forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1209 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1209 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | //
 | ||
|  | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty.  In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //    claim that you wrote the original software. If you use this software
 | ||
|  | //    in a product, an acknowledgment in the product documentation would be
 | ||
|  | //    appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //    misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | //
 | ||
|  |   | ||
|  | #ifndef RECAST_H
 | ||
|  | #define RECAST_H
 | ||
|  | 
 | ||
|  | /// The value of PI used by Recast.
 | ||
|  | static const float RC_PI = 3.14159265f; | ||
|  | 
 | ||
|  | /// Recast log categories.
 | ||
|  | /// @see rcContext
 | ||
|  | enum rcLogCategory | ||
|  | { | ||
|  | 	RC_LOG_PROGRESS = 1,	///< A progress log entry.
 | ||
|  | 	RC_LOG_WARNING,			///< A warning log entry.
 | ||
|  | 	RC_LOG_ERROR,			///< An error log entry.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Recast performance timer categories.
 | ||
|  | /// @see rcContext
 | ||
|  | enum rcTimerLabel | ||
|  | { | ||
|  | 	/// The user defined total time of the build.
 | ||
|  | 	RC_TIMER_TOTAL, | ||
|  | 	/// A user defined build time.
 | ||
|  | 	RC_TIMER_TEMP, | ||
|  | 	/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
 | ||
|  | 	RC_TIMER_RASTERIZE_TRIANGLES, | ||
|  | 	/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
 | ||
|  | 	RC_TIMER_BUILD_COMPACTHEIGHTFIELD, | ||
|  | 	/// The total time to build the contours. (See: #rcBuildContours)
 | ||
|  | 	RC_TIMER_BUILD_CONTOURS, | ||
|  | 	/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
 | ||
|  | 	RC_TIMER_BUILD_CONTOURS_TRACE, | ||
|  | 	/// The time to simplify the contours. (See: #rcBuildContours)
 | ||
|  | 	RC_TIMER_BUILD_CONTOURS_SIMPLIFY, | ||
|  | 	/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
 | ||
|  | 	RC_TIMER_FILTER_BORDER, | ||
|  | 	/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
 | ||
|  | 	RC_TIMER_FILTER_WALKABLE, | ||
|  | 	/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
 | ||
|  | 	RC_TIMER_MEDIAN_AREA, | ||
|  | 	/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
 | ||
|  | 	RC_TIMER_FILTER_LOW_OBSTACLES, | ||
|  | 	/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
 | ||
|  | 	RC_TIMER_BUILD_POLYMESH, | ||
|  | 	/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
 | ||
|  | 	RC_TIMER_MERGE_POLYMESH, | ||
|  | 	/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
 | ||
|  | 	RC_TIMER_ERODE_AREA, | ||
|  | 	/// The time to mark a box area. (See: #rcMarkBoxArea)
 | ||
|  | 	RC_TIMER_MARK_BOX_AREA, | ||
|  | 	/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
 | ||
|  | 	RC_TIMER_MARK_CYLINDER_AREA, | ||
|  | 	/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
 | ||
|  | 	RC_TIMER_MARK_CONVEXPOLY_AREA, | ||
|  | 	/// The total time to build the distance field. (See: #rcBuildDistanceField)
 | ||
|  | 	RC_TIMER_BUILD_DISTANCEFIELD, | ||
|  | 	/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
 | ||
|  | 	RC_TIMER_BUILD_DISTANCEFIELD_DIST, | ||
|  | 	/// The time to blur the distance field. (See: #rcBuildDistanceField)
 | ||
|  | 	RC_TIMER_BUILD_DISTANCEFIELD_BLUR, | ||
|  | 	/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
 | ||
|  | 	RC_TIMER_BUILD_REGIONS, | ||
|  | 	/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
 | ||
|  | 	RC_TIMER_BUILD_REGIONS_WATERSHED, | ||
|  | 	/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
 | ||
|  | 	RC_TIMER_BUILD_REGIONS_EXPAND, | ||
|  | 	/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
 | ||
|  | 	RC_TIMER_BUILD_REGIONS_FLOOD, | ||
|  | 	/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
 | ||
|  | 	RC_TIMER_BUILD_REGIONS_FILTER, | ||
|  | 	/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
 | ||
|  | 	RC_TIMER_BUILD_LAYERS,  | ||
|  | 	/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
 | ||
|  | 	RC_TIMER_BUILD_POLYMESHDETAIL, | ||
|  | 	/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
 | ||
|  | 	RC_TIMER_MERGE_POLYMESHDETAIL, | ||
|  | 	/// The maximum number of timers.  (Used for iterating timers.)
 | ||
|  | 	RC_MAX_TIMERS | ||
|  | }; | ||
|  | 
 | ||
|  | /// Provides an interface for optional logging and performance tracking of the Recast 
 | ||
|  | /// build process.
 | ||
|  | /// @ingroup recast
 | ||
|  | class rcContext | ||
|  | { | ||
|  | public: | ||
|  | 
 | ||
|  | 	/// Contructor.
 | ||
|  | 	///  @param[in]		state	TRUE if the logging and performance timers should be enabled.  [Default: true]
 | ||
|  | 	inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {} | ||
|  | 	virtual ~rcContext() {} | ||
|  | 
 | ||
|  | 	/// Enables or disables logging.
 | ||
|  | 	///  @param[in]		state	TRUE if logging should be enabled.
 | ||
|  | 	inline void enableLog(bool state) { m_logEnabled = state; } | ||
|  | 
 | ||
|  | 	/// Clears all log entries.
 | ||
|  | 	inline void resetLog() { if (m_logEnabled) doResetLog(); } | ||
|  | 
 | ||
|  | 	/// Logs a message.
 | ||
|  | 	///  @param[in]		category	The category of the message.
 | ||
|  | 	///  @param[in]		format		The message.
 | ||
|  | 	void log(const rcLogCategory category, const char* format, ...); | ||
|  | 
 | ||
|  | 	/// Enables or disables the performance timers.
 | ||
|  | 	///  @param[in]		state	TRUE if timers should be enabled.
 | ||
|  | 	inline void enableTimer(bool state) { m_timerEnabled = state; } | ||
|  | 
 | ||
|  | 	/// Clears all peformance timers. (Resets all to unused.)
 | ||
|  | 	inline void resetTimers() { if (m_timerEnabled) doResetTimers(); } | ||
|  | 
 | ||
|  | 	/// Starts the specified performance timer.
 | ||
|  | 	///  @param	label	The category of the timer.
 | ||
|  | 	inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); } | ||
|  | 
 | ||
|  | 	/// Stops the specified performance timer.
 | ||
|  | 	///  @param	label	The category of the timer.
 | ||
|  | 	inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); } | ||
|  | 
 | ||
|  | 	/// Returns the total accumulated time of the specified performance timer.
 | ||
|  | 	///  @param	label	The category of the timer.
 | ||
|  | 	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
 | ||
|  | 	inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; } | ||
|  | 
 | ||
|  | protected: | ||
|  | 
 | ||
|  | 	/// Clears all log entries.
 | ||
|  | 	virtual void doResetLog() {} | ||
|  | 
 | ||
|  | 	/// Logs a message.
