forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1553 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1553 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //
 | ||
|  | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty.  In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //    claim that you wrote the original software. If you use this software
 | ||
|  | //    in a product, an acknowledgment in the product documentation would be
 | ||
|  | //    appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //    misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #define _USE_MATH_DEFINES
 | ||
|  | #include <math.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdio.h>
 | ||
|  | #include "Recast.h"
 | ||
|  | #include "RecastAlloc.h"
 | ||
|  | #include "RecastAssert.h"
 | ||
|  | 
 | ||
|  | struct rcEdge | ||
|  | { | ||
|  | 	unsigned short vert[2]; | ||
|  | 	unsigned short polyEdge[2]; | ||
|  | 	unsigned short poly[2]; | ||
|  | }; | ||
|  | 
 | ||
|  | static bool buildMeshAdjacency(unsigned short* polys, const int npolys, | ||
|  | 							   const int nverts, const int vertsPerPoly) | ||
|  | { | ||
|  | 	// Based on code by Eric Lengyel from:
 | ||
|  | 	// http://www.terathon.com/code/edges.php
 | ||
|  | 	 | ||
|  | 	int maxEdgeCount = npolys*vertsPerPoly; | ||
|  | 	unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP); | ||
|  | 	if (!firstEdge) | ||
|  | 		return false; | ||
|  | 	unsigned short* nextEdge = firstEdge + nverts; | ||
|  | 	int edgeCount = 0; | ||
|  | 	 | ||
|  | 	rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP); | ||
|  | 	if (!edges) | ||
|  | 	{ | ||
|  | 		rcFree(firstEdge); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nverts; i++) | ||
|  | 		firstEdge[i] = RC_MESH_NULL_IDX; | ||
|  | 	 | ||
|  | 	for (int i = 0; i < npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* t = &polys[i*vertsPerPoly*2]; | ||
|  | 		for (int j = 0; j < vertsPerPoly; ++j) | ||
|  | 		{ | ||
|  | 			if (t[j] == RC_MESH_NULL_IDX) break; | ||
|  | 			unsigned short v0 = t[j]; | ||
|  | 			unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; | ||
|  | 			if (v0 < v1) | ||
|  | 			{ | ||
|  | 				rcEdge& edge = edges[edgeCount]; | ||
|  | 				edge.vert[0] = v0; | ||
|  | 				edge.vert[1] = v1; | ||
|  | 				edge.poly[0] = (unsigned short)i; | ||
|  | 				edge.polyEdge[0] = (unsigned short)j; | ||
|  | 				edge.poly[1] = (unsigned short)i; | ||
|  | 				edge.polyEdge[1] = 0; | ||
|  | 				// Insert edge
 | ||
|  | 				nextEdge[edgeCount] = firstEdge[v0]; | ||
|  | 				firstEdge[v0] = (unsigned short)edgeCount; | ||
|  | 				edgeCount++; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for (int i = 0; i < npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* t = &polys[i*vertsPerPoly*2]; | ||
|  | 		for (int j = 0; j < vertsPerPoly; ++j) | ||
|  | 		{ | ||
|  | 			if (t[j] == RC_MESH_NULL_IDX) break; | ||
|  | 			unsigned short v0 = t[j]; | ||
|  | 			unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; | ||
|  | 			if (v0 > v1) | ||
|  | 			{ | ||
|  | 				for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e]) | ||
|  | 				{ | ||
|  | 					rcEdge& edge = edges[e]; | ||
|  | 					if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1]) | ||
|  | 					{ | ||
|  | 						edge.poly[1] = (unsigned short)i; | ||
|  | 						edge.polyEdge[1] = (unsigned short)j; | ||
|  | 						break; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Store adjacency
 | ||
|  | 	for (int i = 0; i < edgeCount; ++i) | ||
|  | 	{ | ||
|  | 		const rcEdge& e = edges[i]; | ||
|  | 		if (e.poly[0] != e.poly[1]) | ||
|  | 		{ | ||
|  | 			unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2]; | ||
|  | 			unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2]; | ||
|  | 			p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1]; | ||
|  | 			p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0]; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	rcFree(firstEdge); | ||
|  | 	rcFree(edges); | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static const int VERTEX_BUCKET_COUNT = (1<<12); | ||
|  | 
 | ||
|  | inline int computeVertexHash(int x, int y, int z) | ||
|  | { | ||
|  | 	const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
 | ||
|  | 	const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
 | ||
|  | 	const unsigned int h3 = 0xcb1ab31f; | ||
|  | 	unsigned int n = h1 * x + h2 * y + h3 * z; | ||
|  | 	return (int)(n & (VERTEX_BUCKET_COUNT-1)); | ||
|  | } | ||
|  | 
 | ||
|  | static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z, | ||
|  | 								unsigned short* verts, int* firstVert, int* nextVert, int& nv) | ||
|  | { | ||
|  | 	int bucket = computeVertexHash(x, 0, z); | ||
|  | 	int i = firstVert[bucket]; | ||
|  | 	 | ||
|  | 	while (i != -1) | ||
|  | 	{ | ||
|  | 		const unsigned short* v = &verts[i*3]; | ||
|  | 		if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z) | ||
|  | 			return (unsigned short)i; | ||
|  | 		i = nextVert[i]; // next
 | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Could not find, create new.
 | ||
|  | 	i = nv; nv++; | ||
|  | 	unsigned short* v = &verts[i*3]; | ||
|  | 	v[0] = x; | ||
|  | 	v[1] = y; | ||
|  | 	v[2] = z; | ||
|  | 	nextVert[i] = firstVert[bucket]; | ||
|  | 	firstVert[bucket] = i; | ||
|  | 	 | ||
|  | 	return (unsigned short)i; | ||
|  | } | ||
|  | 
 | ||
|  | // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
 | ||
|  | inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } | ||
|  | inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } | ||
|  | 
 | ||
|  | inline int area2(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); | ||
|  | } | ||
|  | 
 | ||
|  | //	Exclusive or: true iff exactly one argument is true.
 | ||
|  | //	The arguments are negated to ensure that they are 0/1
 | ||
|  | //	values.  Then the bitwise Xor operator may apply.
 | ||
|  | //	(This idea is due to Michael Baldwin.)
 | ||
|  | inline bool xorb(bool x, bool y) | ||
|  | { | ||
|  | 	return !x ^ !y; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff c is strictly to the left of the directed
 | ||
|  | // line through a to b.
