forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			243 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			243 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "btConvex2dConvex2dAlgorithm.h"
 | ||
|  | 
 | ||
|  | //#include <stdio.h>
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
 | ||
|  | #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
 | ||
|  | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btBoxShape.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btManifoldResult.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | ||
|  | 
 | ||
|  | btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface*			simplexSolver, btConvexPenetrationDepthSolver* pdSolver) | ||
|  | { | ||
|  | 	m_simplexSolver = simplexSolver; | ||
|  | 	m_pdSolver = pdSolver; | ||
|  | } | ||
|  | 
 | ||
|  | btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc()  | ||
|  | {  | ||
|  | } | ||
|  | 
 | ||
|  | btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int /* numPerturbationIterations */, int /* minimumPointsPerturbationThreshold */) | ||
|  | : btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap), | ||
|  | m_simplexSolver(simplexSolver), | ||
|  | m_pdSolver(pdSolver), | ||
|  | m_ownManifold (false), | ||
|  | m_manifoldPtr(mf), | ||
|  | m_lowLevelOfDetail(false) | ||
|  | { | ||
|  | 	(void)body0Wrap; | ||
|  | 	(void)body1Wrap; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm() | ||
|  | { | ||
|  | 	if (m_ownManifold) | ||
|  | 	{ | ||
|  | 		if (m_manifoldPtr) | ||
|  | 			m_dispatcher->releaseManifold(m_manifoldPtr); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void	btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel) | ||
|  | { | ||
|  | 	m_lowLevelOfDetail = useLowLevel; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | extern btScalar gContactBreakingThreshold; | ||
|  | 
 | ||
|  | 
 | ||
|  | //
 | ||
|  | // Convex-Convex collision algorithm
 | ||
|  | //
 | ||
|  | void btConvex2dConvex2dAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) | ||
|  | { | ||
|  | 
 | ||
|  | 	if (!m_manifoldPtr) | ||
|  | 	{ | ||
|  | 		//swapped?
 | ||
|  | 		m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject()); | ||
|  | 		m_ownManifold = true; | ||
|  | 	} | ||
|  | 	resultOut->setPersistentManifold(m_manifoldPtr); | ||
|  | 
 | ||
|  | 	//comment-out next line to test multi-contact generation
 | ||
|  | 	//resultOut->getPersistentManifold()->clearManifold();
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape()); | ||
|  | 	const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape()); | ||
|  | 
 | ||
|  | 	btVector3  normalOnB; | ||
|  | 	btVector3  pointOnBWorld; | ||
|  | 
 | ||
|  | 	{ | ||
|  | 
 | ||
|  | 
 | ||
|  | 		btGjkPairDetector::ClosestPointInput input; | ||
|  | 
 | ||
|  | 		btGjkPairDetector	gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver); | ||
|  | 		//TODO: if (dispatchInfo.m_useContinuous)
 | ||
|  | 		gjkPairDetector.setMinkowskiA(min0); | ||
|  | 		gjkPairDetector.setMinkowskiB(min1); | ||
|  | 
 | ||
|  | 		{ | ||
|  | 			input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 			input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		input.m_transformA = body0Wrap->getWorldTransform(); | ||
|  | 		input.m_transformB = body1Wrap->getWorldTransform(); | ||
|  | 
 | ||
|  | 		gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); | ||
|  | 
 | ||
|  | 		btVector3 v0,v1; | ||
|  | 		btVector3 sepNormalWorldSpace; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (m_ownManifold) | ||
|  | 	{ | ||
|  | 		resultOut->refreshContactPoints(); | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar	btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) | ||
|  | { | ||
|  | 	(void)resultOut; | ||
|  | 	(void)dispatchInfo; | ||
|  | 	///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
 | ||
|  | 
 | ||
|  | 	///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
 | ||
|  | 	///col0->m_worldTransform,
 | ||
|  | 	btScalar resultFraction = btScalar(1.); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2(); | ||
|  | 	btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2(); | ||
|  | 
 | ||
|  | 	if (squareMot0 < col0->getCcdSquareMotionThreshold() && | ||
|  | 		squareMot1 < col1->getCcdSquareMotionThreshold()) | ||
|  | 		return resultFraction; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	//An adhoc way of testing the Continuous Collision Detection algorithms
 | ||
|  | 	//One object is approximated as a sphere, to simplify things
 | ||
|  | 	//Starting in penetration should report no time of impact
 | ||
|  | 	//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
 | ||
|  | 	//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/// Convex0 against sphere for Convex1
 | ||
|  | 	{ | ||
|  | 		btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape()); | ||
|  | 
 | ||
|  | 		btSphereShape	sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | ||
|  | 		btConvexCast::CastResult result; | ||
|  | 		btVoronoiSimplexSolver voronoiSimplex; | ||
|  | 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | ||
|  | 		///Simplification, one object is simplified as a sphere
 | ||
|  | 		btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex); | ||
|  | 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | ||
|  | 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), | ||
|  | 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) | ||
|  | 		{ | ||
|  | 
 | ||
|  | 			//store result.m_fraction in both bodies
 | ||
|  | 
 | ||
|  | 			if (col0->getHitFraction()> result.m_fraction) | ||
|  | 				col0->setHitFraction( result.m_fraction ); | ||
|  | 
 | ||
|  | 			if (col1->getHitFraction() > result.m_fraction) | ||
|  | 				col1->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (resultFraction > result.m_fraction) | ||
|  | 				resultFraction = result.m_fraction; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Sphere (for convex0) against Convex1
 | ||
|  | 	{ | ||
|  | 		btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape()); | ||
|  | 
 | ||
|  | 		btSphereShape	sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | ||
|  | 		btConvexCast::CastResult result; | ||
|  | 		btVoronoiSimplexSolver voronoiSimplex; | ||
|  | 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | ||
|  | 		///Simplification, one object is simplified as a sphere
 | ||
|  | 		btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex); | ||
|  | 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | ||
|  | 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), | ||
|  | 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) | ||
|  | 		{ | ||
|  | 
 | ||
|  | 			//store result.m_fraction in both bodies
 | ||
|  | 
 | ||
|  | 			if (col0->getHitFraction()	> result.m_fraction) | ||
|  | 				col0->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (col1->getHitFraction() > result.m_fraction) | ||
|  | 				col1->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (resultFraction > result.m_fraction) | ||
|  | 				resultFraction = result.m_fraction; | ||
|  | 
 | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return resultFraction; | ||
|  | 
 | ||
|  | } | ||
|  | 
 |