 | ||
|  | 	///  @param[in]		category	The category of the message.
 | ||
|  | 	///  @param[in]		msg			The formatted message.
 | ||
|  | 	///  @param[in]		len			The length of the formatted message.
 | ||
|  | 	virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {} | ||
|  | 
 | ||
|  | 	/// Clears all timers. (Resets all to unused.)
 | ||
|  | 	virtual void doResetTimers() {} | ||
|  | 
 | ||
|  | 	/// Starts the specified performance timer.
 | ||
|  | 	///  @param[in]		label	The category of timer.
 | ||
|  | 	virtual void doStartTimer(const rcTimerLabel /*label*/) {} | ||
|  | 
 | ||
|  | 	/// Stops the specified performance timer.
 | ||
|  | 	///  @param[in]		label	The category of the timer.
 | ||
|  | 	virtual void doStopTimer(const rcTimerLabel /*label*/) {} | ||
|  | 
 | ||
|  | 	/// Returns the total accumulated time of the specified performance timer.
 | ||
|  | 	///  @param[in]		label	The category of the timer.
 | ||
|  | 	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
 | ||
|  | 	virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; } | ||
|  | 	 | ||
|  | 	/// True if logging is enabled.
 | ||
|  | 	bool m_logEnabled; | ||
|  | 
 | ||
|  | 	/// True if the performance timers are enabled.
 | ||
|  | 	bool m_timerEnabled; | ||
|  | }; | ||
|  | 
 | ||
|  | /// A helper to first start a timer and then stop it when this helper goes out of scope.
 | ||
|  | /// @see rcContext
 | ||
|  | class rcScopedTimer | ||
|  | { | ||
|  | public: | ||
|  | 	/// Constructs an instance and starts the timer.
 | ||
|  | 	///  @param[in]		ctx		The context to use.
 | ||
|  | 	///  @param[in]		label	The category of the timer.
 | ||
|  | 	inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); } | ||
|  | 	inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); } | ||
|  | 
 | ||
|  | private: | ||
|  | 	// Explicitly disabled copy constructor and copy assignment operator.
 | ||
|  | 	rcScopedTimer(const rcScopedTimer&); | ||
|  | 	rcScopedTimer& operator=(const rcScopedTimer&); | ||
|  | 	 | ||
|  | 	rcContext* const m_ctx; | ||
|  | 	const rcTimerLabel m_label; | ||
|  | }; | ||
|  | 
 | ||
|  | /// Specifies a configuration to use when performing Recast builds.
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcConfig | ||
|  | { | ||
|  | 	/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | 	int width; | ||
|  | 
 | ||
|  | 	/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | 	int height; | ||
|  | 	 | ||
|  | 	/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
 | ||
|  | 	int tileSize; | ||
|  | 	 | ||
|  | 	/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
 | ||
|  | 	int borderSize; | ||
|  | 
 | ||
|  | 	/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] 
 | ||
|  | 	float cs; | ||
|  | 
 | ||
|  | 	/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
 | ||
|  | 	float ch; | ||
|  | 
 | ||
|  | 	/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
 | ||
|  | 	float bmin[3];  | ||
|  | 
 | ||
|  | 	/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
 | ||
|  | 	float bmax[3]; | ||
|  | 
 | ||
|  | 	/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] 
 | ||
|  | 	float walkableSlopeAngle; | ||
|  | 
 | ||
|  | 	/// Minimum floor to 'ceiling' height that will still allow the floor area to 
 | ||
|  | 	/// be considered walkable. [Limit: >= 3] [Units: vx] 
 | ||
|  | 	int walkableHeight; | ||
|  | 	 | ||
|  | 	/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] 
 | ||
|  | 	int walkableClimb; | ||
|  | 	 | ||
|  | 	/// The distance to erode/shrink the walkable area of the heightfield away from 
 | ||
|  | 	/// obstructions.  [Limit: >=0] [Units: vx] 
 | ||
|  | 	int walkableRadius; | ||
|  | 	 | ||
|  | 	/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] 
 | ||
|  | 	int maxEdgeLen; | ||
|  | 	 | ||
|  | 	/// The maximum distance a simplfied contour's border edges should deviate 
 | ||
|  | 	/// the original raw contour. [Limit: >=0] [Units: vx]
 | ||
|  | 	float maxSimplificationError; | ||
|  | 	 | ||
|  | 	/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] 
 | ||
|  | 	int minRegionArea; | ||
|  | 	 | ||
|  | 	/// Any regions with a span count smaller than this value will, if possible, 
 | ||
|  | 	/// be merged with larger regions. [Limit: >=0] [Units: vx] 
 | ||
|  | 	int mergeRegionArea; | ||
|  | 	 | ||
|  | 	/// The maximum number of vertices allowed for polygons generated during the 
 | ||
|  | 	/// contour to polygon conversion process. [Limit: >= 3] 
 | ||
|  | 	int maxVertsPerPoly; | ||
|  | 	 | ||
|  | 	/// Sets the sampling distance to use when generating the detail mesh.
 | ||
|  | 	/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] 
 | ||
|  | 	float detailSampleDist; | ||
|  | 	 | ||
|  | 	/// The maximum distance the detail mesh surface should deviate from heightfield
 | ||
|  | 	/// data. (For height detail only.) [Limit: >=0] [Units: wu] 
 | ||
|  | 	float detailSampleMaxError; | ||
|  | }; | ||
|  | 
 | ||
|  | /// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
 | ||
|  | static const int RC_SPAN_HEIGHT_BITS = 13; | ||
|  | /// Defines the maximum value for rcSpan::smin and rcSpan::smax.
 | ||
|  | static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1; | ||
|  | 
 | ||
|  | /// The number of spans allocated per span spool.
 | ||
|  | /// @see rcSpanPool
 | ||
|  | static const int RC_SPANS_PER_POOL = 2048; | ||
|  | 
 | ||
|  | /// Represents a span in a heightfield.
 | ||
|  | /// @see rcHeightfield
 | ||
|  | struct rcSpan | ||
|  | { | ||
|  | 	unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
 | ||
|  | 	unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
 | ||
|  | 	unsigned int area : 6;                   ///< The area id assigned to the span.
 | ||
|  | 	rcSpan* next;                            ///< The next span higher up in column.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// A memory pool used for quick allocation of spans within a heightfield.
 | ||
|  | /// @see rcHeightfield
 | ||
|  | struct rcSpanPool | ||
|  | { | ||
|  | 	rcSpanPool* next;					///< The next span pool.
 | ||
|  | 	rcSpan items[RC_SPANS_PER_POOL];	///< Array of spans in the pool.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// A dynamic heightfield representing obstructed space.