 | ||
|  | inline bool left(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) < 0; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool leftOn(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) <= 0; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool collinear(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) == 0; | ||
|  | } | ||
|  | 
 | ||
|  | //	Returns true iff ab properly intersects cd: they share
 | ||
|  | //	a point interior to both segments.  The properness of the
 | ||
|  | //	intersection is ensured by using strict leftness.
 | ||
|  | static bool intersectProp(const int* a, const int* b, const int* c, const int* d) | ||
|  | { | ||
|  | 	// Eliminate improper cases.
 | ||
|  | 	if (collinear(a,b,c) || collinear(a,b,d) || | ||
|  | 		collinear(c,d,a) || collinear(c,d,b)) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns T iff (a,b,c) are collinear and point c lies 
 | ||
|  | // on the closed segement ab.
 | ||
|  | static bool between(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	if (!collinear(a, b, c)) | ||
|  | 		return false; | ||
|  | 	// If ab not vertical, check betweenness on x; else on y.
 | ||
|  | 	if (a[0] != b[0]) | ||
|  | 		return	((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); | ||
|  | 	else | ||
|  | 		return	((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff segments ab and cd intersect, properly or improperly.
 | ||
|  | static bool intersect(const int* a, const int* b, const int* c, const int* d) | ||
|  | { | ||
|  | 	if (intersectProp(a, b, c, d)) | ||
|  | 		return true; | ||
|  | 	else if (between(a, b, c) || between(a, b, d) || | ||
|  | 			 between(c, d, a) || between(c, d, b)) | ||
|  | 		return true; | ||
|  | 	else | ||
|  | 		return false; | ||
|  | } | ||
|  | 
 | ||
|  | static bool vequal(const int* a, const int* b) | ||
|  | { | ||
|  | 	return a[0] == b[0] && a[2] == b[2]; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns T iff (v_i, v_j) is a proper internal *or* external
 | ||
|  | // diagonal of P, *ignoring edges incident to v_i and v_j*.
 | ||
|  | static bool diagonalie(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 	const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; | ||
|  | 	 | ||
|  | 	// For each edge (k,k+1) of P
 | ||
|  | 	for (int k = 0; k < n; k++) | ||
|  | 	{ | ||
|  | 		int k1 = next(k, n); | ||
|  | 		// Skip edges incident to i or j
 | ||
|  | 		if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) | ||
|  | 		{ | ||
|  | 			const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; | ||
|  | 			const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; | ||
|  | 
 | ||
|  | 			if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			if (intersect(d0, d1, p0, p1)) | ||
|  | 				return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff the diagonal (i,j) is strictly internal to the 
 | ||
|  | // polygon P in the neighborhood of the i endpoint.
 | ||
|  | static bool	inCone(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 	const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; | ||
|  | 	const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; | ||
|  | 	const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; | ||
|  | 
 | ||
|  | 	// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
 | ||
|  | 	if (leftOn(pin1, pi, pi1)) | ||
|  | 		return left(pi, pj, pin1) && left(pj, pi, pi1); | ||
|  | 	// Assume (i-1,i,i+1) not collinear.
 | ||
|  | 	// else P[i] is reflex.
 | ||
|  | 	return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns T iff (v_i, v_j) is a proper internal
 | ||
|  | // diagonal of P.
 | ||
|  | static bool diagonal(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 	const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; | ||
|  | 	 | ||
|  | 	// For each edge (k,k+1) of P
 | ||
|  | 	for (int k = 0; k < n; k++) | ||
|  | 	{ | ||
|  | 		int k1 = next(k, n); | ||
|  | 		// Skip edges incident to i or j
 | ||
|  | 		if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) | ||
|  | 		{ | ||
|  | 			const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; | ||
|  | 			const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; | ||
|  | 			 | ||
|  | 			if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			if (intersectProp(d0, d1, p0, p1)) | ||
|  | 				return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | static bool	inConeLoose(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 	const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; | ||
|  | 	const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; | ||
|  | 	const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; | ||
|  | 	 | ||
|  | 	// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
 | ||
|  | 	if (leftOn(pin1, pi, pi1)) | ||
|  | 		return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1); | ||
|  | 	// Assume (i-1,i,i+1) not collinear.
 | ||
|  | 	// else P[i] is reflex.
 | ||
|  | 	return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); | ||
|  | } | ||
|  | 
 | ||
|  | static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices) | ||
|  | { | ||
|  | 	return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int triangulate(int n, const int* verts, int* indices, int* tris) | ||
|  | { | ||
|  | 	int ntris = 0; | ||
|  | 	int* dst = tris; | ||
|  | 	 | ||
|  | 	// The last bit of the index is used to indicate if the vertex can be removed.
 | ||
|  | 	for (int i = 0; i < n; i++) | ||
|  | 	{ | ||
|  | 		int i1 = next(i, n); | ||
|  | 		int i2 = next(i1, n); | ||
|  | 		if (diagonal(i, i2, n, verts, indices)) | ||
|  | 			indices[i1] |= 0x80000000; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	while (n > 3) | ||
|  | 	{ | ||
|  | 		int minLen = -1; | ||
|  | 		int mini = -1; | ||
|  | 		for (int i = 0; i < n; i++) | ||
|  | 		{ | ||
|  | 			int i1 = next(i, n); | ||
|  | 			if (indices[i1] & 0x80000000) | ||
|  | 			{ | ||
|  | 				const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 				const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4]; | ||
|  | 				 | ||
|  | 				int dx = p2[0] - p0[0]; | ||
|  | 				int dy = p2[2] - p0[2]; | ||
|  | 				int len = dx*dx + dy*dy; | ||
|  | 				 | ||
|  | 				if (minLen < 0 || len < minLen) | ||
|  | 				{ | ||
|  | 					minLen = len; | ||
|  | 					mini = i; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (mini == -1) | ||
|  | 		{ | ||
|  | 			// We might get here because the contour has overlapping segments, like this:
 | ||
|  | 			//
 | ||
|  | 			//  A o-o=====o---o B
 | ||
|  | 			//   /  |C   D|    \.
 | ||
|  | 			//  o   o     o     o
 | ||
|  | 			//  :   :     :     :
 | ||
|  | 			// We'll try to recover by loosing up the inCone test a bit so that a diagonal
 | ||
|  | 			// like A-B or C-D can be found and we can continue.
