forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			186 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			186 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "btGeometryUtil.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Make sure this dummy function never changes so that it | ||
|  |   can be used by probes that are checking whether the | ||
|  |   library is actually installed. | ||
|  | */ | ||
|  | extern "C" | ||
|  | {	 | ||
|  | 	void btBulletMathProbe (); | ||
|  | 
 | ||
|  | 	void btBulletMathProbe () {} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | bool	btGeometryUtil::isPointInsidePlanes(const btAlignedObjectArray<btVector3>& planeEquations, const btVector3& point, btScalar	margin) | ||
|  | { | ||
|  | 	int numbrushes = planeEquations.size(); | ||
|  | 	for (int i=0;i<numbrushes;i++) | ||
|  | 	{ | ||
|  | 		const btVector3& N1 = planeEquations[i]; | ||
|  | 		btScalar dist = btScalar(N1.dot(point))+btScalar(N1[3])-margin; | ||
|  | 		if (dist>btScalar(0.)) | ||
|  | 		{ | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return true; | ||
|  | 		 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | bool	btGeometryUtil::areVerticesBehindPlane(const btVector3& planeNormal, const btAlignedObjectArray<btVector3>& vertices, btScalar	margin) | ||
|  | { | ||
|  | 	int numvertices = vertices.size(); | ||
|  | 	for (int i=0;i<numvertices;i++) | ||
|  | 	{ | ||
|  | 		const btVector3& N1 = vertices[i]; | ||
|  | 		btScalar dist = btScalar(planeNormal.dot(N1))+btScalar(planeNormal[3])-margin; | ||
|  | 		if (dist>btScalar(0.)) | ||
|  | 		{ | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations); | ||
|  | 
 | ||
|  | bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations) | ||
|  | { | ||
|  | 	int numbrushes = planeEquations.size(); | ||
|  | 	for (int i=0;i<numbrushes;i++) | ||
|  | 	{ | ||
|  | 		const btVector3& N1 = planeEquations[i]; | ||
|  | 		if (planeEquation.dot(N1) > btScalar(0.999)) | ||
|  | 		{ | ||
|  | 			return false; | ||
|  | 		}  | ||
|  | 	} | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void	btGeometryUtil::getPlaneEquationsFromVertices(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& planeEquationsOut ) | ||
|  | { | ||
|  | 		const int numvertices = vertices.size(); | ||
|  | 	// brute force:
 | ||
|  | 	for (int i=0;i<numvertices;i++) | ||
|  | 	{ | ||
|  | 		const btVector3& N1 = vertices[i]; | ||
|  | 		 | ||
|  | 
 | ||
|  | 		for (int j=i+1;j<numvertices;j++) | ||
|  | 		{ | ||
|  | 			const btVector3& N2 = vertices[j]; | ||
|  | 				 | ||
|  | 			for (int k=j+1;k<numvertices;k++) | ||
|  | 			{ | ||
|  | 
 | ||
|  | 				const btVector3& N3 = vertices[k]; | ||
|  | 
 | ||
|  | 				btVector3 planeEquation,edge0,edge1; | ||
|  | 				edge0 = N2-N1; | ||
|  | 				edge1 = N3-N1; | ||
|  | 				btScalar normalSign = btScalar(1.); | ||
|  | 				for (int ww=0;ww<2;ww++) | ||
|  | 				{ | ||
|  | 					planeEquation = normalSign * edge0.cross(edge1); | ||
|  | 					if (planeEquation.length2() > btScalar(0.0001)) | ||
|  | 					{ | ||
|  | 						planeEquation.normalize(); | ||
|  | 						if (notExist(planeEquation,planeEquationsOut)) | ||
|  | 						{ | ||
|  | 							planeEquation[3] = -planeEquation.dot(N1); | ||
|  | 							 | ||
|  | 								//check if inside, and replace supportingVertexOut if needed
 | ||
|  | 								if (areVerticesBehindPlane(planeEquation,vertices,btScalar(0.01))) | ||
|  | 								{ | ||
|  | 									planeEquationsOut.push_back(planeEquation); | ||
|  | 								} | ||
|  | 						} | ||
|  | 					} | ||
|  | 					normalSign = btScalar(-1.); | ||
|  | 				} | ||
|  | 			 | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void	btGeometryUtil::getVerticesFromPlaneEquations(const btAlignedObjectArray<btVector3>& planeEquations , btAlignedObjectArray<btVector3>& verticesOut ) | ||
|  | { | ||
|  | 	const int numbrushes = planeEquations.size(); | ||
|  | 	// brute force:
 | ||
|  | 	for (int i=0;i<numbrushes;i++) | ||
|  | 	{ | ||
|  | 		const btVector3& N1 = planeEquations[i]; | ||
|  | 		 | ||
|  | 
 | ||
|  | 		for (int j=i+1;j<numbrushes;j++) | ||
|  | 		{ | ||
|  | 			const btVector3& N2 = planeEquations[j]; | ||
|  | 				 | ||
|  | 			for (int k=j+1;k<numbrushes;k++) | ||
|  | 			{ | ||
|  | 
 | ||
|  | 				const btVector3& N3 = planeEquations[k]; | ||
|  | 
 | ||
|  | 				btVector3 n2n3; n2n3 = N2.cross(N3); | ||
|  | 				btVector3 n3n1; n3n1 = N3.cross(N1); | ||
|  | 				btVector3 n1n2; n1n2 = N1.cross(N2); | ||
|  | 				 | ||
|  | 				if ( ( n2n3.length2() > btScalar(0.0001) ) && | ||
|  | 					 ( n3n1.length2() > btScalar(0.0001) ) && | ||
|  | 					 ( n1n2.length2() > btScalar(0.0001) ) ) | ||
|  | 				{ | ||
|  | 					//point P out of 3 plane equations:
 | ||
|  | 
 | ||
|  | 					//	d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )  
 | ||
|  | 					//P =  -------------------------------------------------------------------------  
 | ||
|  | 					//   N1 . ( N2 * N3 )  
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 					btScalar quotient = (N1.dot(n2n3)); | ||
|  | 					if (btFabs(quotient) > btScalar(0.000001)) | ||
|  | 					{ | ||
|  | 						quotient = btScalar(-1.) / quotient; | ||
|  | 						n2n3 *= N1[3]; | ||
|  | 						n3n1 *= N2[3]; | ||
|  | 						n1n2 *= N3[3]; | ||
|  | 						btVector3 potentialVertex = n2n3; | ||
|  | 						potentialVertex += n3n1; | ||
|  | 						potentialVertex += n1n2; | ||
|  | 						potentialVertex *= quotient; | ||
|  | 
 | ||
|  | 						//check if inside, and replace supportingVertexOut if needed
 | ||
|  | 						if (isPointInsidePlanes(planeEquations,potentialVertex,btScalar(0.01))) | ||
|  | 						{ | ||
|  | 							verticesOut.push_back(potentialVertex); | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 |