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcHeightfield | ||
|  | { | ||
|  | 	rcHeightfield(); | ||
|  | 	~rcHeightfield(); | ||
|  | 
 | ||
|  | 	int width;			///< The width of the heightfield. (Along the x-axis in cell units.)
 | ||
|  | 	int height;			///< The height of the heightfield. (Along the z-axis in cell units.)
 | ||
|  | 	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
 | ||
|  | 	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
 | ||
|  | 	float cs;			///< The size of each cell. (On the xz-plane.)
 | ||
|  | 	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
 | ||
|  | 	rcSpan** spans;		///< Heightfield of spans (width*height).
 | ||
|  | 	rcSpanPool* pools;	///< Linked list of span pools.
 | ||
|  | 	rcSpan* freelist;	///< The next free span.
 | ||
|  | 
 | ||
|  | private: | ||
|  | 	// Explicitly-disabled copy constructor and copy assignment operator.
 | ||
|  | 	rcHeightfield(const rcHeightfield&); | ||
|  | 	rcHeightfield& operator=(const rcHeightfield&); | ||
|  | }; | ||
|  | 
 | ||
|  | /// Provides information on the content of a cell column in a compact heightfield. 
 | ||
|  | struct rcCompactCell | ||
|  | { | ||
|  | 	unsigned int index : 24;	///< Index to the first span in the column.
 | ||
|  | 	unsigned int count : 8;		///< Number of spans in the column.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a span of unobstructed space within a compact heightfield.
 | ||
|  | struct rcCompactSpan | ||
|  | { | ||
|  | 	unsigned short y;			///< The lower extent of the span. (Measured from the heightfield's base.)
 | ||
|  | 	unsigned short reg;			///< The id of the region the span belongs to. (Or zero if not in a region.)
 | ||
|  | 	unsigned int con : 24;		///< Packed neighbor connection data.
 | ||
|  | 	unsigned int h : 8;			///< The height of the span.  (Measured from #y.)
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// A compact, static heightfield representing unobstructed space.
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcCompactHeightfield | ||
|  | { | ||
|  | 	rcCompactHeightfield(); | ||
|  | 	~rcCompactHeightfield(); | ||
|  | 	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
 | ||
|  | 	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
 | ||
|  | 	int spanCount;				///< The number of spans in the heightfield.
 | ||
|  | 	int walkableHeight;			///< The walkable height used during the build of the field.  (See: rcConfig::walkableHeight)
 | ||
|  | 	int walkableClimb;			///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
 | ||
|  | 	int borderSize;				///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
 | ||
|  | 	unsigned short maxDistance;	///< The maximum distance value of any span within the field. 
 | ||
|  | 	unsigned short maxRegions;	///< The maximum region id of any span within the field. 
 | ||
|  | 	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
 | ||
|  | 	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
 | ||
|  | 	float cs;					///< The size of each cell. (On the xz-plane.)
 | ||
|  | 	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
 | ||
|  | 	rcCompactCell* cells;		///< Array of cells. [Size: #width*#height]
 | ||
|  | 	rcCompactSpan* spans;		///< Array of spans. [Size: #spanCount]
 | ||
|  | 	unsigned short* dist;		///< Array containing border distance data. [Size: #spanCount]
 | ||
|  | 	unsigned char* areas;		///< Array containing area id data. [Size: #spanCount]
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a heightfield layer within a layer set.
 | ||
|  | /// @see rcHeightfieldLayerSet
 | ||
|  | struct rcHeightfieldLayer | ||
|  | { | ||
|  | 	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
 | ||
|  | 	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
 | ||
|  | 	float cs;					///< The size of each cell. (On the xz-plane.)
 | ||
|  | 	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
 | ||
|  | 	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
 | ||
|  | 	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
 | ||
|  | 	int minx;					///< The minimum x-bounds of usable data.
 | ||
|  | 	int maxx;					///< The maximum x-bounds of usable data.
 | ||
|  | 	int miny;					///< The minimum y-bounds of usable data. (Along the z-axis.)
 | ||
|  | 	int maxy;					///< The maximum y-bounds of usable data. (Along the z-axis.)
 | ||
|  | 	int hmin;					///< The minimum height bounds of usable data. (Along the y-axis.)
 | ||
|  | 	int hmax;					///< The maximum height bounds of usable data. (Along the y-axis.)
 | ||
|  | 	unsigned char* heights;		///< The heightfield. [Size: width * height]
 | ||
|  | 	unsigned char* areas;		///< Area ids. [Size: Same as #heights]
 | ||
|  | 	unsigned char* cons;		///< Packed neighbor connection information. [Size: Same as #heights]
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a set of heightfield layers.
 | ||
|  | /// @ingroup recast
 | ||
|  | /// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet 
 | ||
|  | struct rcHeightfieldLayerSet | ||
|  | { | ||
|  | 	rcHeightfieldLayerSet(); | ||
|  | 	~rcHeightfieldLayerSet(); | ||
|  | 	rcHeightfieldLayer* layers;			///< The layers in the set. [Size: #nlayers]
 | ||
|  | 	int nlayers;						///< The number of layers in the set.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a simple, non-overlapping contour in field space.
 | ||
|  | struct rcContour | ||
|  | { | ||
|  | 	int* verts;			///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
 | ||
|  | 	int nverts;			///< The number of vertices in the simplified contour. 
 | ||
|  | 	int* rverts;		///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
 | ||
|  | 	int nrverts;		///< The number of vertices in the raw contour. 
 | ||
|  | 	unsigned short reg;	///< The region id of the contour.
 | ||
|  | 	unsigned char area;	///< The area id of the contour.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a group of related contours.
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcContourSet | ||
|  | { | ||
|  | 	rcContourSet(); | ||
|  | 	~rcContourSet(); | ||
|  | 	rcContour* conts;	///< An array of the contours in the set. [Size: #nconts]
 | ||
|  | 	int nconts;			///< The number of contours in the set.
 | ||
|  | 	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
 | ||
|  | 	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
 | ||
|  | 	float cs;			///< The size of each cell. (On the xz-plane.)
 | ||
|  | 	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
 | ||
|  | 	int width;			///< The width of the set. (Along the x-axis in cell units.) 
 | ||
|  | 	int height;			///< The height of the set. (Along the z-axis in cell units.) 
 | ||
|  | 	int borderSize;		///< The AABB border size used to generate the source data from which the contours were derived.
 | ||
|  | 	float maxError;		///< The max edge error that this contour set was simplified with.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Represents a polygon mesh suitable for use in building a navigation mesh. 
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcPolyMesh | ||
|  | { | ||
|  | 	rcPolyMesh(); | ||
|  | 	~rcPolyMesh(); | ||
|  | 	unsigned short* verts;	///< The mesh vertices. [Form: (x, y, z) * #nverts]
 | ||
|  | 	unsigned short* polys;	///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
 | ||
|  | 	unsigned short* regs;	///< The region id assigned to each polygon. [Length: #maxpolys]
 | ||
|  | 	unsigned short* flags;	///< The user defined flags for each polygon. [Length: #maxpolys]
 | ||
|  | 	unsigned char* areas;	///< The area id assigned to each polygon. [Length: #maxpolys]
 | ||
|  | 	int nverts;				///< The number of vertices.
 | ||
|  | 	int npolys;				///< The number of polygons.
 | ||
|  | 	int maxpolys;			///< The number of allocated polygons.
 | ||
|  | 	int nvp;				///< The maximum number of vertices per polygon.
 | ||
|  | 	float bmin[3];			///< The minimum bounds in world space. [(x, y, z)]
 | ||
|  | 	float bmax[3];			///< The maximum bounds in world space. [(x, y, z)]
 | ||
|  | 	float cs;				///< The size of each cell. (On the xz-plane.)