 | ||
|  | 			minLen = -1; | ||
|  | 			mini = -1; | ||
|  | 			for (int i = 0; i < n; i++) | ||
|  | 			{ | ||
|  | 				int i1 = next(i, n); | ||
|  | 				int i2 = next(i1, n); | ||
|  | 				if (diagonalLoose(i, i2, n, verts, indices)) | ||
|  | 				{ | ||
|  | 					const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; | ||
|  | 					const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4]; | ||
|  | 					int dx = p2[0] - p0[0]; | ||
|  | 					int dy = p2[2] - p0[2]; | ||
|  | 					int len = dx*dx + dy*dy; | ||
|  | 					 | ||
|  | 					if (minLen < 0 || len < minLen) | ||
|  | 					{ | ||
|  | 						minLen = len; | ||
|  | 						mini = i; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			if (mini == -1) | ||
|  | 			{ | ||
|  | 				// The contour is messed up. This sometimes happens
 | ||
|  | 				// if the contour simplification is too aggressive.
 | ||
|  | 				return -ntris; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		int i = mini; | ||
|  | 		int i1 = next(i, n); | ||
|  | 		int i2 = next(i1, n); | ||
|  | 		 | ||
|  | 		*dst++ = indices[i] & 0x0fffffff; | ||
|  | 		*dst++ = indices[i1] & 0x0fffffff; | ||
|  | 		*dst++ = indices[i2] & 0x0fffffff; | ||
|  | 		ntris++; | ||
|  | 		 | ||
|  | 		// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
 | ||
|  | 		n--; | ||
|  | 		for (int k = i1; k < n; k++) | ||
|  | 			indices[k] = indices[k+1]; | ||
|  | 		 | ||
|  | 		if (i1 >= n) i1 = 0; | ||
|  | 		i = prev(i1,n); | ||
|  | 		// Update diagonal flags.
 | ||
|  | 		if (diagonal(prev(i, n), i1, n, verts, indices)) | ||
|  | 			indices[i] |= 0x80000000; | ||
|  | 		else | ||
|  | 			indices[i] &= 0x0fffffff; | ||
|  | 		 | ||
|  | 		if (diagonal(i, next(i1, n), n, verts, indices)) | ||
|  | 			indices[i1] |= 0x80000000; | ||
|  | 		else | ||
|  | 			indices[i1] &= 0x0fffffff; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Append the remaining triangle.
 | ||
|  | 	*dst++ = indices[0] & 0x0fffffff; | ||
|  | 	*dst++ = indices[1] & 0x0fffffff; | ||
|  | 	*dst++ = indices[2] & 0x0fffffff; | ||
|  | 	ntris++; | ||
|  | 	 | ||
|  | 	return ntris; | ||
|  | } | ||
|  | 
 | ||
|  | static int countPolyVerts(const unsigned short* p, const int nvp) | ||
|  | { | ||
|  | 	for (int i = 0; i < nvp; ++i) | ||
|  | 		if (p[i] == RC_MESH_NULL_IDX) | ||
|  | 			return i; | ||
|  | 	return nvp; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c) | ||
|  | { | ||
|  | 	return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - | ||
|  | 		   ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0; | ||
|  | } | ||
|  | 
 | ||
|  | static int getPolyMergeValue(unsigned short* pa, unsigned short* pb, | ||
|  | 							 const unsigned short* verts, int& ea, int& eb, | ||
|  | 							 const int nvp) | ||
|  | { | ||
|  | 	const int na = countPolyVerts(pa, nvp); | ||
|  | 	const int nb = countPolyVerts(pb, nvp); | ||
|  | 	 | ||
|  | 	// If the merged polygon would be too big, do not merge.
 | ||
|  | 	if (na+nb-2 > nvp) | ||
|  | 		return -1; | ||
|  | 	 | ||
|  | 	// Check if the polygons share an edge.
 | ||
|  | 	ea = -1; | ||
|  | 	eb = -1; | ||
|  | 	 | ||
|  | 	for (int i = 0; i < na; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short va0 = pa[i]; | ||
|  | 		unsigned short va1 = pa[(i+1) % na]; | ||
|  | 		if (va0 > va1) | ||
|  | 			rcSwap(va0, va1); | ||
|  | 		for (int j = 0; j < nb; ++j) | ||
|  | 		{ | ||
|  | 			unsigned short vb0 = pb[j]; | ||
|  | 			unsigned short vb1 = pb[(j+1) % nb]; | ||
|  | 			if (vb0 > vb1) | ||
|  | 				rcSwap(vb0, vb1); | ||
|  | 			if (va0 == vb0 && va1 == vb1) | ||
|  | 			{ | ||
|  | 				ea = i; | ||
|  | 				eb = j; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// No common edge, cannot merge.
 | ||
|  | 	if (ea == -1 || eb == -1) | ||
|  | 		return -1; | ||
|  | 	 | ||
|  | 	// Check to see if the merged polygon would be convex.
 | ||
|  | 	unsigned short va, vb, vc; | ||
|  | 	 | ||
|  | 	va = pa[(ea+na-1) % na]; | ||
|  | 	vb = pa[ea]; | ||
|  | 	vc = pb[(eb+2) % nb]; | ||
|  | 	if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) | ||
|  | 		return -1; | ||
|  | 	 | ||
|  | 	va = pb[(eb+nb-1) % nb]; | ||
|  | 	vb = pb[eb]; | ||
|  | 	vc = pa[(ea+2) % na]; | ||
|  | 	if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) | ||
|  | 		return -1; | ||
|  | 	 | ||
|  | 	va = pa[ea]; | ||
|  | 	vb = pa[(ea+1)%na]; | ||
|  | 	 | ||
|  | 	int dx = (int)verts[va*3+0] - (int)verts[vb*3+0]; | ||
|  | 	int dy = (int)verts[va*3+2] - (int)verts[vb*3+2]; | ||
|  | 	 | ||
|  | 	return dx*dx + dy*dy; | ||
|  | } | ||
|  | 
 | ||
|  | static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb, | ||
|  | 						   unsigned short* tmp, const int nvp) | ||
|  | { | ||
|  | 	const int na = countPolyVerts(pa, nvp); | ||
|  | 	const int nb = countPolyVerts(pb, nvp); | ||
|  | 	 | ||
|  | 	// Merge polygons.
