 | |
|     {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 
 | |
|         __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
 | |
|         __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
 | |
|         __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
 | |
|         __m128 b0 = _mm_unpacklo_ps( a0, a1 );
 | |
|         __m128 b1 = _mm_unpackhi_ps( a0, a1 );
 | |
|         __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
 | |
|         __m128 r = _mm_movelh_ps( b0, b2 );
 | |
|         r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
 | |
|         a2 = _mm_and_ps( a2, btvxyzMaskf);
 | |
|         r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
 | |
|         return btVector3(r);
 | |
|         
 | |
| #elif defined(BT_USE_NEON)
 | |
|         static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
 | |
|         float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
 | |
|         float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
 | |
|         float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
 | |
|         float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
 | |
|         a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
 | |
|         float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
 | |
|         float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
 | |
|         return btVector3( vcombine_f32(b0, b1) );
 | |
| #else	
 | |
| 		return btVector3( dot(v0), dot(v1), dot(v2));
 | |
| #endif
 | |
|     }
 | |
| };
 | |
| 
 | |
| /**@brief Return the sum of two vectors (Point symantics)*/
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator+(const btVector3& v1, const btVector3& v2) 
 | |
| {
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
 | |
| #else
 | |
| 	return btVector3(
 | |
| 			v1.m_floats[0] + v2.m_floats[0], 
 | |
| 			v1.m_floats[1] + v2.m_floats[1], 
 | |
| 			v1.m_floats[2] + v2.m_floats[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the elementwise product of two vectors */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator*(const btVector3& v1, const btVector3& v2) 
 | |
| {
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
 | |
| #else
 | |
| 	return btVector3(
 | |
| 			v1.m_floats[0] * v2.m_floats[0], 
 | |
| 			v1.m_floats[1] * v2.m_floats[1], 
 | |
| 			v1.m_floats[2] * v2.m_floats[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the difference between two vectors */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator-(const btVector3& v1, const btVector3& v2)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)  && defined(BT_USE_SSE))
 | |
| 
 | |
| 	//	without _mm_and_ps this code causes slowdown in Concave moving
 | |
| 	__m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
 | |
| 	return btVector3(_mm_and_ps(r, btvFFF0fMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
 | |
| 	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
 | |
| #else
 | |
| 	return btVector3(
 | |
| 			v1.m_floats[0] - v2.m_floats[0], 
 | |
| 			v1.m_floats[1] - v2.m_floats[1], 
 | |
| 			v1.m_floats[2] - v2.m_floats[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the negative of the vector */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator-(const btVector3& v)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
| 	__m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
 | |
| 	return btVector3(_mm_and_ps(r, btvFFF0fMask)); 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
 | |
| #else	
 | |
| 	return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the vector scaled by s */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator*(const btVector3& v, const btScalar& s)
 | |
| {
 | |
| #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 	__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
 | |
| 	vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
 | |
| 	return btVector3(_mm_mul_ps(v.mVec128, vs));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	float32x4_t r = vmulq_n_f32(v.mVec128, s);
 | |
| 	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
 | |
| #else
 | |
| 	return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the vector scaled by s */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator*(const btScalar& s, const btVector3& v)
 | |
| { 
 | |
| 	return v * s; 
 | |
| }
 | |
| 
 | |
| /**@brief Return the vector inversely scaled by s */
 | |
| SIMD_FORCE_INLINE btVector3
 | |
| operator/(const btVector3& v, const btScalar& s)
 | |
| {
 | |
| 	btFullAssert(s != btScalar(0.0));
 | |
| #if 0 //defined(BT_USE_SSE_IN_API)
 | |
| // this code is not faster !
 | |
| 	__m128 vs = _mm_load_ss(&s);
 | |
|     vs = _mm_div_ss(v1110, vs);
 | |
| 	vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)
 | |
| 
 | |
| 	return btVector3(_mm_mul_ps(v.mVec128, vs));
 | |
| #else
 | |
| 	return v * (btScalar(1.0) / s);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the vector inversely scaled by s */
 | |
| SIMD_FORCE_INLINE btVector3
 | |
| operator/(const btVector3& v1, const btVector3& v2)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
 | |
| 	__m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
 | |
| 	vec = _mm_and_ps(vec, btvFFF0fMask);
 | |
| 	return btVector3(vec); 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 	float32x4_t x, y, v, m;
 | |
| 
 | |
| 	x = v1.mVec128;
 | |
| 	y = v2.mVec128;
 | |
| 	
 | |
| 	v = vrecpeq_f32(y);			// v ~ 1/y
 | |
| 	m = vrecpsq_f32(y, v);		// m = (2-v*y)
 | |
| 	v = vmulq_f32(v, m);		// vv = v*m ~~ 1/y
 | |
| 	m = vrecpsq_f32(y, v);		// mm = (2-vv*y)
 | |
| 	v = vmulq_f32(v, x);		// x*vv
 | |
| 	v = vmulq_f32(v, m);		// (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y
 | |
| 
 | |
| 	return btVector3(v);
 | |
| #else
 | |
| 	return btVector3(
 | |
| 			v1.m_floats[0] / v2.m_floats[0], 
 | |
| 			v1.m_floats[1] / v2.m_floats[1],
 | |
| 			v1.m_floats[2] / v2.m_floats[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**@brief Return the dot product between two vectors */
 | |
| SIMD_FORCE_INLINE btScalar 
 | |
| btDot(const btVector3& v1, const btVector3& v2) 
 | |
| { 
 | |
| 	return v1.dot(v2); 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**@brief Return the distance squared between two vectors */
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| btDistance2(const btVector3& v1, const btVector3& v2) 
 | |
| { 
 | |
| 	return v1.distance2(v2); 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**@brief Return the distance between two vectors */
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| btDistance(const btVector3& v1, const btVector3& v2) 
 | |
| { 
 | |
| 	return v1.distance(v2); 
 | |
| }
 | |
| 
 | |
| /**@brief Return the angle between two vectors */
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| btAngle(const btVector3& v1, const btVector3& v2) 
 | |
| { 
 | |
| 	return v1.angle(v2); 
 | |
| }
 | |
| 
 | |
| /**@brief Return the cross product of two vectors */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| btCross(const btVector3& v1, const btVector3& v2) 
 | |
| { 
 | |
| 	return v1.cross(v2); 
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btScalar
 | |
| btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
 | |
| {
 | |
| 	return v1.triple(v2, v3);
 | |
| }
 | |
| 
 | |
| /**@brief Return the linear interpolation between two vectors
 | |
|  * @param v1 One vector 
 | |
|  * @param v2 The other vector 
 | |
|  * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
 | |
| {
 | |
| 	return v1.lerp(v2, t);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
 | |
| {
 | |
| 	return (v - *this).length2();
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
 | |
| {
 | |
| 	return (v - *this).length();
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
 | |
| {
 | |
| 	btVector3 nrm = *this;
 | |
| 
 | |
| 	return nrm.normalize();
 | |
| } 
 | |
| 
 | |
| SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
 | |
| {
 | |
| 	// wAxis must be a unit lenght vector
 | |
| 
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
| 
 | |
|     __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
