573 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #ifndef DETOURCOMMON_H
 | |
| #define DETOURCOMMON_H
 | |
| 
 | |
| #include "DetourMath.h"
 | |
| #include <stddef.h>
 | |
| 
 | |
| /**
 | |
| @defgroup detour Detour
 | |
| 
 | |
| Members in this module are used to create, manipulate, and query navigation 
 | |
| meshes.
 | |
| 
 | |
| @note This is a summary list of members.  Use the index or search 
 | |
| feature to find minor members.
 | |
| */
 | |
| 
 | |
| /// @name General helper functions
 | |
| /// @{
 | |
| 
 | |
| /// Used to ignore a function parameter.  VS complains about unused parameters
 | |
| /// and this silences the warning.
 | |
| ///  @param [in] _ Unused parameter
 | |
| template<class T> void dtIgnoreUnused(const T&) { }
 | |
| 
 | |
| /// Swaps the values of the two parameters.
 | |
| ///  @param[in,out]	a	Value A
 | |
| ///  @param[in,out]	b	Value B
 | |
| template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
 | |
| 
 | |
| /// Returns the minimum of two values.
 | |
| ///  @param[in]		a	Value A
 | |
| ///  @param[in]		b	Value B
 | |
| ///  @return The minimum of the two values.
 | |
| template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
 | |
| 
 | |
| /// Returns the maximum of two values.
 | |
| ///  @param[in]		a	Value A
 | |
| ///  @param[in]		b	Value B
 | |
| ///  @return The maximum of the two values.
 | |
| template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
 | |
| 
 | |
| /// Returns the absolute value.
 | |
| ///  @param[in]		a	The value.
 | |
| ///  @return The absolute value of the specified value.
 | |
| template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
 | |
| 
 | |
| /// Returns the square of the value.
 | |
| ///  @param[in]		a	The value.
 | |
| ///  @return The square of the value.
 | |
| template<class T> inline T dtSqr(T a) { return a*a; }
 | |
| 
 | |
| /// Clamps the value to the specified range.
 | |
| ///  @param[in]		v	The value to clamp.
 | |
| ///  @param[in]		mn	The minimum permitted return value.
 | |
| ///  @param[in]		mx	The maximum permitted return value.
 | |
| ///  @return The value, clamped to the specified range.
 | |
| template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
 | |
| 
 | |
| /// @}
 | |
| /// @name Vector helper functions.
 | |
| /// @{
 | |
| 
 | |
| /// Derives the cross product of two vectors. (@p v1 x @p v2)
 | |
| ///  @param[out]	dest	The cross product. [(x, y, z)]
 | |
| ///  @param[in]		v1		A Vector [(x, y, z)]
 | |
| ///  @param[in]		v2		A vector [(x, y, z)]
 | |
| inline void dtVcross(float* dest, const float* v1, const float* v2)
 | |
| {
 | |
| 	dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
 | |
| 	dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
 | |
| 	dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; 
 | |
| }
 | |
| 
 | |
| /// Derives the dot product of two vectors. (@p v1 . @p v2)
 | |
| ///  @param[in]		v1	A Vector [(x, y, z)]
 | |
| ///  @param[in]		v2	A vector [(x, y, z)]
 | |
| /// @return The dot product.
 | |
| inline float dtVdot(const float* v1, const float* v2)
 | |
| {
 | |
| 	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
 | |
| }
 | |
| 
 | |
| /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
 | |
| ///  @param[out]	dest	The result vector. [(x, y, z)]
 | |
| ///  @param[in]		v1		The base vector. [(x, y, z)]
 | |
| ///  @param[in]		v2		The vector to scale and add to @p v1. [(x, y, z)]
 | |
| ///  @param[in]		s		The amount to scale @p v2 by before adding to @p v1.
 | |
| inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
 | |
| {
 | |
| 	dest[0] = v1[0]+v2[0]*s;
 | |
| 	dest[1] = v1[1]+v2[1]*s;
 | |
| 	dest[2] = v1[2]+v2[2]*s;
 | |
| }
 | |
| 
 | |
| /// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
 | |
| ///  @param[out]	dest	The result vector. [(x, y, x)]
 | |
| ///  @param[in]		v1		The starting vector.
 | |
| ///  @param[in]		v2		The destination vector.