 | ||
|  | 	memset(tmp, 0xff, sizeof(unsigned short)*nvp); | ||
|  | 	int n = 0; | ||
|  | 	// Add pa
 | ||
|  | 	for (int i = 0; i < na-1; ++i) | ||
|  | 		tmp[n++] = pa[(ea+1+i) % na]; | ||
|  | 	// Add pb
 | ||
|  | 	for (int i = 0; i < nb-1; ++i) | ||
|  | 		tmp[n++] = pb[(eb+1+i) % nb]; | ||
|  | 	 | ||
|  | 	memcpy(pa, tmp, sizeof(unsigned short)*nvp); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void pushFront(int v, int* arr, int& an) | ||
|  | { | ||
|  | 	an++; | ||
|  | 	for (int i = an-1; i > 0; --i) arr[i] = arr[i-1]; | ||
|  | 	arr[0] = v; | ||
|  | } | ||
|  | 
 | ||
|  | static void pushBack(int v, int* arr, int& an) | ||
|  | { | ||
|  | 	arr[an] = v; | ||
|  | 	an++; | ||
|  | } | ||
|  | 
 | ||
|  | static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem) | ||
|  | { | ||
|  | 	const int nvp = mesh.nvp; | ||
|  | 	 | ||
|  | 	// Count number of polygons to remove.
 | ||
|  | 	int numRemovedVerts = 0; | ||
|  | 	int numTouchedVerts = 0; | ||
|  | 	int numRemainingEdges = 0; | ||
|  | 	for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* p = &mesh.polys[i*nvp*2]; | ||
|  | 		const int nv = countPolyVerts(p, nvp); | ||
|  | 		int numRemoved = 0; | ||
|  | 		int numVerts = 0; | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 		{ | ||
|  | 			if (p[j] == rem) | ||
|  | 			{ | ||
|  | 				numTouchedVerts++; | ||
|  | 				numRemoved++; | ||
|  | 			} | ||
|  | 			numVerts++; | ||
|  | 		} | ||
|  | 		if (numRemoved) | ||
|  | 		{ | ||
|  | 			numRemovedVerts += numRemoved; | ||
|  | 			numRemainingEdges += numVerts-(numRemoved+1); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// There would be too few edges remaining to create a polygon.
 | ||
|  | 	// This can happen for example when a tip of a triangle is marked
 | ||
|  | 	// as deletion, but there are no other polys that share the vertex.
 | ||
|  | 	// In this case, the vertex should not be removed.
 | ||
|  | 	if (numRemainingEdges <= 2) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	// Find edges which share the removed vertex.
 | ||
|  | 	const int maxEdges = numTouchedVerts*2; | ||
|  | 	int nedges = 0; | ||
|  | 	rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP)); | ||
|  | 	if (!edges) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 		 | ||
|  | 	for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* p = &mesh.polys[i*nvp*2]; | ||
|  | 		const int nv = countPolyVerts(p, nvp); | ||
|  | 
 | ||
|  | 		// Collect edges which touches the removed vertex.
 | ||
|  | 		for (int j = 0, k = nv-1; j < nv; k = j++) | ||
|  | 		{ | ||
|  | 			if (p[j] == rem || p[k] == rem) | ||
|  | 			{ | ||
|  | 				// Arrange edge so that a=rem.
 | ||
|  | 				int a = p[j], b = p[k]; | ||
|  | 				if (b == rem) | ||
|  | 					rcSwap(a,b); | ||
|  | 					 | ||
|  | 				// Check if the edge exists
 | ||
|  | 				bool exists = false; | ||
|  | 				for (int m = 0; m < nedges; ++m) | ||
|  | 				{ | ||
|  | 					int* e = &edges[m*3]; | ||
|  | 					if (e[1] == b) | ||
|  | 					{ | ||
|  | 						// Exists, increment vertex share count.
 | ||
|  | 						e[2]++; | ||
|  | 						exists = true; | ||
|  | 					} | ||
|  | 				} | ||
|  | 				// Add new edge.
 | ||
|  | 				if (!exists) | ||
|  | 				{ | ||
|  | 					int* e = &edges[nedges*3]; | ||
|  | 					e[0] = a; | ||
|  | 					e[1] = b; | ||
|  | 					e[2] = 1; | ||
|  | 					nedges++; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// There should be no more than 2 open edges.
 | ||
|  | 	// This catches the case that two non-adjacent polygons
 | ||
|  | 	// share the removed vertex. In that case, do not remove the vertex.
 | ||
|  | 	int numOpenEdges = 0; | ||
|  | 	for (int i = 0; i < nedges; ++i) | ||
|  | 	{ | ||
|  | 		if (edges[i*3+2] < 2) | ||
|  | 			numOpenEdges++; | ||
|  | 	} | ||
|  | 	if (numOpenEdges > 2) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris) | ||
|  | { | ||
|  | 	const int nvp = mesh.nvp; | ||
|  | 
 | ||
|  | 	// Count number of polygons to remove.
 | ||
|  | 	int numRemovedVerts = 0; | ||
|  | 	for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* p = &mesh.polys[i*nvp*2]; | ||
|  | 		const int nv = countPolyVerts(p, nvp); | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 		{ | ||
|  | 			if (p[j] == rem) | ||
|  | 				numRemovedVerts++; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	int nedges = 0; | ||
|  | 	rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP)); | ||
|  | 	if (!edges) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int nhole = 0; | ||
|  | 	rcScopedDelete<int> hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); | ||
|  | 	if (!hole) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int nhreg = 0; | ||
|  | 	rcScopedDelete<int> hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); | ||
|  | 	if (!hreg) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int nharea = 0; | ||
|  | 	rcScopedDelete<int> harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); | ||
|  | 	if (!harea) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* p = &mesh.polys[i*nvp*2]; | ||
|  | 		const int nv = countPolyVerts(p, nvp); | ||
|  | 		bool hasRem = false; | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 			if (p[j] == rem) hasRem = true; | ||
|  | 		if (hasRem) | ||
|  | 		{ | ||
|  | 			// Collect edges which does not touch the removed vertex.
 | ||
|  | 			for (int j = 0, k = nv-1; j < nv; k = j++) | ||
|  | 			{ | ||
|  | 				if (p[j] != rem && p[k] != rem) | ||
|  | 				{ | ||
|  | 					int* e = &edges[nedges*4]; | ||
|  | 					e[0] = p[k]; | ||
|  | 					e[1] = p[j]; | ||
|  | 					e[2] = mesh.regs[i]; | ||
|  | 					e[3] = mesh.areas[i]; | ||
|  | 					nedges++; | ||
|  | 				} | ||
|  | 			} | ||
|  | 			// Remove the polygon.
 | ||
|  | 			unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2]; | ||
|  | 			if (p != p2) | ||
|  | 				memcpy(p,p2,sizeof(unsigned short)*nvp); | ||
|  | 			memset(p+nvp,0xff,sizeof(unsigned short)*nvp); | ||
|  | 			mesh.regs[i] = mesh.regs[mesh.npolys-1]; | ||
|  | 			mesh.areas[i] = mesh.areas[mesh.npolys-1]; | ||
|  | 			mesh.npolys--; | ||
|  | 			--i; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Remove vertex.