 | ||
|  | 	float ch;				///< The height of each cell. (The minimum increment along the y-axis.)
 | ||
|  | 	int borderSize;			///< The AABB border size used to generate the source data from which the mesh was derived.
 | ||
|  | 	float maxEdgeError;		///< The max error of the polygon edges in the mesh.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Contains triangle meshes that represent detailed height data associated 
 | ||
|  | /// with the polygons in its associated polygon mesh object.
 | ||
|  | /// @ingroup recast
 | ||
|  | struct rcPolyMeshDetail | ||
|  | { | ||
|  | 	unsigned int* meshes;	///< The sub-mesh data. [Size: 4*#nmeshes] 
 | ||
|  | 	float* verts;			///< The mesh vertices. [Size: 3*#nverts] 
 | ||
|  | 	unsigned char* tris;	///< The mesh triangles. [Size: 4*#ntris] 
 | ||
|  | 	int nmeshes;			///< The number of sub-meshes defined by #meshes.
 | ||
|  | 	int nverts;				///< The number of vertices in #verts.
 | ||
|  | 	int ntris;				///< The number of triangles in #tris.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// @name Allocation Functions
 | ||
|  | /// Functions used to allocate and de-allocate Recast objects.
 | ||
|  | /// @see rcAllocSetCustom
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Allocates a heightfield object using the Recast allocator.
 | ||
|  | ///  @return A heightfield that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcCreateHeightfield, rcFreeHeightField
 | ||
|  | rcHeightfield* rcAllocHeightfield(); | ||
|  | 
 | ||
|  | /// Frees the specified heightfield object using the Recast allocator.
 | ||
|  | ///  @param[in]		hf	A heightfield allocated using #rcAllocHeightfield
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocHeightfield
 | ||
|  | void rcFreeHeightField(rcHeightfield* hf); | ||
|  | 
 | ||
|  | /// Allocates a compact heightfield object using the Recast allocator.
 | ||
|  | ///  @return A compact heightfield that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
 | ||
|  | rcCompactHeightfield* rcAllocCompactHeightfield(); | ||
|  | 
 | ||
|  | /// Frees the specified compact heightfield object using the Recast allocator.
 | ||
|  | ///  @param[in]		chf		A compact heightfield allocated using #rcAllocCompactHeightfield
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocCompactHeightfield
 | ||
|  | void rcFreeCompactHeightfield(rcCompactHeightfield* chf); | ||
|  | 
 | ||
|  | /// Allocates a heightfield layer set using the Recast allocator.
 | ||
|  | ///  @return A heightfield layer set that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
 | ||
|  | rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet(); | ||
|  | 
 | ||
|  | /// Frees the specified heightfield layer set using the Recast allocator.
 | ||
|  | ///  @param[in]		lset	A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocHeightfieldLayerSet
 | ||
|  | void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset); | ||
|  | 
 | ||
|  | /// Allocates a contour set object using the Recast allocator.
 | ||
|  | ///  @return A contour set that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcBuildContours, rcFreeContourSet
 | ||
|  | rcContourSet* rcAllocContourSet(); | ||
|  | 
 | ||
|  | /// Frees the specified contour set using the Recast allocator.
 | ||
|  | ///  @param[in]		cset	A contour set allocated using #rcAllocContourSet
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocContourSet
 | ||
|  | void rcFreeContourSet(rcContourSet* cset); | ||
|  | 
 | ||
|  | /// Allocates a polygon mesh object using the Recast allocator.
 | ||
|  | ///  @return A polygon mesh that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcBuildPolyMesh, rcFreePolyMesh
 | ||
|  | rcPolyMesh* rcAllocPolyMesh(); | ||
|  | 
 | ||
|  | /// Frees the specified polygon mesh using the Recast allocator.
 | ||
|  | ///  @param[in]		pmesh	A polygon mesh allocated using #rcAllocPolyMesh
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocPolyMesh
 | ||
|  | void rcFreePolyMesh(rcPolyMesh* pmesh); | ||
|  | 
 | ||
|  | /// Allocates a detail mesh object using the Recast allocator.
 | ||
|  | ///  @return A detail mesh that is ready for initialization, or null on failure.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
 | ||
|  | rcPolyMeshDetail* rcAllocPolyMeshDetail(); | ||
|  | 
 | ||
|  | /// Frees the specified detail mesh using the Recast allocator.
 | ||
|  | ///  @param[in]		dmesh	A detail mesh allocated using #rcAllocPolyMeshDetail
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @see rcAllocPolyMeshDetail
 | ||
|  | void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh); | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | 
 | ||
|  | /// Heighfield border flag.
 | ||
|  | /// If a heightfield region ID has this bit set, then the region is a border 
 | ||
|  | /// region and its spans are considered unwalkable.
 | ||
|  | /// (Used during the region and contour build process.)
 | ||
|  | /// @see rcCompactSpan::reg
 | ||
|  | static const unsigned short RC_BORDER_REG = 0x8000; | ||
|  | 
 | ||
|  | /// Polygon touches multiple regions.
 | ||
|  | /// If a polygon has this region ID it was merged with or created
 | ||
|  | /// from polygons of different regions during the polymesh
 | ||
|  | /// build step that removes redundant border vertices. 
 | ||
|  | /// (Used during the polymesh and detail polymesh build processes)
 | ||
|  | /// @see rcPolyMesh::regs
 | ||
|  | static const unsigned short RC_MULTIPLE_REGS = 0; | ||
|  | 
 | ||
|  | /// Border vertex flag.
 | ||
|  | /// If a region ID has this bit set, then the associated element lies on
 | ||
|  | /// a tile border. If a contour vertex's region ID has this bit set, the 
 | ||
|  | /// vertex will later be removed in order to match the segments and vertices 
 | ||
|  | /// at tile boundaries.
 | ||
|  | /// (Used during the build process.)
 | ||
|  | /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
 | ||
|  | static const int RC_BORDER_VERTEX = 0x10000; | ||
|  | 
 | ||
|  | /// Area border flag.
 | ||
|  | /// If a region ID has this bit set, then the associated element lies on
 | ||
|  | /// the border of an area.
 | ||
|  | /// (Used during the region and contour build process.)
 | ||
|  | /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
 | ||
|  | static const int RC_AREA_BORDER = 0x20000; | ||
|  | 
 | ||
|  | /// Contour build flags.
 | ||
|  | /// @see rcBuildContours
 | ||
|  | enum rcBuildContoursFlags | ||
|  | { | ||
|  | 	RC_CONTOUR_TESS_WALL_EDGES = 0x01,	///< Tessellate solid (impassable) edges during contour simplification.
 | ||
|  | 	RC_CONTOUR_TESS_AREA_EDGES = 0x02,	///< Tessellate edges between areas during contour simplification.