 | |
| ///	 @param[in]		t		The interpolation factor. [Limits: 0 <= value <= 1.0]
 | |
| inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
 | |
| {
 | |
| 	dest[0] = v1[0]+(v2[0]-v1[0])*t;
 | |
| 	dest[1] = v1[1]+(v2[1]-v1[1])*t;
 | |
| 	dest[2] = v1[2]+(v2[2]-v1[2])*t;
 | |
| }
 | |
| 
 | |
| /// Performs a vector addition. (@p v1 + @p v2)
 | |
| ///  @param[out]	dest	The result vector. [(x, y, z)]
 | |
| ///  @param[in]		v1		The base vector. [(x, y, z)]
 | |
| ///  @param[in]		v2		The vector to add to @p v1. [(x, y, z)]
 | |
| inline void dtVadd(float* dest, const float* v1, const float* v2)
 | |
| {
 | |
| 	dest[0] = v1[0]+v2[0];
 | |
| 	dest[1] = v1[1]+v2[1];
 | |
| 	dest[2] = v1[2]+v2[2];
 | |
| }
 | |
| 
 | |
| /// Performs a vector subtraction. (@p v1 - @p v2)
 | |
| ///  @param[out]	dest	The result vector. [(x, y, z)]
 | |
| ///  @param[in]		v1		The base vector. [(x, y, z)]
 | |
| ///  @param[in]		v2		The vector to subtract from @p v1. [(x, y, z)]
 | |
| inline void dtVsub(float* dest, const float* v1, const float* v2)
 | |
| {
 | |
| 	dest[0] = v1[0]-v2[0];
 | |
| 	dest[1] = v1[1]-v2[1];
 | |
| 	dest[2] = v1[2]-v2[2];
 | |
| }
 | |
| 
 | |
| /// Scales the vector by the specified value. (@p v * @p t)
 | |
| ///  @param[out]	dest	The result vector. [(x, y, z)]
 | |
| ///  @param[in]		v		The vector to scale. [(x, y, z)]
 | |
| ///  @param[in]		t		The scaling factor.
 | |
| inline void dtVscale(float* dest, const float* v, const float t)
 | |
| {
 | |
| 	dest[0] = v[0]*t;
 | |
| 	dest[1] = v[1]*t;
 | |
| 	dest[2] = v[2]*t;
 | |
| }
 | |
| 
 | |
| /// Selects the minimum value of each element from the specified vectors.
 | |
| ///  @param[in,out]	mn	A vector.  (Will be updated with the result.) [(x, y, z)]
 | |
| ///  @param[in]	v	A vector. [(x, y, z)]
 | |
| inline void dtVmin(float* mn, const float* v)
 | |
| {
 | |
| 	mn[0] = dtMin(mn[0], v[0]);
 | |
| 	mn[1] = dtMin(mn[1], v[1]);
 | |
| 	mn[2] = dtMin(mn[2], v[2]);
 | |
| }
 | |
| 
 | |
| /// Selects the maximum value of each element from the specified vectors.
 | |
| ///  @param[in,out]	mx	A vector.  (Will be updated with the result.) [(x, y, z)]
 | |
| ///  @param[in]		v	A vector. [(x, y, z)]
 | |
| inline void dtVmax(float* mx, const float* v)
 | |
| {
 | |
| 	mx[0] = dtMax(mx[0], v[0]);
 | |
| 	mx[1] = dtMax(mx[1], v[1]);
 | |
| 	mx[2] = dtMax(mx[2], v[2]);
 | |
| }
 | |
| 
 | |
| /// Sets the vector elements to the specified values.
 | |
| ///  @param[out]	dest	The result vector. [(x, y, z)]
 | |
| ///  @param[in]		x		The x-value of the vector.
 | |
| ///  @param[in]		y		The y-value of the vector.
 | |
| ///  @param[in]		z		The z-value of the vector.
 | |
| inline void dtVset(float* dest, const float x, const float y, const float z)
 | |
| {
 | |
| 	dest[0] = x; dest[1] = y; dest[2] = z;
 | |
| }
 | |
| 
 | |
| /// Performs a vector copy.
 | |
| ///  @param[out]	dest	The result. [(x, y, z)]
 | |
| ///  @param[in]		a		The vector to copy. [(x, y, z)]
 | |
| inline void dtVcopy(float* dest, const float* a)
 | |
| {
 | |
| 	dest[0] = a[0];
 | |
| 	dest[1] = a[1];
 | |
| 	dest[2] = a[2];
 | |
| }
 | |
| 
 | |
| /// Derives the scalar length of the vector.
 | |
| ///  @param[in]		v The vector. [(x, y, z)]
 | |
| /// @return The scalar length of the vector.
 | |
| inline float dtVlen(const float* v)
 | |
| {
 | |
| 	return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
 | |
| }
 | |
| 
 | |
| /// Derives the square of the scalar length of the vector. (len * len)
 | |
| ///  @param[in]		v The vector. [(x, y, z)]
 | |
| /// @return The square of the scalar length of the vector.
 | |
| inline float dtVlenSqr(const float* v)
 | |
| {
 | |
| 	return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
 | |
| }
 | |
| 
 | |
| /// Returns the distance between two points.
 | |
| ///  @param[in]		v1	A point. [(x, y, z)]
 | |
| ///  @param[in]		v2	A point. [(x, y, z)]
 | |
| /// @return The distance between the two points.
 | |
| inline float dtVdist(const float* v1, const float* v2)
 | |
| {
 | |
| 	const float dx = v2[0] - v1[0];
 | |
| 	const float dy = v2[1] - v1[1];
 | |
| 	const float dz = v2[2] - v1[2];
 | |
| 	return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
 | |
| }
 | |
| 
 | |
| /// Returns the square of the distance between two points.
 | |
| ///  @param[in]		v1	A point. [(x, y, z)]
 | |
| ///  @param[in]		v2	A point. [(x, y, z)]
 | |
| /// @return The square of the distance between the two points.
 | |
| inline float dtVdistSqr(const float* v1, const float* v2)
 | |
| {
 | |
| 	const float dx = v2[0] - v1[0];
 | |
| 	const float dy = v2[1] - v1[1];
 | |
| 	const float dz = v2[2] - v1[2];
 | |
| 	return dx*dx + dy*dy + dz*dz;
 | |
| }
 | |
| 
 | |
| /// Derives the distance between the specified points on the xz-plane.
 | |
| ///  @param[in]		v1	A point. [(x, y, z)]
 | |
| ///  @param[in]		v2	A point. [(x, y, z)]
 | |
| /// @return The distance between the point on the xz-plane.
 | |
| ///
 | |
| /// The vectors are projected onto the xz-plane, so the y-values are ignored.
 | |
| inline float dtVdist2D(const float* v1, const float* v2)
 | |
| {
 | |
| 	const float dx = v2[0] - v1[0];
 | |
| 	const float dz = v2[2] - v1[2];
 | |
| 	return dtMathSqrtf(dx*dx + dz*dz);
 | |
| }
 | |
| 
 | |
| /// Derives the square of the distance between the specified points on the xz-plane.
 | |
| ///  @param[in]		v1	A point. [(x, y, z)]
 | |
| ///  @param[in]		v2	A point. [(x, y, z)]
 | |
| /// @return The square of the distance between the point on the xz-plane.
 | |
| inline float dtVdist2DSqr(const float* v1, const float* v2)
 | |
| {
 | |
| 	const float dx = v2[0] - v1[0];
 | |
| 	const float dz = v2[2] - v1[2];
 | |
| 	return dx*dx + dz*dz;
 | |
| }
 | |
| 
 | |
| /// Normalizes the vector.
 | |
| ///  @param[in,out]	v	The vector to normalize. [(x, y, z)]
 | |
| inline void dtVnormalize(float* v)
 | |
| {
 | |
| 	float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
 | |
| 	v[0] *= d;
 | |
| 	v[1] *= d;
 | |
| 	v[2] *= d;
 | |
| }
 | |
| 
 | |
| /// Performs a 'sloppy' colocation check of the specified points.
 | |
| ///  @param[in]		p0	A point. [(x, y, z)]
 | |
| ///  @param[in]		p1	A point. [(x, y, z)]
 | |
| /// @return True if the points are considered to be at the same location.
 | |
| ///
 | |
| /// Basically, this function will return true if the specified points are 
 | |
| /// close enough to eachother to be considered colocated.
 | |
| inline bool dtVequal(const float* p0, const float* p1)
 | |
| {
 | |
| 	static const float thr = dtSqr(1.0f/16384.0f);
 | |
| 	const float d = dtVdistSqr(p0, p1);
 | |
| 	return d < thr;
 | |
| }
 | |
| 
 | |
| /// Checks that the specified vector's components are all finite.
 | |
| ///  @param[in]		v	A point. [(x, y, z)]
 | |
| /// @return True if all of the point's components are finite, i.e. not NaN
 | |
| /// or any of the infinities.
 | |
| inline bool dtVisfinite(const float* v)
 | |
| {
 | |
| 	bool result =
 | |
| 		dtMathIsfinite(v[0]) &&
 | |
| 		dtMathIsfinite(v[1]) &&
 | |
| 		dtMathIsfinite(v[2]);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /// Checks that the specified vector's 2D components are finite.
 | |
| ///  @param[in]		v	A point. [(x, y, z)]
 | |
| inline bool dtVisfinite2D(const float* v)
 | |
| {
 | |
| 	bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
 | |
| ///  @param[in]		u		A vector [(x, y, z)]
 | |
| ///  @param[in]		v		A vector [(x, y, z)]
 | |
| /// @return The dot product on the xz-plane.
 | |
| ///
 | |
| /// The vectors are projected onto the xz-plane, so the y-values are ignored.
 | |
| inline float dtVdot2D(const float* u, const float* v)
 | |
| {
 | |
| 	return u[0]*v[0] + u[2]*v[2];
 | |
| }
 | |
| 
 | |
| /// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
 | |
| ///  @param[in]		u		The LHV vector [(x, y, z)]
 | |
| ///  @param[in]		v		The RHV vector [(x, y, z)]
 | |
| /// @return The dot product on the xz-plane.
 | |
| ///
 | |
| /// The vectors are projected onto the xz-plane, so the y-values are ignored.
 | |
| inline float dtVperp2D(const float* u, const float* v)
 | |
| {
 | |
| 	return u[2]*v[0] - u[0]*v[2];
 | |
| }
 | |
| 
 | |
| /// @}
 | |
| /// @name Computational geometry helper functions.
 | |
| /// @{
 | |
| 
 | |
| /// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
 | |
| ///  @param[in]		a		Vertex A. [(x, y, z)]
 | |
| ///  @param[in]		b		Vertex B. [(x, y, z)]
 | |
| ///  @param[in]		c		Vertex C. [(x, y, z)]
 | |
| /// @return The signed xz-plane area of the triangle.
 | |
| inline float dtTriArea2D(const float* a, const float* b, const float* c)
 | |
| {
 | |
| 	const float abx = b[0] - a[0];
 | |
| 	const float abz = b[2] - a[2];
 | |
| 	const float acx = c[0] - a[0];
 | |
| 	const float acz = c[2] - a[2];
 | |
| 	return acx*abz - abx*acz;
 | |
| }
 | |
| 
 | |
| /// Determines if two axis-aligned bounding boxes overlap.
 | |
| ///  @param[in]		amin	Minimum bounds of box A. [(x, y, z)]
 | |
| ///  @param[in]		amax	Maximum bounds of box A. [(x, y, z)]
 | |
| ///  @param[in]		bmin	Minimum bounds of box B. [(x, y, z)]
 | |
| ///  @param[in]		bmax	Maximum bounds of box B. [(x, y, z)]
 | |
| /// @return True if the two AABB's overlap.
 | |
| /// @see dtOverlapBounds
 | |
| inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
 | |
| 								 const unsigned short bmin[3], const unsigned short bmax[3])
 | |
| {
 | |
| 	bool overlap = true;
 | |
| 	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
 | |
| 	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
 | |
| 	overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
 | |
| 	return overlap;
 | |
| }
 | |
| 
 | |
| /// Determines if two axis-aligned bounding boxes overlap.
 | |
| ///  @param[in]		amin	Minimum bounds of box A. [(x, y, z)]
 | |
| ///  @param[in]		amax	Maximum bounds of box A. [(x, y, z)]
 | |
| ///  @param[in]		bmin	Minimum bounds of box B. [(x, y, z)]
 | |
| ///  @param[in]		bmax	Maximum bounds of box B. [(x, y, z)]
 | |
| /// @return True if the two AABB's overlap.
 | |
| /// @see dtOverlapQuantBounds
 | |
| inline bool dtOverlapBounds(const float* amin, const float* amax,
 | |
| 							const float* bmin, const float* bmax)
 | |
| {
 | |
| 	bool overlap = true;
 | |
| 	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
 | |
| 	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
 | |
| 	overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
 | |
| 	return overlap;
 | |
| }
 | |
| 
 | |
| /// Derives the closest point on a triangle from the specified reference point.
 | |
| ///  @param[out]	closest	The closest point on the triangle.	
 | |
| ///  @param[in]		p		The reference point from which to test. [(x, y, z)]
 | |
| ///  @param[in]		a		Vertex A of triangle ABC. [(x, y, z)]
 | |
| ///  @param[in]		b		Vertex B of triangle ABC. [(x, y, z)]
 | |
| ///  @param[in]		c		Vertex C of triangle ABC. [(x, y, z)]
 | |
| void dtClosestPtPointTriangle(float* closest, const float* p,
 | |
| 							  const float* a, const float* b, const float* c);
 | |
| 
 | |
| /// Derives the y-axis height of the closest point on the triangle from the specified reference point.
 | |
| ///  @param[in]		p		The reference point from which to test. [(x, y, z)]
 | |
| ///  @param[in]		a		Vertex A of triangle ABC. [(x, y, z)]
 | |
| ///  @param[in]		b		Vertex B of triangle ABC. [(x, y, z)]
 | |
| ///  @param[in]		c		Vertex C of triangle ABC. [(x, y, z)]
 | |
| ///  @param[out]	h		The resulting height.
 | |
| bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
 | |
| 
 | |
| bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
 | |
| 							  const float* verts, int nverts,
 | |
| 							  float& tmin, float& tmax,
 | |
| 							  int& segMin, int& segMax);
 | |
| 
 | |
| bool dtIntersectSegSeg2D(const float* ap, const float* aq,
 | |
| 						 const float* bp, const float* bq,
 | |
| 						 float& s, float& t);
 | |
| 
 | |
| /// Determines if the specified point is inside the convex polygon on the xz-plane.
 | |
| ///  @param[in]		pt		The point to check. [(x, y, z)]
 | |
| ///  @param[in]		verts	The polygon vertices. [(x, y, z) * @p nverts]
 | |
| ///  @param[in]		nverts	The number of vertices. [Limit: >= 3]
 | |
| /// @return True if the point is inside the polygon.
 | |
| bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
 | |
| 
 | |
| bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
 | |
| 							float* ed, float* et);
 | |
| 
 | |
| float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
 | |
| 
 | |
| /// Derives the centroid of a convex polygon.
 | |
| ///  @param[out]	tc		The centroid of the polgyon. [(x, y, z)]
 | |
| ///  @param[in]		idx		The polygon indices. [(vertIndex) * @p nidx]
 | |
| ///  @param[in]		nidx	The number of indices in the polygon. [Limit: >= 3]
 | |
| ///  @param[in]		verts	The polygon vertices. [(x, y, z) * vertCount]
 | |
| void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
 | |
| 
 | |
| /// Determines if the two convex polygons overlap on the xz-plane.
 | |
| ///  @param[in]		polya		Polygon A vertices.	[(x, y, z) * @p npolya]
 | |
| ///  @param[in]		npolya		The number of vertices in polygon A.
 | |
| ///  @param[in]		polyb		Polygon B vertices.	[(x, y, z) * @p npolyb]
 | |
| ///  @param[in]		npolyb		The number of vertices in polygon B.
 | |
| /// @return True if the two polygons overlap.
 | |
| bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
 | |
| 						 const float* polyb, const int npolyb);
 | |
| 
 | |
| /// @}
 | |
| /// @name Miscellanious functions.
 | |
| /// @{
 | |
| 
 | |
| inline unsigned int dtNextPow2(unsigned int v)
 | |
| {
 | |
| 	v--;
 | |
| 	v |= v >> 1;
 | |
| 	v |= v >> 2;
 | |
| 	v |= v >> 4;
 | |
| 	v |= v >> 8;
 | |
| 	v |= v >> 16;
 | |
| 	v++;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| inline unsigned int dtIlog2(unsigned int v)
 | |
| {
 | |
| 	unsigned int r;
 | |
| 	unsigned int shift;
 | |
| 	r = (v > 0xffff) << 4; v >>= r;
 | |
| 	shift = (v > 0xff) << 3; v >>= shift; r |= shift;
 | |
| 	shift = (v > 0xf) << 2; v >>= shift; r |= shift;
 | |
| 	shift = (v > 0x3) << 1; v >>= shift; r |= shift;
 | |
| 	r |= (v >> 1);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| inline int dtAlign4(int x) { return (x+3) & ~3; }
 | |
| 
 | |
| inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
 | |
| 
 | |
| inline void dtSwapByte(unsigned char* a, unsigned char* b)
 | |
| {
 | |
| 	unsigned char tmp = *a;
 | |
| 	*a = *b;
 | |
| 	*b = tmp;
 | |
| }
 | |
| 
 | |
| inline void dtSwapEndian(unsigned short* v)
 | |
| {
 | |
| 	unsigned char* x = (unsigned char*)v;
 | |
| 	dtSwapByte(x+0, x+1);
 | |
| }
 | |
| 
 | |
| inline void dtSwapEndian(short* v)
 | |
| {
 | |
| 	unsigned char* x = (unsigned char*)v;
 | |
| 	dtSwapByte(x+0, x+1);
 | |
| }
 | |
| 
 | |
| inline void dtSwapEndian(unsigned int* v)
 | |
| {
 | |
| 	unsigned char* x = (unsigned char*)v;
 | |
| 	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
 | |
| }
 | |
| 
 | |
| inline void dtSwapEndian(int* v)
 | |
| {
 | |
| 	unsigned char* x = (unsigned char*)v;
 | |
| 	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
 | |
| }
 | |
| 
 | |
| inline void dtSwapEndian(float* v)
 | |
| {
 | |
| 	unsigned char* x = (unsigned char*)v;
 | |
| 	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
 | |
| }
 | |
| 
 | |
| void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
 | |
| 							   const float s, const float t, float* out);
 | |
| 
 | |
| template<typename TypeToRetrieveAs>
 | |
| TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance)
 | |
| {
 | |
| 	TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
 | |
| 	buffer += distanceToAdvance;
 | |
| 	return returnPointer;
 | |
| }
 | |
| 
 | |
| template<typename TypeToRetrieveAs>
 | |
| TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance)
 | |
| {
 | |
| 	TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
 | |
| 	buffer += distanceToAdvance;
 | |
| 	return returnPointer;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @}
 | |
| 
 | |
| #endif // DETOURCOMMON_H
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // This section contains detailed documentation for members that don't have
 | |
| // a source file. It reduces clutter in the main section of the header.
 | |
| 
 | |
| /**
 | |
| 
 | |
| @fn float dtTriArea2D(const float* a, const float* b, const float* c)
 | |
| @par
 | |
| 
 | |
| The vertices are projected onto the xz-plane, so the y-values are ignored.
 | |
| 
 | |
| This is a low cost function than can be used for various purposes.  Its main purpose
 | |
| is for point/line relationship testing.
 | |
| 
 | |
| In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
 | |
| (On the xz-plane.)
 | |
| 
 | |
| When used for point/line relationship tests, AB usually represents a line against which
 | |
| the C point is to be tested.  In this case:
 | |
| 
 | |
| A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
 | |
| A negative value indicates that point C is to the right of lineAB, looking from A toward B.
 | |
| 
 | |
| When used for evaluating a triangle:
 | |
| 
 | |
| The absolute value of the return value is two times the area of the triangle when it is
 | |
| projected onto the xz-plane.
 | |
| 
 | |
| A positive return value indicates:
 | |
| 
 | |
| <ul>
 | |
| <li>The vertices are wrapped in the normal Detour wrap direction.</li>
 | |
| <li>The triangle's 3D face normal is in the general up direction.</li>
 | |
| </ul>
 | |
| 
 | |
| A negative return value indicates:
 | |
| 
 | |
| <ul>
 | |
| <li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
 | |
| <li>The triangle's 3D face normal is in the general down direction.</li>
 | |
| </ul>
 | |
| 
 | |
| */
 |