 | ||
|  | 	for (int i = (int)rem; i < mesh.nverts - 1; ++i) | ||
|  | 	{ | ||
|  | 		mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; | ||
|  | 		mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; | ||
|  | 		mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; | ||
|  | 	} | ||
|  | 	mesh.nverts--; | ||
|  | 
 | ||
|  | 	// Adjust indices to match the removed vertex layout.
 | ||
|  | 	for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 	{ | ||
|  | 		unsigned short* p = &mesh.polys[i*nvp*2]; | ||
|  | 		const int nv = countPolyVerts(p, nvp); | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 			if (p[j] > rem) p[j]--; | ||
|  | 	} | ||
|  | 	for (int i = 0; i < nedges; ++i) | ||
|  | 	{ | ||
|  | 		if (edges[i*4+0] > rem) edges[i*4+0]--; | ||
|  | 		if (edges[i*4+1] > rem) edges[i*4+1]--; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (nedges == 0) | ||
|  | 		return true; | ||
|  | 
 | ||
|  | 	// Start with one vertex, keep appending connected
 | ||
|  | 	// segments to the start and end of the hole.
 | ||
|  | 	pushBack(edges[0], hole, nhole); | ||
|  | 	pushBack(edges[2], hreg, nhreg); | ||
|  | 	pushBack(edges[3], harea, nharea); | ||
|  | 	 | ||
|  | 	while (nedges) | ||
|  | 	{ | ||
|  | 		bool match = false; | ||
|  | 		 | ||
|  | 		for (int i = 0; i < nedges; ++i) | ||
|  | 		{ | ||
|  | 			const int ea = edges[i*4+0]; | ||
|  | 			const int eb = edges[i*4+1]; | ||
|  | 			const int r = edges[i*4+2]; | ||
|  | 			const int a = edges[i*4+3]; | ||
|  | 			bool add = false; | ||
|  | 			if (hole[0] == eb) | ||
|  | 			{ | ||
|  | 				// The segment matches the beginning of the hole boundary.
 | ||
|  | 				pushFront(ea, hole, nhole); | ||
|  | 				pushFront(r, hreg, nhreg); | ||
|  | 				pushFront(a, harea, nharea); | ||
|  | 				add = true; | ||
|  | 			} | ||
|  | 			else if (hole[nhole-1] == ea) | ||
|  | 			{ | ||
|  | 				// The segment matches the end of the hole boundary.
 | ||
|  | 				pushBack(eb, hole, nhole); | ||
|  | 				pushBack(r, hreg, nhreg); | ||
|  | 				pushBack(a, harea, nharea); | ||
|  | 				add = true; | ||
|  | 			} | ||
|  | 			if (add) | ||
|  | 			{ | ||
|  | 				// The edge segment was added, remove it.
 | ||
|  | 				edges[i*4+0] = edges[(nedges-1)*4+0]; | ||
|  | 				edges[i*4+1] = edges[(nedges-1)*4+1]; | ||
|  | 				edges[i*4+2] = edges[(nedges-1)*4+2]; | ||
|  | 				edges[i*4+3] = edges[(nedges-1)*4+3]; | ||
|  | 				--nedges; | ||
|  | 				match = true; | ||
|  | 				--i; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (!match) | ||
|  | 			break; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP)); | ||
|  | 	if (!tris) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	rcScopedDelete<int> tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP)); | ||
|  | 	if (!tverts) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	rcScopedDelete<int> thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP)); | ||
|  | 	if (!thole) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Generate temp vertex array for triangulation.
 | ||
|  | 	for (int i = 0; i < nhole; ++i) | ||
|  | 	{ | ||
|  | 		const int pi = hole[i]; | ||
|  | 		tverts[i*4+0] = mesh.verts[pi*3+0]; | ||
|  | 		tverts[i*4+1] = mesh.verts[pi*3+1]; | ||
|  | 		tverts[i*4+2] = mesh.verts[pi*3+2]; | ||
|  | 		tverts[i*4+3] = 0; | ||
|  | 		thole[i] = i; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Triangulate the hole.
 | ||
|  | 	int ntris = triangulate(nhole, &tverts[0], &thole[0], tris); | ||
|  | 	if (ntris < 0) | ||
|  | 	{ | ||
|  | 		ntris = -ntris; | ||
|  | 		ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results."); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Merge the hole triangles back to polygons.
 | ||
|  | 	rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP)); | ||
|  | 	if (!polys) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	rcScopedDelete<unsigned short> pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP)); | ||
|  | 	if (!pregs) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	rcScopedDelete<unsigned char> pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP)); | ||
|  | 	if (!pareas) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	unsigned short* tmpPoly = &polys[ntris*nvp]; | ||
|  | 			 | ||
|  | 	// Build initial polygons.
 | ||
|  | 	int npolys = 0; | ||
|  | 	memset(polys, 0xff, ntris*nvp*sizeof(unsigned short)); | ||
|  | 	for (int j = 0; j < ntris; ++j) | ||
|  | 	{ | ||
|  | 		int* t = &tris[j*3]; | ||
|  | 		if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) | ||
|  | 		{ | ||
|  | 			polys[npolys*nvp+0] = (unsigned short)hole[t[0]]; | ||
|  | 			polys[npolys*nvp+1] = (unsigned short)hole[t[1]]; | ||
|  | 			polys[npolys*nvp+2] = (unsigned short)hole[t[2]]; | ||
|  | 
 | ||
|  | 			// If this polygon covers multiple region types then
 | ||
|  | 			// mark it as such
 | ||
|  | 			if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]]) | ||
|  | 				pregs[npolys] = RC_MULTIPLE_REGS; | ||
|  | 			else | ||
|  | 				pregs[npolys] = (unsigned short)hreg[t[0]]; | ||
|  | 
 | ||
|  | 			pareas[npolys] = (unsigned char)harea[t[0]]; | ||
|  | 			npolys++; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if (!npolys) | ||
|  | 		return true; | ||
|  | 	 | ||
|  | 	// Merge polygons.
 | ||
|  | 	if (nvp > 3) | ||
|  | 	{ | ||
|  | 		for (;;) | ||
|  | 		{ | ||
|  | 			// Find best polygons to merge.