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// Applied to the region id field of contour vertices in order to extract the region id.
 | ||
|  | /// The region id field of a vertex may have several flags applied to it.  So the
 | ||
|  | /// fields value can't be used directly.
 | ||
|  | /// @see rcContour::verts, rcContour::rverts
 | ||
|  | static const int RC_CONTOUR_REG_MASK = 0xffff; | ||
|  | 
 | ||
|  | /// An value which indicates an invalid index within a mesh.
 | ||
|  | /// @note This does not necessarily indicate an error.
 | ||
|  | /// @see rcPolyMesh::polys
 | ||
|  | static const unsigned short RC_MESH_NULL_IDX = 0xffff; | ||
|  | 
 | ||
|  | /// Represents the null area.
 | ||
|  | /// When a data element is given this value it is considered to no longer be 
 | ||
|  | /// assigned to a usable area.  (E.g. It is unwalkable.)
 | ||
|  | static const unsigned char RC_NULL_AREA = 0; | ||
|  | 
 | ||
|  | /// The default area id used to indicate a walkable polygon. 
 | ||
|  | /// This is also the maximum allowed area id, and the only non-null area id 
 | ||
|  | /// recognized by some steps in the build process. 
 | ||
|  | static const unsigned char RC_WALKABLE_AREA = 63; | ||
|  | 
 | ||
|  | /// The value returned by #rcGetCon if the specified direction is not connected
 | ||
|  | /// to another span. (Has no neighbor.)
 | ||
|  | static const int RC_NOT_CONNECTED = 0x3f; | ||
|  | 
 | ||
|  | /// @name General helper functions
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Used to ignore a function parameter.  VS complains about unused parameters
 | ||
|  | /// and this silences the warning.
 | ||
|  | ///  @param [in] _ Unused parameter
 | ||
|  | template<class T> void rcIgnoreUnused(const T&) { } | ||
|  | 
 | ||
|  | /// Swaps the values of the two parameters.
 | ||
|  | ///  @param[in,out]	a	Value A
 | ||
|  | ///  @param[in,out]	b	Value B
 | ||
|  | template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; } | ||
|  | 
 | ||
|  | /// Returns the minimum of two values.
 | ||
|  | ///  @param[in]		a	Value A
 | ||
|  | ///  @param[in]		b	Value B
 | ||
|  | ///  @return The minimum of the two values.
 | ||
|  | template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; } | ||
|  | 
 | ||
|  | /// Returns the maximum of two values.
 | ||
|  | ///  @param[in]		a	Value A
 | ||
|  | ///  @param[in]		b	Value B
 | ||
|  | ///  @return The maximum of the two values.
 | ||
|  | template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; } | ||
|  | 
 | ||
|  | /// Returns the absolute value.
 | ||
|  | ///  @param[in]		a	The value.
 | ||
|  | ///  @return The absolute value of the specified value.
 | ||
|  | template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; } | ||
|  | 
 | ||
|  | /// Returns the square of the value.
 | ||
|  | ///  @param[in]		a	The value.
 | ||
|  | ///  @return The square of the value.
 | ||
|  | template<class T> inline T rcSqr(T a) { return a*a; } | ||
|  | 
 | ||
|  | /// Clamps the value to the specified range.
 | ||
|  | ///  @param[in]		v	The value to clamp.
 | ||
|  | ///  @param[in]		mn	The minimum permitted return value.
 | ||
|  | ///  @param[in]		mx	The maximum permitted return value.
 | ||
|  | ///  @return The value, clamped to the specified range.
 | ||
|  | template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); } | ||
|  | 
 | ||
|  | /// Returns the square root of the value.
 | ||
|  | ///  @param[in]		x	The value.
 | ||
|  | ///  @return The square root of the vlaue.
 | ||
|  | float rcSqrt(float x); | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | /// @name Vector helper functions.
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Derives the cross product of two vectors. (@p v1 x @p v2)
 | ||
|  | ///  @param[out]	dest	The cross product. [(x, y, z)]
 | ||
|  | ///  @param[in]		v1		A Vector [(x, y, z)]
 | ||
|  | ///  @param[in]		v2		A vector [(x, y, z)]
 | ||
|  | inline void rcVcross(float* dest, const float* v1, const float* v2) | ||
|  | { | ||
|  | 	dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; | ||
|  | 	dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; | ||
|  | 	dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Derives the dot product of two vectors. (@p v1 . @p v2)
 | ||
|  | ///  @param[in]		v1	A Vector [(x, y, z)]
 | ||
|  | ///  @param[in]		v2	A vector [(x, y, z)]
 | ||
|  | /// @return The dot product.
 | ||
|  | inline float rcVdot(const float* v1, const float* v2) | ||
|  | { | ||
|  | 	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
 | ||
|  | ///  @param[out]	dest	The result vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v1		The base vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v2		The vector to scale and add to @p v1. [(x, y, z)]
 | ||
|  | ///  @param[in]		s		The amount to scale @p v2 by before adding to @p v1.
 | ||
|  | inline void rcVmad(float* dest, const float* v1, const float* v2, const float s) | ||
|  | { | ||
|  | 	dest[0] = v1[0]+v2[0]*s; | ||
|  | 	dest[1] = v1[1]+v2[1]*s; | ||
|  | 	dest[2] = v1[2]+v2[2]*s; | ||
|  | } | ||
|  | 
 | ||
|  | /// Performs a vector addition. (@p v1 + @p v2)
 | ||
|  | ///  @param[out]	dest	The result vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v1		The base vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v2		The vector to add to @p v1. [(x, y, z)]
 | ||
|  | inline void rcVadd(float* dest, const float* v1, const float* v2) | ||
|  | { | ||
|  | 	dest[0] = v1[0]+v2[0]; | ||
|  | 	dest[1] = v1[1]+v2[1]; | ||
|  | 	dest[2] = v1[2]+v2[2]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Performs a vector subtraction. (@p v1 - @p v2)
 | ||
|  | ///  @param[out]	dest	The result vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v1		The base vector. [(x, y, z)]
 | ||
|  | ///  @param[in]		v2		The vector to subtract from @p v1. [(x, y, z)]
 | ||
|  | inline void rcVsub(float* dest, const float* v1, const float* v2) | ||
|  | { | ||
|  | 	dest[0] = v1[0]-v2[0]; | ||
|  | 	dest[1] = v1[1]-v2[1]; | ||
|  | 	dest[2] = v1[2]-v2[2]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Selects the minimum value of each element from the specified vectors.
 | ||
|  | ///  @param[in,out]	mn	A vector.  (Will be updated with the result.) [(x, y, z)]
 | ||
|  | ///  @param[in]		v	A vector. [(x, y, z)]
 | ||
|  | inline void rcVmin(float* mn, const float* v) | ||
|  | { | ||
|  | 	mn[0] = rcMin(mn[0], v[0]); | ||
|  | 	mn[1] = rcMin(mn[1], v[1]); | ||
|  | 	mn[2] = rcMin(mn[2], v[2]); | ||
|  | } | ||
|  | 
 | ||
|  | /// Selects the maximum value of each element from the specified vectors.
 | ||
|  | ///  @param[in,out]	mx	A vector.  (Will be updated with the result.) [(x, y, z)]
 | ||
|  | ///  @param[in]		v	A vector. [(x, y, z)]
 | ||
|  | inline void rcVmax(float* mx, const float* v) | ||
|  | { | ||
|  | 	mx[0] = rcMax(mx[0], v[0]); | ||
|  | 	mx[1] = rcMax(mx[1], v[1]); | ||
|  | 	mx[2] = rcMax(mx[2], v[2]); | ||
|  | } | ||
|  | 
 | ||
|  | /// Performs a vector copy.
 | ||
|  | ///  @param[out]	dest	The result. [(x, y, z)]
 | ||
|  | ///  @param[in]		v		The vector to copy. [(x, y, z)]
 | ||
|  | inline void rcVcopy(float* dest, const float* v) | ||
|  | { | ||
|  | 	dest[0] = v[0]; | ||
|  | 	dest[1] = v[1]; | ||
|  | 	dest[2] = v[2]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Returns the distance between two points.
 | ||
|  | ///  @param[in]		v1	A point. [(x, y, z)]
 | ||
|  | ///  @param[in]		v2	A point. [(x, y, z)]
 | ||
|  | /// @return The distance between the two points.
 | ||
|  | inline float rcVdist(const float* v1, const float* v2) | ||
|  | { | ||
|  | 	float dx = v2[0] - v1[0]; | ||
|  | 	float dy = v2[1] - v1[1]; | ||
|  | 	float dz = v2[2] - v1[2]; | ||
|  | 	return rcSqrt(dx*dx + dy*dy + dz*dz); | ||
|  | } | ||
|  | 
 | ||
|  | /// Returns the square of the distance between two points.
 | ||
|  | ///  @param[in]		v1	A point. [(x, y, z)]
 | ||
|  | ///  @param[in]		v2	A point. [(x, y, z)]
 | ||
|  | /// @return The square of the distance between the two points.
 | ||
|  | inline float rcVdistSqr(const float* v1, const float* v2) | ||
|  | { | ||
|  | 	float dx = v2[0] - v1[0]; | ||
|  | 	float dy = v2[1] - v1[1]; | ||
|  | 	float dz = v2[2] - v1[2]; | ||
|  | 	return dx*dx + dy*dy + dz*dz; | ||
|  | } | ||
|  | 
 | ||
|  | /// Normalizes the vector.
 | ||
|  | ///  @param[in,out]	v	The vector to normalize. [(x, y, z)]
 | ||
|  | inline void rcVnormalize(float* v) | ||
|  | { | ||
|  | 	float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2])); | ||
|  | 	v[0] *= d; | ||
|  | 	v[1] *= d; | ||
|  | 	v[2] *= d; | ||
|  | } | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | /// @name Heightfield Functions
 | ||
|  | /// @see rcHeightfield
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Calculates the bounding box of an array of vertices.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in]		verts	An array of vertices. [(x, y, z) * @p nv]
 | ||
|  | ///  @param[in]		nv		The number of vertices in the @p verts array.
 | ||
|  | ///  @param[out]	bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
 | ||
|  | ///  @param[out]	bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
 | ||
|  | void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax); | ||
|  | 
 | ||
|  | /// Calculates the grid size based on the bounding box and grid cell size.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in]		bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
 | ||
|  | ///  @param[in]		bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
 | ||
|  | ///  @param[in]		cs		The xz-plane cell size. [Limit: > 0] [Units: wu]
 | ||
|  | ///  @param[out]	w		The width along the x-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | ///  @param[out]	h		The height along the z-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h); | ||
|  | 
 | ||
|  | /// Initializes a new heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	hf		The allocated heightfield to initialize.
 | ||
|  | ///  @param[in]		width	The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | ///  @param[in]		height	The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
 | ||
|  | ///  @param[in]		bmin	The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
 | ||
|  | ///  @param[in]		bmax	The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
 | ||
|  | ///  @param[in]		cs		The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
 | ||
|  | ///  @param[in]		ch		The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height, | ||
|  | 						 const float* bmin, const float* bmax, | ||
|  | 						 float cs, float ch); | ||
|  | 
 | ||
|  | /// Sets the area id of all triangles with a slope below the specified value
 | ||
|  | /// to #RC_WALKABLE_AREA.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx					The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
 | ||
|  | ///  									[Limits: 0 <= value < 90] [Units: Degrees]
 | ||
|  | ///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
 | ||
|  | ///  @param[in]		nv					The number of vertices.
 | ||
|  | ///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
 | ||
|  | ///  @param[in]		nt					The number of triangles.
 | ||
|  | ///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
 | ||
|  | void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv, | ||
|  | 							 const int* tris, int nt, unsigned char* areas);  | ||
|  | 
 | ||
|  | /// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx					The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
 | ||
|  | ///  									[Limits: 0 <= value < 90] [Units: Degrees]
 | ||
|  | ///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
 | ||
|  | ///  @param[in]		nv					The number of vertices.
 | ||
|  | ///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
 | ||
|  | ///  @param[in]		nt					The number of triangles.
 | ||
|  | ///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
 | ||
|  | void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv, | ||
|  | 								const int* tris, int nt, unsigned char* areas);  | ||
|  | 
 | ||
|  | /// Adds a span to the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	hf				An initialized heightfield.
 | ||
|  | ///  @param[in]		x				The width index where the span is to be added.
 | ||
|  | ///  								[Limits: 0 <= value < rcHeightfield::width]
 | ||
|  | ///  @param[in]		y				The height index where the span is to be added.
 | ||
|  | ///  								[Limits: 0 <= value < rcHeightfield::height]
 | ||
|  | ///  @param[in]		smin			The minimum height of the span. [Limit: < @p smax] [Units: vx]
 | ||
|  | ///  @param[in]		smax			The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
 | ||
|  | ///  @param[in]		area			The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
 | ||
|  | ///  @param[in]		flagMergeThr	The merge theshold. [Limit: >= 0] [Units: vx]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y, | ||
|  | 			   const unsigned short smin, const unsigned short smax, | ||
|  | 			   const unsigned char area, const int flagMergeThr); | ||
|  | 
 | ||
|  | /// Rasterizes a triangle into the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		v0				Triangle vertex 0 [(x, y, z)]
 | ||
|  | ///  @param[in]		v1				Triangle vertex 1 [(x, y, z)]
 | ||
|  | ///  @param[in]		v2				Triangle vertex 2 [(x, y, z)]
 | ||
|  | ///  @param[in]		area			The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
 | ||
|  | ///  @param[in,out]	solid			An initialized heightfield.
 | ||
|  | ///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag.
 | ||
|  | ///  								[Limit: >= 0] [Units: vx]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2, | ||
|  | 						 const unsigned char area, rcHeightfield& solid, | ||
|  | 						 const int flagMergeThr = 1); | ||
|  | 
 | ||
|  | /// Rasterizes an indexed triangle mesh into the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		verts			The vertices. [(x, y, z) * @p nv]
 | ||
|  | ///  @param[in]		nv				The number of vertices.
 | ||
|  | ///  @param[in]		tris			The triangle indices. [(vertA, vertB, vertC) * @p nt]
 | ||
|  | ///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
 | ||
|  | ///  @param[in]		nt				The number of triangles.
 | ||
|  | ///  @param[in,out]	solid			An initialized heightfield.
 | ||
|  | ///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
 | ||
|  | ///  								[Limit: >= 0] [Units: vx]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv, | ||
|  | 						  const int* tris, const unsigned char* areas, const int nt, | ||
|  | 						  rcHeightfield& solid, const int flagMergeThr = 1); | ||
|  | 
 | ||
|  | /// Rasterizes an indexed triangle mesh into the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx			The build context to use during the operation.
 | ||
|  | ///  @param[in]		verts		The vertices. [(x, y, z) * @p nv]
 | ||
|  | ///  @param[in]		nv			The number of vertices.
 | ||
|  | ///  @param[in]		tris		The triangle indices. [(vertA, vertB, vertC) * @p nt]
 | ||
|  | ///  @param[in]		areas		The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
 | ||
|  | ///  @param[in]		nt			The number of triangles.
 | ||
|  | ///  @param[in,out]	solid		An initialized heightfield.
 | ||
|  | ///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
 | ||
|  | ///  							[Limit: >= 0] [Units: vx]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv, | ||
|  | 						  const unsigned short* tris, const unsigned char* areas, const int nt, | ||
|  | 						  rcHeightfield& solid, const int flagMergeThr = 1); | ||
|  | 
 | ||
|  | /// Rasterizes triangles into the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		verts			The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
 | ||
|  | ///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
 | ||
|  | ///  @param[in]		nt				The number of triangles.
 | ||
|  | ///  @param[in,out]	solid			An initialized heightfield.
 | ||
|  | ///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
 | ||
|  | ///  								[Limit: >= 0] [Units: vx]
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt, | ||
|  | 						  rcHeightfield& solid, const int flagMergeThr = 1); | ||
|  | 
 | ||
|  | /// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neighbor. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
 | ||
|  | void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid); | ||
|  | 
 | ||
|  | /// Marks spans that are ledges as not-walkable. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
 | ||
|  | ///  								be considered walkable. [Limit: >= 3] [Units: vx]
 | ||
|  | ///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
 | ||
|  | void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, | ||
|  | 						const int walkableClimb, rcHeightfield& solid); | ||
|  | 
 | ||
|  | /// Marks walkable spans as not walkable if the clearence above the span is less than the specified height. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
 | ||
|  | ///  								be considered walkable. [Limit: >= 3] [Units: vx]
 | ||
|  | ///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
 | ||
|  | void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid); | ||
|  | 
 | ||
|  | /// Returns the number of spans contained in the specified heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		hf		An initialized heightfield.
 | ||
|  | ///  @returns The number of spans in the heightfield.
 | ||
|  | int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf); | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | /// @name Compact Heightfield Functions
 | ||
|  | /// @see rcCompactHeightfield
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Builds a compact heightfield representing open space, from a heightfield representing solid space.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
 | ||
|  | ///  								to be considered walkable. [Limit: >= 3] [Units: vx]
 | ||
|  | ///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in]		hf				The heightfield to be compacted.
 | ||
|  | ///  @param[out]	chf				The resulting compact heightfield. (Must be pre-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb, | ||
|  | 							   rcHeightfield& hf, rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Erodes the walkable area within the heightfield by the specified radius. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		radius	The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
 | ||
|  | ///  @param[in,out]	chf		The populated compact heightfield to erode.
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Applies a median filter to walkable area types (based on area id), removing noise.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	chf		A populated compact heightfield.
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Applies an area id to all spans within the specified bounding box. (AABB) 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		bmin	The minimum of the bounding box. [(x, y, z)]
 | ||
|  | ///  @param[in]		bmax	The maximum of the bounding box. [(x, y, z)]
 | ||
|  | ///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
 | ||
|  | ///  @param[in,out]	chf		A populated compact heightfield.
 | ||
|  | void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, | ||
|  | 				   rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Applies the area id to the all spans within the specified convex polygon. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		verts	The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
 | ||
|  | ///  @param[in]		nverts	The number of vertices in the polygon.
 | ||
|  | ///  @param[in]		hmin	The height of the base of the polygon.
 | ||
|  | ///  @param[in]		hmax	The height of the top of the polygon.
 | ||
|  | ///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
 | ||
|  | ///  @param[in,out]	chf		A populated compact heightfield.
 | ||
|  | void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, | ||
|  | 						  const float hmin, const float hmax, unsigned char areaId, | ||
|  | 						  rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in]		verts		The vertices of the polygon [Form: (x, y, z) * @p nverts]
 | ||
|  | ///  @param[in]		nverts		The number of vertices in the polygon.
 | ||
|  | ///  @param[out]	outVerts	The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
 | ||
|  | ///  @param[in]		maxOutVerts	The max number of vertices that can be stored to @p outVerts.
 | ||
|  | ///  @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
 | ||
|  | int rcOffsetPoly(const float* verts, const int nverts, const float offset, | ||
|  | 				 float* outVerts, const int maxOutVerts); | ||
|  | 
 | ||
|  | /// Applies the area id to all spans within the specified cylinder.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		pos		The center of the base of the cylinder. [Form: (x, y, z)] 
 | ||
|  | ///  @param[in]		r		The radius of the cylinder.
 | ||
|  | ///  @param[in]		h		The height of the cylinder.
 | ||
|  | ///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
 | ||
|  | ///  @param[in,out]	chf	A populated compact heightfield.
 | ||
|  | void rcMarkCylinderArea(rcContext* ctx, const float* pos, | ||
|  | 						const float r, const float h, unsigned char areaId, | ||
|  | 						rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Builds the distance field for the specified compact heightfield. 
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	chf		A populated compact heightfield.
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); | ||
|  | 
 | ||
|  | /// Builds region data for the heightfield using watershed partitioning.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	chf				A populated compact heightfield.
 | ||
|  | ///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
 | ||
|  | ///  								[Limit: >=0] [Units: vx].
 | ||
|  | ///  @param[in]		mergeRegionArea		Any regions with a span count smaller than this value will, if possible,
 | ||
|  | ///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, | ||
|  | 					const int borderSize, const int minRegionArea, const int mergeRegionArea); | ||
|  | 
 | ||
|  | /// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	chf				A populated compact heightfield.
 | ||
|  | ///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
 | ||
|  | ///  								[Limit: >=0] [Units: vx].