 | |
| 	btScalar ssin = btSin( _angle );
 | |
|     __m128 C = wAxis.cross( mVec128 ).mVec128;
 | |
| 	O = _mm_and_ps(O, btvFFF0fMask);
 | |
|     btScalar scos = btCos( _angle );
 | |
| 	
 | |
| 	__m128 vsin = _mm_load_ss(&ssin);	//	(S 0 0 0)
 | |
|     __m128 vcos = _mm_load_ss(&scos);	//	(S 0 0 0)
 | |
| 	
 | |
| 	__m128 Y = bt_pshufd_ps(O, 0xC9);	//	(Y Z X 0)
 | |
| 	__m128 Z = bt_pshufd_ps(O, 0xD2);	//	(Z X Y 0)
 | |
| 	O = _mm_add_ps(O, Y);
 | |
| 	vsin = bt_pshufd_ps(vsin, 0x80);	//	(S S S 0)
 | |
| 	O = _mm_add_ps(O, Z);
 | |
|     vcos = bt_pshufd_ps(vcos, 0x80);	//	(S S S 0)
 | |
| 	
 | |
|     vsin = vsin * C; 
 | |
| 	O = O * wAxis.mVec128; 
 | |
| 	__m128 X = mVec128 - O; 
 | |
| 	
 | |
|     O = O + vsin;
 | |
| 	vcos = vcos * X;
 | |
| 	O = O + vcos;	
 | |
| 	
 | |
| 	return btVector3(O);
 | |
| #else
 | |
| 	btVector3 o = wAxis * wAxis.dot( *this );
 | |
| 	btVector3 _x = *this - o;
 | |
| 	btVector3 _y;
 | |
| 
 | |
| 	_y = wAxis.cross( *this );
 | |
| 
 | |
| 	return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE   long    btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
 | |
| {
 | |
| #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
 | |
|     #if defined _WIN32 || defined (BT_USE_SSE)
 | |
|         const long scalar_cutoff = 10;
 | |
|         long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
 | |
|     #elif defined BT_USE_NEON
 | |
|         const long scalar_cutoff = 4;
 | |
|         extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
 | |
|     #endif
 | |
|     if( array_count < scalar_cutoff )	
 | |
| #endif
 | |
|     {
 | |
|         btScalar maxDot1 = -SIMD_INFINITY;
 | |
|         int i = 0;
 | |
|         int ptIndex = -1;
 | |
|         for( i = 0; i < array_count; i++ )
 | |
|         {
 | |
|             btScalar dot = array[i].dot(*this);
 | |
|             
 | |
|             if( dot > maxDot1 )
 | |
|             {
 | |
|                 maxDot1 = dot;
 | |
|                 ptIndex = i;
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         dotOut = maxDot1;
 | |
|         return ptIndex;
 | |
|     }
 | |
| #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
 | |
|     return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE   long    btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
 | |
| {
 | |
| #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
 | |
|     #if defined BT_USE_SSE
 | |
|         const long scalar_cutoff = 10;
 | |
|         long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
 | |
|     #elif defined BT_USE_NEON
 | |
|         const long scalar_cutoff = 4;
 | |
|         extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
 | |
|     #else
 | |
|         #error unhandled arch!
 | |
|     #endif
 | |
|     
 | |
|     if( array_count < scalar_cutoff )
 | |
| #endif
 | |
|     {
 | |
|         btScalar  minDot = SIMD_INFINITY;
 | |
|         int i = 0;
 | |
|         int ptIndex = -1;
 | |
|         
 | |
|         for( i = 0; i < array_count; i++ )
 | |
|         {
 | |
|             btScalar dot = array[i].dot(*this);
 | |
|             
 | |
|             if( dot < minDot )
 | |
|             {
 | |
|                 minDot = dot;
 | |
|                 ptIndex = i;
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         dotOut = minDot;
 | |
|         
 | |
|         return ptIndex;
 | |
|     }
 | |
| #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
 | |
|     return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
 | |
| #endif//BT_USE_SIMD_VECTOR3
 | |
| }
 | |
| 
 | |
| 
 | |
| class btVector4 : public btVector3
 | |
| {
 | |
| public:
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector4() {}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) 
 | |
| 		: btVector3(_x,_y,_z)
 | |
| 	{
 | |
| 		m_floats[3] = _w;
 | |
| 	}
 | |
| 
 | |
| #if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) 
 | |
| 	SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
 | |
| 	{
 | |
| 		mVec128 = vec;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector4(const btVector3& rhs)
 | |
| 	{
 | |
| 		mVec128 = rhs.mVec128;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector4& 
 | |
| 	operator=(const btVector4& v) 
 | |
| 	{
 | |
| 		mVec128 = v.mVec128;
 | |
| 		return *this;
 | |
| 	}
 | |
| #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btVector4 absolute4() const 
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
 | |
| 		return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
| 		return btVector4(vabsq_f32(mVec128));
 | |
| #else	
 | |
| 		return btVector4(
 | |
| 			btFabs(m_floats[0]), 
 | |
| 			btFabs(m_floats[1]), 
 | |
| 			btFabs(m_floats[2]),
 | |
| 			btFabs(m_floats[3]));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	btScalar	getW() const { return m_floats[3];}
 | |
| 
 | |
| 
 | |
| 		SIMD_FORCE_INLINE int maxAxis4() const
 | |
| 	{
 | |
| 		int maxIndex = -1;
 | |
| 		btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
 | |
| 		if (m_floats[0] > maxVal)
 | |
| 		{
 | |
| 			maxIndex = 0;
 | |
| 			maxVal = m_floats[0];
 | |
| 		}
 | |
| 		if (m_floats[1] > maxVal)
 | |
| 		{
 | |
| 			maxIndex = 1;
 | |
| 			maxVal = m_floats[1];
 | |
| 		}
 | |
| 		if (m_floats[2] > maxVal)
 | |
| 		{
 | |
| 			maxIndex = 2;
 | |
| 			maxVal =m_floats[2];
 | |
| 		}
 | |
| 		if (m_floats[3] > maxVal)
 | |
| 		{
 | |
| 			maxIndex = 3;
 | |
| 		}
 | |
| 
 | |
| 		return maxIndex;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE int minAxis4() const
 | |
| 	{
 | |
| 		int minIndex = -1;
 | |
| 		btScalar minVal = btScalar(BT_LARGE_FLOAT);
 | |
| 		if (m_floats[0] < minVal)
 | |
| 		{
 | |
| 			minIndex = 0;
 | |
| 			minVal = m_floats[0];
 | |
| 		}
 | |
| 		if (m_floats[1] < minVal)
 | |
| 		{
 | |
| 			minIndex = 1;
 | |
| 			minVal = m_floats[1];
 | |
| 		}
 | |
| 		if (m_floats[2] < minVal)
 | |
| 		{
 | |
| 			minIndex = 2;
 | |
| 			minVal =m_floats[2];
 | |
| 		}
 | |
| 		if (m_floats[3] < minVal)
 | |
| 		{
 | |
| 			minIndex = 3;
 | |
| 			minVal = m_floats[3];
 | |
| 		}
 | |
| 		
 | |
| 		return minIndex;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	SIMD_FORCE_INLINE int closestAxis4() const 
 | |
| 	{
 | |
| 		return absolute4().maxAxis4();
 | |
| 	}
 | |
| 
 | |
| 	
 | |
|  
 | |
| 
 | |
|   /**@brief Set x,y,z and zero w 
 | |
|    * @param x Value of x
 | |
|    * @param y Value of y
 | |
|    * @param z Value of z
 | |
|    */
 | |
| 		
 | |
| 
 | |
| /*		void getValue(btScalar *m) const 
 | |
| 		{
 | |
| 			m[0] = m_floats[0];
 | |
| 			m[1] = m_floats[1];
 | |
| 			m[2] =m_floats[2];
 | |
| 		}
 | |
| */
 | |
| /**@brief Set the values 
 | |
|    * @param x Value of x
 | |
|    * @param y Value of y
 | |
|    * @param z Value of z
 | |
|    * @param w Value of w
 | |
|    */
 | |
| 		SIMD_FORCE_INLINE void	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
 | |
| 		{
 | |
| 			m_floats[0]=_x;
 | |
| 			m_floats[1]=_y;
 | |
| 			m_floats[2]=_z;
 | |
| 			m_floats[3]=_w;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
 | |
| SIMD_FORCE_INLINE void	btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
 | |
| {
 | |
| 	#ifdef BT_USE_DOUBLE_PRECISION
 | |
| 	unsigned char* dest = (unsigned char*) &destVal;
 | |
| 	unsigned char* src  = (unsigned char*) &sourceVal;
 | |
| 	dest[0] = src[7];
 | |
|     dest[1] = src[6];
 | |
|     dest[2] = src[5];
 | |
|     dest[3] = src[4];
 | |
|     dest[4] = src[3];
 | |
|     dest[5] = src[2];
 | |
|     dest[6] = src[1];
 | |
|     dest[7] = src[0];
 | |
| #else
 | |
| 	unsigned char* dest = (unsigned char*) &destVal;
 | |
| 	unsigned char* src  = (unsigned char*) &sourceVal;
 | |
| 	dest[0] = src[3];
 | |
|     dest[1] = src[2];
 | |
|     dest[2] = src[1];
 | |
|     dest[3] = src[0];
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| }
 | |
| ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
 | |
| SIMD_FORCE_INLINE void	btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 	{
 | |
| 		btSwapScalarEndian(sourceVec[i],destVec[i]);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
 | |
| SIMD_FORCE_INLINE void	btUnSwapVector3Endian(btVector3& vector)
 | |
| {
 | |
| 
 | |
| 	btVector3	swappedVec;
 | |
| 	for (int i=0;i<4;i++)
 | |
| 	{
 | |
| 		btSwapScalarEndian(vector[i],swappedVec[i]);
 | |
| 	}
 | |
| 	vector = swappedVec;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
 | |
| {
 | |
|   if (btFabs(n[2]) > SIMDSQRT12) {
 | |
|     // choose p in y-z plane
 | |
|     btScalar a = n[1]*n[1] + n[2]*n[2];
 | |
|     btScalar k = btRecipSqrt (a);
 | |
|     p[0] = 0;
 | |
| 	p[1] = -n[2]*k;
 | |
| 	p[2] = n[1]*k;
 | |
|     // set q = n x p
 | |
|     q[0] = a*k;
 | |
| 	q[1] = -n[0]*p[2];
 | |
| 	q[2] = n[0]*p[1];
 | |
|   }
 | |
|   else {
 | |
|     // choose p in x-y plane
 | |
|     btScalar a = n[0]*n[0] + n[1]*n[1];
 | |
|     btScalar k = btRecipSqrt (a);
 | |
|     p[0] = -n[1]*k;
 | |
| 	p[1] = n[0]*k;
 | |
| 	p[2] = 0;
 | |
|     // set q = n x p
 | |
|     q[0] = -n[2]*p[1];
 | |
| 	q[1] = n[2]*p[0];
 | |
| 	q[2] = a*k;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| struct	btVector3FloatData
 | |
| {
 | |
| 	float	m_floats[4];
 | |
| };
 | |
| 
 | |
| struct	btVector3DoubleData
 | |
| {
 | |
| 	double	m_floats[4];
 | |
| 
 | |
| };
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btVector3::serializeFloat(struct	btVector3FloatData& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = float(m_floats[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btVector3::deSerializeFloat(const struct	btVector3FloatData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = btScalar(dataIn.m_floats[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btVector3::serializeDouble(struct	btVector3DoubleData& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = double(m_floats[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btVector3::deSerializeDouble(const struct	btVector3DoubleData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = btScalar(dataIn.m_floats[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btVector3::serialize(struct	btVector3Data& dataOut) const
 | |
| {
 | |
| 	///could also do a memcpy, check if it is worth it
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		dataOut.m_floats[i] = m_floats[i];
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE void	btVector3::deSerialize(const struct	btVector3Data& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<4;i++)
 | |
| 		m_floats[i] = dataIn.m_floats[i];
 | |
| }
 | |
| 
 | |
| #endif //BT_VECTOR3_H
 |