 | ||
|  | 			int bestMergeVal = 0; | ||
|  | 			int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; | ||
|  | 			 | ||
|  | 			for (int j = 0; j < npolys-1; ++j) | ||
|  | 			{ | ||
|  | 				unsigned short* pj = &polys[j*nvp]; | ||
|  | 				for (int k = j+1; k < npolys; ++k) | ||
|  | 				{ | ||
|  | 					unsigned short* pk = &polys[k*nvp]; | ||
|  | 					int ea, eb; | ||
|  | 					int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); | ||
|  | 					if (v > bestMergeVal) | ||
|  | 					{ | ||
|  | 						bestMergeVal = v; | ||
|  | 						bestPa = j; | ||
|  | 						bestPb = k; | ||
|  | 						bestEa = ea; | ||
|  | 						bestEb = eb; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			 | ||
|  | 			if (bestMergeVal > 0) | ||
|  | 			{ | ||
|  | 				// Found best, merge.
 | ||
|  | 				unsigned short* pa = &polys[bestPa*nvp]; | ||
|  | 				unsigned short* pb = &polys[bestPb*nvp]; | ||
|  | 				mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); | ||
|  | 				if (pregs[bestPa] != pregs[bestPb]) | ||
|  | 					pregs[bestPa] = RC_MULTIPLE_REGS; | ||
|  | 
 | ||
|  | 				unsigned short* last = &polys[(npolys-1)*nvp]; | ||
|  | 				if (pb != last) | ||
|  | 					memcpy(pb, last, sizeof(unsigned short)*nvp); | ||
|  | 				pregs[bestPb] = pregs[npolys-1]; | ||
|  | 				pareas[bestPb] = pareas[npolys-1]; | ||
|  | 				npolys--; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// Could not merge any polygons, stop.
 | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Store polygons.
 | ||
|  | 	for (int i = 0; i < npolys; ++i) | ||
|  | 	{ | ||
|  | 		if (mesh.npolys >= maxTris) break; | ||
|  | 		unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; | ||
|  | 		memset(p,0xff,sizeof(unsigned short)*nvp*2); | ||
|  | 		for (int j = 0; j < nvp; ++j) | ||
|  | 			p[j] = polys[i*nvp+j]; | ||
|  | 		mesh.regs[mesh.npolys] = pregs[i]; | ||
|  | 		mesh.areas[mesh.npolys] = pareas[i]; | ||
|  | 		mesh.npolys++; | ||
|  | 		if (mesh.npolys > maxTris) | ||
|  | 		{ | ||
|  | 			ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris); | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper 
 | ||
|  | /// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
 | ||
|  | ///
 | ||
|  | /// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
 | ||
|  | bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh) | ||
|  | { | ||
|  | 	rcAssert(ctx); | ||
|  | 	 | ||
|  | 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH); | ||
|  | 
 | ||
|  | 	rcVcopy(mesh.bmin, cset.bmin); | ||
|  | 	rcVcopy(mesh.bmax, cset.bmax); | ||
|  | 	mesh.cs = cset.cs; | ||
|  | 	mesh.ch = cset.ch; | ||
|  | 	mesh.borderSize = cset.borderSize; | ||
|  | 	mesh.maxEdgeError = cset.maxError; | ||
|  | 	 | ||
|  | 	int maxVertices = 0; | ||
|  | 	int maxTris = 0; | ||
|  | 	int maxVertsPerCont = 0; | ||
|  | 	for (int i = 0; i < cset.nconts; ++i) | ||
|  | 	{ | ||
|  | 		// Skip null contours.
 | ||
|  | 		if (cset.conts[i].nverts < 3) continue; | ||
|  | 		maxVertices += cset.conts[i].nverts; | ||
|  | 		maxTris += cset.conts[i].nverts - 2; | ||
|  | 		maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if (maxVertices >= 0xfffe) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 		 | ||
|  | 	rcScopedDelete<unsigned char> vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP)); | ||
|  | 	if (!vflags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(vflags, 0, maxVertices); | ||
|  | 	 | ||
|  | 	mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.verts) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.polys) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.regs) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.areas) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	mesh.nverts = 0; | ||
|  | 	mesh.npolys = 0; | ||
|  | 	mesh.nvp = nvp; | ||
|  | 	mesh.maxpolys = maxTris; | ||
|  | 	 | ||
|  | 	memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); | ||
|  | 	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2); | ||
|  | 	memset(mesh.regs, 0, sizeof(unsigned short)*maxTris); | ||
|  | 	memset(mesh.areas, 0, sizeof(unsigned char)*maxTris); | ||
|  | 	 | ||
|  | 	rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP)); | ||
|  | 	if (!nextVert) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(nextVert, 0, sizeof(int)*maxVertices); | ||
|  | 	 | ||
|  | 	rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); | ||
|  | 	if (!firstVert) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) | ||
|  | 		firstVert[i] = -1; | ||
|  | 	 | ||
|  | 	rcScopedDelete<int> indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP)); | ||
|  | 	if (!indices) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP)); | ||
|  | 	if (!tris) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP)); | ||
|  | 	if (!polys) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp]; | ||
|  | 
 | ||
|  | 	for (int i = 0; i < cset.nconts; ++i) | ||
|  | 	{ | ||
|  | 		rcContour& cont = cset.conts[i]; | ||
|  | 		 | ||
|  | 		// Skip null contours.
 | ||
|  | 		if (cont.nverts < 3) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		// Triangulate contour
 | ||
|  | 		for (int j = 0; j < cont.nverts; ++j) | ||
|  | 			indices[j] = j; | ||
|  | 			 | ||
|  | 		int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); | ||
|  | 		if (ntris <= 0) | ||
|  | 		{ | ||
|  | 			// Bad triangulation, should not happen.
 | ||
|  | /*			printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]);
 | ||
|  | 			printf("\tconst float cs = %ff;\n", cset.cs); | ||
|  | 			printf("\tconst float ch = %ff;\n", cset.ch); | ||
|  | 			printf("\tconst int verts[] = {\n"); | ||
|  | 			for (int k = 0; k < cont.nverts; ++k) | ||
|  | 			{ | ||
|  | 				const int* v = &cont.verts[k*4]; | ||
|  | 				printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]); | ||
|  | 			} | ||
|  | 			printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/ | ||
|  | 			ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i); | ||
|  | 			ntris = -ntris; | ||
|  | 		} | ||
|  | 				 | ||
|  | 		// Add and merge vertices.