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, | ||
|  | 						 const int borderSize, const int minRegionArea); | ||
|  | 
 | ||
|  | /// Builds region data for the heightfield using simple monotone partitioning.
 | ||
|  | ///  @ingroup recast 
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in,out]	chf				A populated compact heightfield.
 | ||
|  | ///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
 | ||
|  | ///  								[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
 | ||
|  | ///  								[Limit: >=0] [Units: vx].
 | ||
|  | ///  @param[in]		mergeRegionArea	Any regions with a span count smaller than this value will, if possible, 
 | ||
|  | ///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, | ||
|  | 							const int borderSize, const int minRegionArea, const int mergeRegionArea); | ||
|  | 
 | ||
|  | /// Sets the neighbor connection data for the specified direction.
 | ||
|  | ///  @param[in]		s		The span to update.
 | ||
|  | ///  @param[in]		dir		The direction to set. [Limits: 0 <= value < 4]
 | ||
|  | ///  @param[in]		i		The index of the neighbor span.
 | ||
|  | inline void rcSetCon(rcCompactSpan& s, int dir, int i) | ||
|  | { | ||
|  | 	const unsigned int shift = (unsigned int)dir*6; | ||
|  | 	unsigned int con = s.con; | ||
|  | 	s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift); | ||
|  | } | ||
|  | 
 | ||
|  | /// Gets neighbor connection data for the specified direction.
 | ||
|  | ///  @param[in]		s		The span to check.
 | ||
|  | ///  @param[in]		dir		The direction to check. [Limits: 0 <= value < 4]
 | ||
|  | ///  @return The neighbor connection data for the specified direction,
 | ||
|  | ///  	or #RC_NOT_CONNECTED if there is no connection.
 | ||
|  | inline int rcGetCon(const rcCompactSpan& s, int dir) | ||
|  | { | ||
|  | 	const unsigned int shift = (unsigned int)dir*6; | ||
|  | 	return (s.con >> shift) & 0x3f; | ||
|  | } | ||
|  | 
 | ||
|  | /// Gets the standard width (x-axis) offset for the specified direction.
 | ||
|  | ///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
 | ||
|  | ///  @return The width offset to apply to the current cell position to move
 | ||
|  | ///  	in the direction.
 | ||
|  | inline int rcGetDirOffsetX(int dir) | ||
|  | { | ||
|  | 	static const int offset[4] = { -1, 0, 1, 0, }; | ||
|  | 	return offset[dir&0x03]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Gets the standard height (z-axis) offset for the specified direction.
 | ||
|  | ///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
 | ||
|  | ///  @return The height offset to apply to the current cell position to move
 | ||
|  | ///  	in the direction.
 | ||
|  | inline int rcGetDirOffsetY(int dir) | ||
|  | { | ||
|  | 	static const int offset[4] = { 0, 1, 0, -1 }; | ||
|  | 	return offset[dir&0x03]; | ||
|  | } | ||
|  | 
 | ||
|  | /// Gets the direction for the specified offset. One of x and y should be 0.
 | ||
|  | ///  @param[in]		x		The x offset. [Limits: -1 <= value <= 1]
 | ||
|  | ///  @param[in]		y		The y offset. [Limits: -1 <= value <= 1]
 | ||
|  | ///  @return The direction that represents the offset.
 | ||
|  | inline int rcGetDirForOffset(int x, int y) | ||
|  | { | ||
|  | 	static const int dirs[5] = { 3, 0, -1, 2, 1 }; | ||
|  | 	return dirs[((y+1)<<1)+x]; | ||
|  | } | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | /// @name Layer, Contour, Polymesh, and Detail Mesh Functions
 | ||
|  | /// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
 | ||
|  | /// @{
 | ||
|  | 
 | ||
|  | /// Builds a layer set from the specified compact heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx			The build context to use during the operation.
 | ||
|  | ///  @param[in]		chf			A fully built compact heightfield.
 | ||
|  | ///  @param[in]		borderSize	The size of the non-navigable border around the heightfield. [Limit: >=0] 
 | ||
|  | ///  							[Units: vx]
 | ||
|  | ///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
 | ||
|  | ///  							to be considered walkable. [Limit: >= 3] [Units: vx]
 | ||
|  | ///  @param[out]	lset		The resulting layer set. (Must be pre-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,  | ||
|  | 							  const int borderSize, const int walkableHeight, | ||
|  | 							  rcHeightfieldLayerSet& lset); | ||
|  | 
 | ||
|  | /// Builds a contour set from the region outlines in the provided compact heightfield.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx			The build context to use during the operation.
 | ||
|  | ///  @param[in]		chf			A fully built compact heightfield.
 | ||
|  | ///  @param[in]		maxError	The maximum distance a simplfied contour's border edges should deviate 
 | ||
|  | ///  							the original raw contour. [Limit: >=0] [Units: wu]
 | ||
|  | ///  @param[in]		maxEdgeLen	The maximum allowed length for contour edges along the border of the mesh. 
 | ||
|  | ///  							[Limit: >=0] [Units: vx]
 | ||
|  | ///  @param[out]	cset		The resulting contour set. (Must be pre-allocated.)
 | ||
|  | ///  @param[in]		buildFlags	The build flags. (See: #rcBuildContoursFlags)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, | ||
|  | 					 const float maxError, const int maxEdgeLen, | ||
|  | 					 rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES); | ||
|  | 
 | ||
|  | /// Builds a polygon mesh from the provided contours.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		cset	A fully built contour set.
 | ||
|  | ///  @param[in]		nvp		The maximum number of vertices allowed for polygons generated during the 
 | ||
|  | ///  						contour to polygon conversion process. [Limit: >= 3] 
 | ||
|  | ///  @param[out]	mesh	The resulting polygon mesh. (Must be re-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh); | ||
|  | 
 | ||
|  | /// Merges multiple polygon meshes into a single mesh.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		meshes	An array of polygon meshes to merge. [Size: @p nmeshes]
 | ||
|  | ///  @param[in]		nmeshes	The number of polygon meshes in the meshes array.
 | ||
|  | ///  @param[in]		mesh	The resulting polygon mesh. (Must be pre-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh); | ||
|  | 
 | ||
|  | /// Builds a detail mesh from the provided polygon mesh.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx				The build context to use during the operation.
 | ||
|  | ///  @param[in]		mesh			A fully built polygon mesh.
 | ||
|  | ///  @param[in]		chf				The compact heightfield used to build the polygon mesh.
 | ||
|  | ///  @param[in]		sampleDist		Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
 | ||
|  | ///  @param[in]		sampleMaxError	The maximum distance the detail mesh surface should deviate from 
 | ||
|  | ///  								heightfield data. [Limit: >=0] [Units: wu]
 | ||
|  | ///  @param[out]	dmesh			The resulting detail mesh.  (Must be pre-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, | ||
|  | 						   const float sampleDist, const float sampleMaxError, | ||
|  | 						   rcPolyMeshDetail& dmesh); | ||
|  | 
 | ||
|  | /// Copies the poly mesh data from src to dst.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		src		The source mesh to copy from.
 | ||
|  | ///  @param[out]	dst		The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst); | ||
|  | 
 | ||
|  | /// Merges multiple detail meshes into a single detail mesh.
 | ||
|  | ///  @ingroup recast
 | ||
|  | ///  @param[in,out]	ctx		The build context to use during the operation.
 | ||
|  | ///  @param[in]		meshes	An array of detail meshes to merge. [Size: @p nmeshes]
 | ||
|  | ///  @param[in]		nmeshes	The number of detail meshes in the meshes array.
 | ||
|  | ///  @param[out]	mesh	The resulting detail mesh. (Must be pre-allocated.)
 | ||
|  | ///  @returns True if the operation completed successfully.
 | ||
|  | bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh); | ||
|  | 
 | ||
|  | /// @}
 | ||
|  | 
 | ||
|  | #endif // RECAST_H
 | ||
|  | 
 | ||
|  | ///////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | // Due to the large amount of detail documentation for this file, 
 | ||
|  | // the content normally located at the end of the header file has been separated
 | ||
|  | // out to a file in /Docs/Extern.
 |