 | ||
|  | 		for (int j = 0; j < cont.nverts; ++j) | ||
|  | 		{ | ||
|  | 			const int* v = &cont.verts[j*4]; | ||
|  | 			indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], | ||
|  | 								   mesh.verts, firstVert, nextVert, mesh.nverts); | ||
|  | 			if (v[3] & RC_BORDER_VERTEX) | ||
|  | 			{ | ||
|  | 				// This vertex should be removed.
 | ||
|  | 				vflags[indices[j]] = 1; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Build initial polygons.
 | ||
|  | 		int npolys = 0; | ||
|  | 		memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short)); | ||
|  | 		for (int j = 0; j < ntris; ++j) | ||
|  | 		{ | ||
|  | 			int* t = &tris[j*3]; | ||
|  | 			if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) | ||
|  | 			{ | ||
|  | 				polys[npolys*nvp+0] = (unsigned short)indices[t[0]]; | ||
|  | 				polys[npolys*nvp+1] = (unsigned short)indices[t[1]]; | ||
|  | 				polys[npolys*nvp+2] = (unsigned short)indices[t[2]]; | ||
|  | 				npolys++; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		if (!npolys) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		// Merge polygons.
 | ||
|  | 		if (nvp > 3) | ||
|  | 		{ | ||
|  | 			for(;;) | ||
|  | 			{ | ||
|  | 				// Find best polygons to merge.
 | ||
|  | 				int bestMergeVal = 0; | ||
|  | 				int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; | ||
|  | 				 | ||
|  | 				for (int j = 0; j < npolys-1; ++j) | ||
|  | 				{ | ||
|  | 					unsigned short* pj = &polys[j*nvp]; | ||
|  | 					for (int k = j+1; k < npolys; ++k) | ||
|  | 					{ | ||
|  | 						unsigned short* pk = &polys[k*nvp]; | ||
|  | 						int ea, eb; | ||
|  | 						int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); | ||
|  | 						if (v > bestMergeVal) | ||
|  | 						{ | ||
|  | 							bestMergeVal = v; | ||
|  | 							bestPa = j; | ||
|  | 							bestPb = k; | ||
|  | 							bestEa = ea; | ||
|  | 							bestEb = eb; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				 | ||
|  | 				if (bestMergeVal > 0) | ||
|  | 				{ | ||
|  | 					// Found best, merge.
 | ||
|  | 					unsigned short* pa = &polys[bestPa*nvp]; | ||
|  | 					unsigned short* pb = &polys[bestPb*nvp]; | ||
|  | 					mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); | ||
|  | 					unsigned short* lastPoly = &polys[(npolys-1)*nvp]; | ||
|  | 					if (pb != lastPoly) | ||
|  | 						memcpy(pb, lastPoly, sizeof(unsigned short)*nvp); | ||
|  | 					npolys--; | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					// Could not merge any polygons, stop.
 | ||
|  | 					break; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// Store polygons.
 | ||
|  | 		for (int j = 0; j < npolys; ++j) | ||
|  | 		{ | ||
|  | 			unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; | ||
|  | 			unsigned short* q = &polys[j*nvp]; | ||
|  | 			for (int k = 0; k < nvp; ++k) | ||
|  | 				p[k] = q[k]; | ||
|  | 			mesh.regs[mesh.npolys] = cont.reg; | ||
|  | 			mesh.areas[mesh.npolys] = cont.area; | ||
|  | 			mesh.npolys++; | ||
|  | 			if (mesh.npolys > maxTris) | ||
|  | 			{ | ||
|  | 				ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	 | ||
|  | 	// Remove edge vertices.
 | ||
|  | 	for (int i = 0; i < mesh.nverts; ++i) | ||
|  | 	{ | ||
|  | 		if (vflags[i]) | ||
|  | 		{ | ||
|  | 			if (!canRemoveVertex(ctx, mesh, (unsigned short)i)) | ||
|  | 				continue; | ||
|  | 			if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris)) | ||
|  | 			{ | ||
|  | 				// Failed to remove vertex
 | ||
|  | 				ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 			// Remove vertex
 | ||
|  | 			// Note: mesh.nverts is already decremented inside removeVertex()!
 | ||
|  | 			// Fixup vertex flags
 | ||
|  | 			for (int j = i; j < mesh.nverts; ++j) | ||
|  | 				vflags[j] = vflags[j+1]; | ||
|  | 			--i; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Calculate adjacency.
 | ||
|  | 	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp)) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed."); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Find portal edges
 | ||
|  | 	if (mesh.borderSize > 0) | ||
|  | 	{ | ||
|  | 		const int w = cset.width; | ||
|  | 		const int h = cset.height; | ||
|  | 		for (int i = 0; i < mesh.npolys; ++i) | ||
|  | 		{ | ||
|  | 			unsigned short* p = &mesh.polys[i*2*nvp]; | ||
|  | 			for (int j = 0; j < nvp; ++j) | ||
|  | 			{ | ||
|  | 				if (p[j] == RC_MESH_NULL_IDX) break; | ||
|  | 				// Skip connected edges.
 | ||
|  | 				if (p[nvp+j] != RC_MESH_NULL_IDX) | ||
|  | 					continue; | ||
|  | 				int nj = j+1; | ||
|  | 				if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0; | ||
|  | 				const unsigned short* va = &mesh.verts[p[j]*3]; | ||
|  | 				const unsigned short* vb = &mesh.verts[p[nj]*3]; | ||
|  | 
 | ||
|  | 				if ((int)va[0] == 0 && (int)vb[0] == 0) | ||
|  | 					p[nvp+j] = 0x8000 | 0; | ||
|  | 				else if ((int)va[2] == h && (int)vb[2] == h) | ||
|  | 					p[nvp+j] = 0x8000 | 1; | ||
|  | 				else if ((int)va[0] == w && (int)vb[0] == w) | ||
|  | 					p[nvp+j] = 0x8000 | 2; | ||
|  | 				else if ((int)va[2] == 0 && (int)vb[2] == 0) | ||
|  | 					p[nvp+j] = 0x8000 | 3; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Just allocate the mesh flags array. The user is resposible to fill it.
 | ||
|  | 	mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.flags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys); | ||
|  | 	 | ||
|  | 	if (mesh.nverts > 0xffff) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); | ||
|  | 	} | ||
|  | 	if (mesh.npolys > 0xffff) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | /// @see rcAllocPolyMesh, rcPolyMesh
 | ||
|  | bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh) | ||
|  | { | ||
|  | 	rcAssert(ctx); | ||
|  | 	 | ||
|  | 	if (!nmeshes || !meshes) | ||
|  | 		return true; | ||
|  | 
 | ||
|  | 	rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH); | ||
|  | 
 | ||
|  | 	mesh.nvp = meshes[0]->nvp; | ||
|  | 	mesh.cs = meshes[0]->cs; | ||
|  | 	mesh.ch = meshes[0]->ch; | ||
|  | 	rcVcopy(mesh.bmin, meshes[0]->bmin); | ||
|  | 	rcVcopy(mesh.bmax, meshes[0]->bmax); | ||
|  | 
 | ||
|  | 	int maxVerts = 0; | ||
|  | 	int maxPolys = 0; | ||
|  | 	int maxVertsPerMesh = 0; | ||
|  | 	for (int i = 0; i < nmeshes; ++i) | ||
|  | 	{ | ||
|  | 		rcVmin(mesh.bmin, meshes[i]->bmin); | ||
|  | 		rcVmax(mesh.bmax, meshes[i]->bmax); | ||
|  | 		maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts); | ||
|  | 		maxVerts += meshes[i]->nverts; | ||
|  | 		maxPolys += meshes[i]->npolys; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	mesh.nverts = 0; | ||
|  | 	mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.verts) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	mesh.npolys = 0; | ||
|  | 	mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.polys) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp); | ||
|  | 
 | ||
|  | 	mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.regs) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys); | ||
|  | 
 | ||
|  | 	mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.areas) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys); | ||
|  | 
 | ||
|  | 	mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); | ||
|  | 	if (!mesh.flags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys); | ||
|  | 	 | ||
|  | 	rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP)); | ||
|  | 	if (!nextVert) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(nextVert, 0, sizeof(int)*maxVerts); | ||
|  | 	 | ||
|  | 	rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); | ||
|  | 	if (!firstVert) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) | ||
|  | 		firstVert[i] = -1; | ||
|  | 
 | ||
|  | 	rcScopedDelete<unsigned short> vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM)); | ||
|  | 	if (!vremap) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh); | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nmeshes; ++i) | ||
|  | 	{ | ||
|  | 		const rcPolyMesh* pmesh = meshes[i]; | ||
|  | 		 | ||
|  | 		const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f); | ||
|  | 		const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f); | ||
|  | 		 | ||
|  | 		bool isMinX = (ox == 0); | ||
|  | 		bool isMinZ = (oz == 0); | ||
|  | 		bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0; | ||
|  | 		bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0; | ||
|  | 		bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ); | ||
|  | 
 | ||
|  | 		for (int j = 0; j < pmesh->nverts; ++j) | ||
|  | 		{ | ||
|  | 			unsigned short* v = &pmesh->verts[j*3]; | ||
|  | 			vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz, | ||
|  | 								  mesh.verts, firstVert, nextVert, mesh.nverts); | ||
|  | 		} | ||
|  | 		 | ||
|  | 		for (int j = 0; j < pmesh->npolys; ++j) | ||
|  | 		{ | ||
|  | 			unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp]; | ||
|  | 			unsigned short* src = &pmesh->polys[j*2*mesh.nvp]; | ||
|  | 			mesh.regs[mesh.npolys] = pmesh->regs[j]; | ||
|  | 			mesh.areas[mesh.npolys] = pmesh->areas[j]; | ||
|  | 			mesh.flags[mesh.npolys] = pmesh->flags[j]; | ||
|  | 			mesh.npolys++; | ||
|  | 			for (int k = 0; k < mesh.nvp; ++k) | ||
|  | 			{ | ||
|  | 				if (src[k] == RC_MESH_NULL_IDX) break; | ||
|  | 				tgt[k] = vremap[src[k]]; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			if (isOnBorder) | ||
|  | 			{ | ||
|  | 				for (int k = mesh.nvp; k < mesh.nvp * 2; ++k) | ||
|  | 				{ | ||
|  | 					if (src[k] & 0x8000 && src[k] != 0xffff) | ||
|  | 					{ | ||
|  | 						unsigned short dir = src[k] & 0xf; | ||
|  | 						switch (dir) | ||
|  | 						{ | ||
|  | 							case 0: // Portal x-
 | ||
|  | 								if (isMinX) | ||
|  | 									tgt[k] = src[k]; | ||
|  | 								break; | ||
|  | 							case 1: // Portal z+
 | ||
|  | 								if (isMaxZ) | ||
|  | 									tgt[k] = src[k]; | ||
|  | 								break; | ||
|  | 							case 2: // Portal x+
 | ||
|  | 								if (isMaxX) | ||
|  | 									tgt[k] = src[k]; | ||
|  | 								break; | ||
|  | 							case 3: // Portal z-
 | ||
|  | 								if (isMinZ) | ||
|  | 									tgt[k] = src[k]; | ||
|  | 								break; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Calculate adjacency.
 | ||
|  | 	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp)) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed."); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (mesh.nverts > 0xffff) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); | ||
|  | 	} | ||
|  | 	if (mesh.npolys > 0xffff) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst) | ||
|  | { | ||
|  | 	rcAssert(ctx); | ||
|  | 	 | ||
|  | 	// Destination must be empty.
 | ||
|  | 	rcAssert(dst.verts == 0); | ||
|  | 	rcAssert(dst.polys == 0); | ||
|  | 	rcAssert(dst.regs == 0); | ||
|  | 	rcAssert(dst.areas == 0); | ||
|  | 	rcAssert(dst.flags == 0); | ||
|  | 	 | ||
|  | 	dst.nverts = src.nverts; | ||
|  | 	dst.npolys = src.npolys; | ||
|  | 	dst.maxpolys = src.npolys; | ||
|  | 	dst.nvp = src.nvp; | ||
|  | 	rcVcopy(dst.bmin, src.bmin); | ||
|  | 	rcVcopy(dst.bmax, src.bmax); | ||
|  | 	dst.cs = src.cs; | ||
|  | 	dst.ch = src.ch; | ||
|  | 	dst.borderSize = src.borderSize; | ||
|  | 	dst.maxEdgeError = src.maxEdgeError; | ||
|  | 	 | ||
|  | 	dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM); | ||
|  | 	if (!dst.verts) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3); | ||
|  | 	 | ||
|  | 	dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM); | ||
|  | 	if (!dst.polys) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp); | ||
|  | 	 | ||
|  | 	dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); | ||
|  | 	if (!dst.regs) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys); | ||
|  | 	 | ||
|  | 	dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM); | ||
|  | 	if (!dst.areas) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys); | ||
|  | 	 | ||
|  | 	dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); | ||
|  | 	if (!dst.flags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys); | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } |