forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1465 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1465 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided 'as-is', without any express or implied
							 | 
						||
| 
								 | 
							
								// warranty.  In no event will the authors be held liable for any damages
							 | 
						||
| 
								 | 
							
								// arising from the use of this software.
							 | 
						||
| 
								 | 
							
								// Permission is granted to anyone to use this software for any purpose,
							 | 
						||
| 
								 | 
							
								// including commercial applications, and to alter it and redistribute it
							 | 
						||
| 
								 | 
							
								// freely, subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								// 1. The origin of this software must not be misrepresented; you must not
							 | 
						||
| 
								 | 
							
								//    claim that you wrote the original software. If you use this software
							 | 
						||
| 
								 | 
							
								//    in a product, an acknowledgment in the product documentation would be
							 | 
						||
| 
								 | 
							
								//    appreciated but is not required.
							 | 
						||
| 
								 | 
							
								// 2. Altered source versions must be plainly marked as such, and must not be
							 | 
						||
| 
								 | 
							
								//    misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								// 3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <float.h>
							 | 
						||
| 
								 | 
							
								#define _USE_MATH_DEFINES
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								#include <stdlib.h>
							 | 
						||
| 
								 | 
							
								#include <stdio.h>
							 | 
						||
| 
								 | 
							
								#include "Recast.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAlloc.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAssert.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const unsigned RC_UNSET_HEIGHT = 0xffff;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcHeightPatch
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
							 | 
						||
| 
								 | 
							
									inline ~rcHeightPatch() { rcFree(data); }
							 | 
						||
| 
								 | 
							
									unsigned short* data;
							 | 
						||
| 
								 | 
							
									int xmin, ymin, width, height;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float vdot2(const float* a, const float* b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return a[0]*b[0] + a[2]*b[2];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float vdistSq2(const float* p, const float* q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const float dx = q[0] - p[0];
							 | 
						||
| 
								 | 
							
									const float dy = q[2] - p[2];
							 | 
						||
| 
								 | 
							
									return dx*dx + dy*dy;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float vdist2(const float* p, const float* q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return sqrtf(vdistSq2(p,q));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float vcross2(const float* p1, const float* p2, const float* p3)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const float u1 = p2[0] - p1[0];
							 | 
						||
| 
								 | 
							
									const float v1 = p2[2] - p1[2];
							 | 
						||
| 
								 | 
							
									const float u2 = p3[0] - p1[0];
							 | 
						||
| 
								 | 
							
									const float v2 = p3[2] - p1[2];
							 | 
						||
| 
								 | 
							
									return u1 * v2 - v1 * u2;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool circumCircle(const float* p1, const float* p2, const float* p3,
							 | 
						||
| 
								 | 
							
														 float* c, float& r)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									static const float EPS = 1e-6f;
							 | 
						||
| 
								 | 
							
									// Calculate the circle relative to p1, to avoid some precision issues.
							 | 
						||
| 
								 | 
							
									const float v1[3] = {0,0,0};
							 | 
						||
| 
								 | 
							
									float v2[3], v3[3];
							 | 
						||
| 
								 | 
							
									rcVsub(v2, p2,p1);
							 | 
						||
| 
								 | 
							
									rcVsub(v3, p3,p1);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const float cp = vcross2(v1, v2, v3);
							 | 
						||
| 
								 | 
							
									if (fabsf(cp) > EPS)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const float v1Sq = vdot2(v1,v1);
							 | 
						||
| 
								 | 
							
										const float v2Sq = vdot2(v2,v2);
							 | 
						||
| 
								 | 
							
										const float v3Sq = vdot2(v3,v3);
							 | 
						||
| 
								 | 
							
										c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
							 | 
						||
| 
								 | 
							
										c[1] = 0;
							 | 
						||
| 
								 | 
							
										c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
							 | 
						||
| 
								 | 
							
										r = vdist2(c, v1);
							 | 
						||
| 
								 | 
							
										rcVadd(c, c, p1);
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcVcopy(c, p1);
							 | 
						||
| 
								 | 
							
									r = 0;
							 | 
						||
| 
								 | 
							
									return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distPtTri(const float* p, const float* a, const float* b, const float* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float v0[3], v1[3], v2[3];
							 | 
						||
| 
								 | 
							
									rcVsub(v0, c,a);
							 | 
						||
| 
								 | 
							
									rcVsub(v1, b,a);
							 | 
						||
| 
								 | 
							
									rcVsub(v2, p,a);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const float dot00 = vdot2(v0, v0);
							 | 
						||
| 
								 | 
							
									const float dot01 = vdot2(v0, v1);
							 | 
						||
| 
								 | 
							
									const float dot02 = vdot2(v0, v2);
							 | 
						||
| 
								 | 
							
									const float dot11 = vdot2(v1, v1);
							 | 
						||
| 
								 | 
							
									const float dot12 = vdot2(v1, v2);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Compute barycentric coordinates
							 | 
						||
| 
								 | 
							
									const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
							 | 
						||
| 
								 | 
							
									const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
							 | 
						||
| 
								 | 
							
									float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If point lies inside the triangle, return interpolated y-coord.
							 | 
						||
| 
								 | 
							
									static const float EPS = 1e-4f;
							 | 
						||
| 
								 | 
							
									if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const float y = a[1] + v0[1]*u + v1[1]*v;
							 | 
						||
| 
								 | 
							
										return fabsf(y-p[1]);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return FLT_MAX;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distancePtSeg(const float* pt, const float* p, const float* q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float pqx = q[0] - p[0];
							 | 
						||
| 
								 | 
							
									float pqy = q[1] - p[1];
							 | 
						||
| 
								 | 
							
									float pqz = q[2] - p[2];
							 | 
						||
| 
								 | 
							
									float dx = pt[0] - p[0];
							 | 
						||
| 
								 | 
							
									float dy = pt[1] - p[1];
							 | 
						||
| 
								 | 
							
									float dz = pt[2] - p[2];
							 | 
						||
| 
								 | 
							
									float d = pqx*pqx + pqy*pqy + pqz*pqz;
							 | 
						||
| 
								 | 
							
									float t = pqx*dx + pqy*dy + pqz*dz;
							 | 
						||
| 
								 | 
							
									if (d > 0)
							 | 
						||
| 
								 | 
							
										t /= d;
							 | 
						||
| 
								 | 
							
									if (t < 0)
							 | 
						||
| 
								 | 
							
										t = 0;
							 | 
						||
| 
								 | 
							
									else if (t > 1)
							 | 
						||
| 
								 | 
							
										t = 1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dx = p[0] + t*pqx - pt[0];
							 | 
						||
| 
								 | 
							
									dy = p[1] + t*pqy - pt[1];
							 | 
						||
| 
								 | 
							
									dz = p[2] + t*pqz - pt[2];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dy*dy + dz*dz;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distancePtSeg2d(const float* pt, const float* p, const float* q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float pqx = q[0] - p[0];
							 | 
						||
| 
								 | 
							
									float pqz = q[2] - p[2];
							 | 
						||
| 
								 | 
							
									float dx = pt[0] - p[0];
							 | 
						||
| 
								 | 
							
									float dz = pt[2] - p[2];
							 | 
						||
| 
								 | 
							
									float d = pqx*pqx + pqz*pqz;
							 | 
						||
| 
								 | 
							
									float t = pqx*dx + pqz*dz;
							 | 
						||
| 
								 | 
							
									if (d > 0)
							 | 
						||
| 
								 | 
							
										t /= d;
							 | 
						||
| 
								 | 
							
									if (t < 0)
							 | 
						||
| 
								 | 
							
										t = 0;
							 | 
						||
| 
								 | 
							
									else if (t > 1)
							 | 
						||
| 
								 | 
							
										t = 1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dx = p[0] + t*pqx - pt[0];
							 | 
						||
| 
								 | 
							
									dz = p[2] + t*pqz - pt[2];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dz*dz;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float dmin = FLT_MAX;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < ntris; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const float* va = &verts[tris[i*4+0]*3];
							 | 
						||
| 
								 | 
							
										const float* vb = &verts[tris[i*4+1]*3];
							 | 
						||
| 
								 | 
							
										const float* vc = &verts[tris[i*4+2]*3];
							 | 
						||
| 
								 | 
							
										float d = distPtTri(p, va,vb,vc);
							 | 
						||
| 
								 | 
							
										if (d < dmin)
							 | 
						||
| 
								 | 
							
											dmin = d;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (dmin == FLT_MAX) return -1;
							 | 
						||
| 
								 | 
							
									return dmin;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distToPoly(int nvert, const float* verts, const float* p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									float dmin = FLT_MAX;
							 | 
						||
| 
								 | 
							
									int i, j, c = 0;
							 | 
						||
| 
								 | 
							
									for (i = 0, j = nvert-1; i < nvert; j = i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const float* vi = &verts[i*3];
							 | 
						||
| 
								 | 
							
										const float* vj = &verts[j*3];
							 | 
						||
| 
								 | 
							
										if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
							 | 
						||
| 
								 | 
							
											(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
							 | 
						||
| 
								 | 
							
											c = !c;
							 | 
						||
| 
								 | 
							
										dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return c ? -dmin : dmin;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned short getHeight(const float fx, const float fy, const float fz,
							 | 
						||
| 
								 | 
							
																const float /*cs*/, const float ics, const float ch,
							 | 
						||
| 
								 | 
							
																const int radius, const rcHeightPatch& hp)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int ix = (int)floorf(fx*ics + 0.01f);
							 | 
						||
| 
								 | 
							
									int iz = (int)floorf(fz*ics + 0.01f);
							 | 
						||
| 
								 | 
							
									ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
							 | 
						||
| 
								 | 
							
									iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
							 | 
						||
| 
								 | 
							
									unsigned short h = hp.data[ix+iz*hp.width];
							 | 
						||
| 
								 | 
							
									if (h == RC_UNSET_HEIGHT)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Special case when data might be bad.
							 | 
						||
| 
								 | 
							
										// Walk adjacent cells in a spiral up to 'radius', and look
							 | 
						||
| 
								 | 
							
										// for a pixel which has a valid height.
							 | 
						||
| 
								 | 
							
										int x = 1, z = 0, dx = 1, dz = 0;
							 | 
						||
| 
								 | 
							
										int maxSize = radius * 2 + 1;
							 | 
						||
| 
								 | 
							
										int maxIter = maxSize * maxSize - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										int nextRingIterStart = 8;
							 | 
						||
| 
								 | 
							
										int nextRingIters = 16;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float dmin = FLT_MAX;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < maxIter; i++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int nx = ix + x;
							 | 
						||
| 
								 | 
							
											const int nz = iz + z;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const unsigned short nh = hp.data[nx + nz*hp.width];
							 | 
						||
| 
								 | 
							
												if (nh != RC_UNSET_HEIGHT)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													const float d = fabsf(nh*ch - fy);
							 | 
						||
| 
								 | 
							
													if (d < dmin)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														h = nh;
							 | 
						||
| 
								 | 
							
														dmin = d;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// We are searching in a grid which looks approximately like this:
							 | 
						||
| 
								 | 
							
											//  __________
							 | 
						||
| 
								 | 
							
											// |2 ______ 2|
							 | 
						||
| 
								 | 
							
											// | |1 __ 1| |
							 | 
						||
| 
								 | 
							
											// | | |__| | |
							 | 
						||
| 
								 | 
							
											// | |______| |
							 | 
						||
| 
								 | 
							
											// |__________|
							 | 
						||
| 
								 | 
							
											// We want to find the best height as close to the center cell as possible. This means that
							 | 
						||
| 
								 | 
							
											// if we find a height in one of the neighbor cells to the center, we don't want to
							 | 
						||
| 
								 | 
							
											// expand further out than the 8 neighbors - we want to limit our search to the closest
							 | 
						||
| 
								 | 
							
											// of these "rings", but the best height in the ring.
							 | 
						||
| 
								 | 
							
											// For example, the center is just 1 cell. We checked that at the entrance to the function.
							 | 
						||
| 
								 | 
							
											// The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
							 | 
						||
| 
								 | 
							
											// The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
							 | 
						||
| 
								 | 
							
											// can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
							 | 
						||
| 
								 | 
							
											// Here we detect if we are about to enter the next ring, and if we are and we have found
							 | 
						||
| 
								 | 
							
											// a height, we abort the search.
							 | 
						||
| 
								 | 
							
											if (i + 1 == nextRingIterStart)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (h != RC_UNSET_HEIGHT)
							 | 
						||
| 
								 | 
							
													break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												nextRingIterStart += nextRingIters;
							 | 
						||
| 
								 | 
							
												nextRingIters += 8;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												int tmp = dx;
							 | 
						||
| 
								 | 
							
												dx = -dz;
							 | 
						||
| 
								 | 
							
												dz = tmp;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											x += dx;
							 | 
						||
| 
								 | 
							
											z += dz;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return h;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								enum EdgeValues
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									EV_UNDEF = -1,
							 | 
						||
| 
								 | 
							
									EV_HULL = -2,
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int findEdge(const int* edges, int nedges, int s, int t)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int* e = &edges[i*4];
							 | 
						||
| 
								 | 
							
										if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
							 | 
						||
| 
								 | 
							
											return i;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return EV_UNDEF;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (nedges >= maxEdges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
							 | 
						||
| 
								 | 
							
										return EV_UNDEF;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add edge if not already in the triangulation.
							 | 
						||
| 
								 | 
							
									int e = findEdge(edges, nedges, s, t);
							 | 
						||
| 
								 | 
							
									if (e == EV_UNDEF)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int* edge = &edges[nedges*4];
							 | 
						||
| 
								 | 
							
										edge[0] = s;
							 | 
						||
| 
								 | 
							
										edge[1] = t;
							 | 
						||
| 
								 | 
							
										edge[2] = l;
							 | 
						||
| 
								 | 
							
										edge[3] = r;
							 | 
						||
| 
								 | 
							
										return nedges++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										return EV_UNDEF;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void updateLeftFace(int* e, int s, int t, int f)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
										e[2] = f;
							 | 
						||
| 
								 | 
							
									else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
										e[3] = f;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const float a1 = vcross2(a, b, d);
							 | 
						||
| 
								 | 
							
									const float a2 = vcross2(a, b, c);
							 | 
						||
| 
								 | 
							
									if (a1*a2 < 0.0f)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										float a3 = vcross2(c, d, a);
							 | 
						||
| 
								 | 
							
										float a4 = a3 + a2 - a1;
							 | 
						||
| 
								 | 
							
										if (a3 * a4 < 0.0f)
							 | 
						||
| 
								 | 
							
											return 1;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int s0 = edges[i*4+0];
							 | 
						||
| 
								 | 
							
										const int t0 = edges[i*4+1];
							 | 
						||
| 
								 | 
							
										// Same or connected edges do not overlap.
							 | 
						||
| 
								 | 
							
										if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
							 | 
						||
| 
								 | 
							
											return true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									static const float EPS = 1e-5f;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int* edge = &edges[e*4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Cache s and t.
							 | 
						||
| 
								 | 
							
									int s,t;
							 | 
						||
| 
								 | 
							
									if (edge[2] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										s = edge[0];
							 | 
						||
| 
								 | 
							
										t = edge[1];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else if (edge[3] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										s = edge[1];
							 | 
						||
| 
								 | 
							
										t = edge[0];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
									    // Edge already completed.
							 | 
						||
| 
								 | 
							
									    return;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
									// Find best point on left of edge.
							 | 
						||
| 
								 | 
							
									int pt = npts;
							 | 
						||
| 
								 | 
							
									float c[3] = {0,0,0};
							 | 
						||
| 
								 | 
							
									float r = -1;
							 | 
						||
| 
								 | 
							
									for (int u = 0; u < npts; ++u)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (u == s || u == t) continue;
							 | 
						||
| 
								 | 
							
										if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (r < 0)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The circle is not updated yet, do it now.
							 | 
						||
| 
								 | 
							
												pt = u;
							 | 
						||
| 
								 | 
							
												circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											const float d = vdist2(c, &pts[u*3]);
							 | 
						||
| 
								 | 
							
											const float tol = 0.001f;
							 | 
						||
| 
								 | 
							
											if (d > r*(1+tol))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Outside current circumcircle, skip.
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (d < r*(1-tol))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Inside safe circumcircle, update circle.
							 | 
						||
| 
								 | 
							
												pt = u;
							 | 
						||
| 
								 | 
							
												circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Inside epsilon circum circle, do extra tests to make sure the edge is valid.
							 | 
						||
| 
								 | 
							
												// s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
							 | 
						||
| 
								 | 
							
												if (overlapEdges(pts, edges, nedges, s,u))
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												if (overlapEdges(pts, edges, nedges, t,u))
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												// Edge is valid.
							 | 
						||
| 
								 | 
							
												pt = u;
							 | 
						||
| 
								 | 
							
												circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add new triangle or update edge info if s-t is on hull.
							 | 
						||
| 
								 | 
							
									if (pt < npts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Update face information of edge being completed.
							 | 
						||
| 
								 | 
							
										updateLeftFace(&edges[e*4], s, t, nfaces);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Add new edge or update face info of old edge.
							 | 
						||
| 
								 | 
							
										e = findEdge(edges, nedges, pt, s);
							 | 
						||
| 
								 | 
							
										if (e == EV_UNDEF)
							 | 
						||
| 
								 | 
							
										    addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										    updateLeftFace(&edges[e*4], pt, s, nfaces);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Add new edge or update face info of old edge.
							 | 
						||
| 
								 | 
							
										e = findEdge(edges, nedges, t, pt);
							 | 
						||
| 
								 | 
							
										if (e == EV_UNDEF)
							 | 
						||
| 
								 | 
							
										    addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										    updateLeftFace(&edges[e*4], t, pt, nfaces);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										nfaces++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										updateLeftFace(&edges[e*4], s, t, EV_HULL);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
							 | 
						||
| 
								 | 
							
														 const int nhull, const int* hull,
							 | 
						||
| 
								 | 
							
														 rcIntArray& tris, rcIntArray& edges)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int nfaces = 0;
							 | 
						||
| 
								 | 
							
									int nedges = 0;
							 | 
						||
| 
								 | 
							
									const int maxEdges = npts*10;
							 | 
						||
| 
								 | 
							
									edges.resize(maxEdges*4);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0, j = nhull-1; i < nhull; j=i++)
							 | 
						||
| 
								 | 
							
										addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int currentEdge = 0;
							 | 
						||
| 
								 | 
							
									while (currentEdge < nedges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (edges[currentEdge*4+2] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
											completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
							 | 
						||
| 
								 | 
							
										if (edges[currentEdge*4+3] == EV_UNDEF)
							 | 
						||
| 
								 | 
							
											completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
							 | 
						||
| 
								 | 
							
										currentEdge++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Create tris
							 | 
						||
| 
								 | 
							
									tris.resize(nfaces*4);
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nfaces*4; ++i)
							 | 
						||
| 
								 | 
							
										tris[i] = -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int* e = &edges[i*4];
							 | 
						||
| 
								 | 
							
										if (e[3] >= 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Left face
							 | 
						||
| 
								 | 
							
											int* t = &tris[e[3]*4];
							 | 
						||
| 
								 | 
							
											if (t[0] == -1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												t[0] = e[0];
							 | 
						||
| 
								 | 
							
												t[1] = e[1];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (t[0] == e[1])
							 | 
						||
| 
								 | 
							
												t[2] = e[0];
							 | 
						||
| 
								 | 
							
											else if (t[1] == e[0])
							 | 
						||
| 
								 | 
							
												t[2] = e[1];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (e[2] >= 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Right
							 | 
						||
| 
								 | 
							
											int* t = &tris[e[2]*4];
							 | 
						||
| 
								 | 
							
											if (t[0] == -1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												t[0] = e[1];
							 | 
						||
| 
								 | 
							
												t[1] = e[0];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (t[0] == e[0])
							 | 
						||
| 
								 | 
							
												t[2] = e[1];
							 | 
						||
| 
								 | 
							
											else if (t[1] == e[1])
							 | 
						||
| 
								 | 
							
												t[2] = e[0];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < tris.size()/4; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int* t = &tris[i*4];
							 | 
						||
| 
								 | 
							
										if (t[0] == -1 || t[1] == -1 || t[2] == -1)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
							 | 
						||
| 
								 | 
							
											t[0] = tris[tris.size()-4];
							 | 
						||
| 
								 | 
							
											t[1] = tris[tris.size()-3];
							 | 
						||
| 
								 | 
							
											t[2] = tris[tris.size()-2];
							 | 
						||
| 
								 | 
							
											t[3] = tris[tris.size()-1];
							 | 
						||
| 
								 | 
							
											tris.resize(tris.size()-4);
							 | 
						||
| 
								 | 
							
											--i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Calculate minimum extend of the polygon.
							 | 
						||
| 
								 | 
							
								static float polyMinExtent(const float* verts, const int nverts)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float minDist = FLT_MAX;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nverts; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int ni = (i+1) % nverts;
							 | 
						||
| 
								 | 
							
										const float* p1 = &verts[i*3];
							 | 
						||
| 
								 | 
							
										const float* p2 = &verts[ni*3];
							 | 
						||
| 
								 | 
							
										float maxEdgeDist = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nverts; j++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (j == i || j == ni) continue;
							 | 
						||
| 
								 | 
							
											float d = distancePtSeg2d(&verts[j*3], p1,p2);
							 | 
						||
| 
								 | 
							
											maxEdgeDist = rcMax(maxEdgeDist, d);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										minDist = rcMin(minDist, maxEdgeDist);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return rcSqrt(minDist);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
							 | 
						||
| 
								 | 
							
								inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
							 | 
						||
| 
								 | 
							
								inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int start = 0, left = 1, right = nhull-1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Start from an ear with shortest perimeter.
							 | 
						||
| 
								 | 
							
									// This tends to favor well formed triangles as starting point.
							 | 
						||
| 
								 | 
							
									float dmin = FLT_MAX;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nhull; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
							 | 
						||
| 
								 | 
							
										int pi = prev(i, nhull);
							 | 
						||
| 
								 | 
							
										int ni = next(i, nhull);
							 | 
						||
| 
								 | 
							
										const float* pv = &verts[hull[pi]*3];
							 | 
						||
| 
								 | 
							
										const float* cv = &verts[hull[i]*3];
							 | 
						||
| 
								 | 
							
										const float* nv = &verts[hull[ni]*3];
							 | 
						||
| 
								 | 
							
										const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
							 | 
						||
| 
								 | 
							
										if (d < dmin)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											start = i;
							 | 
						||
| 
								 | 
							
											left = ni;
							 | 
						||
| 
								 | 
							
											right = pi;
							 | 
						||
| 
								 | 
							
											dmin = d;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add first triangle
							 | 
						||
| 
								 | 
							
									tris.push(hull[start]);
							 | 
						||
| 
								 | 
							
									tris.push(hull[left]);
							 | 
						||
| 
								 | 
							
									tris.push(hull[right]);
							 | 
						||
| 
								 | 
							
									tris.push(0);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Triangulate the polygon by moving left or right,
							 | 
						||
| 
								 | 
							
									// depending on which triangle has shorter perimeter.
							 | 
						||
| 
								 | 
							
									// This heuristic was chose emprically, since it seems
							 | 
						||
| 
								 | 
							
									// handle tesselated straight edges well.
							 | 
						||
| 
								 | 
							
									while (next(left, nhull) != right)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Check to see if se should advance left or right.
							 | 
						||
| 
								 | 
							
										int nleft = next(left, nhull);
							 | 
						||
| 
								 | 
							
										int nright = prev(right, nhull);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										const float* cvleft = &verts[hull[left]*3];
							 | 
						||
| 
								 | 
							
										const float* nvleft = &verts[hull[nleft]*3];
							 | 
						||
| 
								 | 
							
										const float* cvright = &verts[hull[right]*3];
							 | 
						||
| 
								 | 
							
										const float* nvright = &verts[hull[nright]*3];
							 | 
						||
| 
								 | 
							
										const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
							 | 
						||
| 
								 | 
							
										const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (dleft < dright)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											tris.push(hull[left]);
							 | 
						||
| 
								 | 
							
											tris.push(hull[nleft]);
							 | 
						||
| 
								 | 
							
											tris.push(hull[right]);
							 | 
						||
| 
								 | 
							
											tris.push(0);
							 | 
						||
| 
								 | 
							
											left = nleft;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											tris.push(hull[left]);
							 | 
						||
| 
								 | 
							
											tris.push(hull[nright]);
							 | 
						||
| 
								 | 
							
											tris.push(hull[right]);
							 | 
						||
| 
								 | 
							
											tris.push(0);
							 | 
						||
| 
								 | 
							
											right = nright;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float getJitterX(const int i)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline float getJitterY(const int i)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
							 | 
						||
| 
								 | 
							
															const float sampleDist, const float sampleMaxError,
							 | 
						||
| 
								 | 
							
															const int heightSearchRadius, const rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
															const rcHeightPatch& hp, float* verts, int& nverts,
							 | 
						||
| 
								 | 
							
															rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									static const int MAX_VERTS = 127;
							 | 
						||
| 
								 | 
							
									static const int MAX_TRIS = 255;	// Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
							 | 
						||
| 
								 | 
							
									static const int MAX_VERTS_PER_EDGE = 32;
							 | 
						||
| 
								 | 
							
									float edge[(MAX_VERTS_PER_EDGE+1)*3];
							 | 
						||
| 
								 | 
							
									int hull[MAX_VERTS];
							 | 
						||
| 
								 | 
							
									int nhull = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									nverts = nin;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nin; ++i)
							 | 
						||
| 
								 | 
							
										rcVcopy(&verts[i*3], &in[i*3]);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									edges.clear();
							 | 
						||
| 
								 | 
							
									tris.clear();
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const float cs = chf.cs;
							 | 
						||
| 
								 | 
							
									const float ics = 1.0f/cs;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Calculate minimum extents of the polygon based on input data.
							 | 
						||
| 
								 | 
							
									float minExtent = polyMinExtent(verts, nverts);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Tessellate outlines.
							 | 
						||
| 
								 | 
							
									// This is done in separate pass in order to ensure
							 | 
						||
| 
								 | 
							
									// seamless height values across the ply boundaries.
							 | 
						||
| 
								 | 
							
									if (sampleDist > 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int i = 0, j = nin-1; i < nin; j=i++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const float* vj = &in[j*3];
							 | 
						||
| 
								 | 
							
											const float* vi = &in[i*3];
							 | 
						||
| 
								 | 
							
											bool swapped = false;
							 | 
						||
| 
								 | 
							
											// Make sure the segments are always handled in same order
							 | 
						||
| 
								 | 
							
											// using lexological sort or else there will be seams.
							 | 
						||
| 
								 | 
							
											if (fabsf(vj[0]-vi[0]) < 1e-6f)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (vj[2] > vi[2])
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcSwap(vj,vi);
							 | 
						||
| 
								 | 
							
													swapped = true;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (vj[0] > vi[0])
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcSwap(vj,vi);
							 | 
						||
| 
								 | 
							
													swapped = true;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Create samples along the edge.
							 | 
						||
| 
								 | 
							
											float dx = vi[0] - vj[0];
							 | 
						||
| 
								 | 
							
											float dy = vi[1] - vj[1];
							 | 
						||
| 
								 | 
							
											float dz = vi[2] - vj[2];
							 | 
						||
| 
								 | 
							
											float d = sqrtf(dx*dx + dz*dz);
							 | 
						||
| 
								 | 
							
											int nn = 1 + (int)floorf(d/sampleDist);
							 | 
						||
| 
								 | 
							
											if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
							 | 
						||
| 
								 | 
							
											if (nverts+nn >= MAX_VERTS)
							 | 
						||
| 
								 | 
							
												nn = MAX_VERTS-1-nverts;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											for (int k = 0; k <= nn; ++k)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												float u = (float)k/(float)nn;
							 | 
						||
| 
								 | 
							
												float* pos = &edge[k*3];
							 | 
						||
| 
								 | 
							
												pos[0] = vj[0] + dx*u;
							 | 
						||
| 
								 | 
							
												pos[1] = vj[1] + dy*u;
							 | 
						||
| 
								 | 
							
												pos[2] = vj[2] + dz*u;
							 | 
						||
| 
								 | 
							
												pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Simplify samples.
							 | 
						||
| 
								 | 
							
											int idx[MAX_VERTS_PER_EDGE] = {0,nn};
							 | 
						||
| 
								 | 
							
											int nidx = 2;
							 | 
						||
| 
								 | 
							
											for (int k = 0; k < nidx-1; )
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int a = idx[k];
							 | 
						||
| 
								 | 
							
												const int b = idx[k+1];
							 | 
						||
| 
								 | 
							
												const float* va = &edge[a*3];
							 | 
						||
| 
								 | 
							
												const float* vb = &edge[b*3];
							 | 
						||
| 
								 | 
							
												// Find maximum deviation along the segment.
							 | 
						||
| 
								 | 
							
												float maxd = 0;
							 | 
						||
| 
								 | 
							
												int maxi = -1;
							 | 
						||
| 
								 | 
							
												for (int m = a+1; m < b; ++m)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													float dev = distancePtSeg(&edge[m*3],va,vb);
							 | 
						||
| 
								 | 
							
													if (dev > maxd)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														maxd = dev;
							 | 
						||
| 
								 | 
							
														maxi = m;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												// If the max deviation is larger than accepted error,
							 | 
						||
| 
								 | 
							
												// add new point, else continue to next segment.
							 | 
						||
| 
								 | 
							
												if (maxi != -1 && maxd > rcSqr(sampleMaxError))
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													for (int m = nidx; m > k; --m)
							 | 
						||
| 
								 | 
							
														idx[m] = idx[m-1];
							 | 
						||
| 
								 | 
							
													idx[k+1] = maxi;
							 | 
						||
| 
								 | 
							
													nidx++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												else
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													++k;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											hull[nhull++] = j;
							 | 
						||
| 
								 | 
							
											// Add new vertices.
							 | 
						||
| 
								 | 
							
											if (swapped)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												for (int k = nidx-2; k > 0; --k)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
							 | 
						||
| 
								 | 
							
													hull[nhull++] = nverts;
							 | 
						||
| 
								 | 
							
													nverts++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												for (int k = 1; k < nidx-1; ++k)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
							 | 
						||
| 
								 | 
							
													hull[nhull++] = nverts;
							 | 
						||
| 
								 | 
							
													nverts++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
							 | 
						||
| 
								 | 
							
									if (minExtent < sampleDist*2)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										triangulateHull(nverts, verts, nhull, hull, nin, tris);
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Tessellate the base mesh.
							 | 
						||
| 
								 | 
							
									// We're using the triangulateHull instead of delaunayHull as it tends to
							 | 
						||
| 
								 | 
							
									// create a bit better triangulation for long thin triangles when there
							 | 
						||
| 
								 | 
							
									// are no internal points.
							 | 
						||
| 
								 | 
							
									triangulateHull(nverts, verts, nhull, hull, nin, tris);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (tris.size() == 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Could not triangulate the poly, make sure there is some valid data there.
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (sampleDist > 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Create sample locations in a grid.
							 | 
						||
| 
								 | 
							
										float bmin[3], bmax[3];
							 | 
						||
| 
								 | 
							
										rcVcopy(bmin, in);
							 | 
						||
| 
								 | 
							
										rcVcopy(bmax, in);
							 | 
						||
| 
								 | 
							
										for (int i = 1; i < nin; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											rcVmin(bmin, &in[i*3]);
							 | 
						||
| 
								 | 
							
											rcVmax(bmax, &in[i*3]);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										int x0 = (int)floorf(bmin[0]/sampleDist);
							 | 
						||
| 
								 | 
							
										int x1 = (int)ceilf(bmax[0]/sampleDist);
							 | 
						||
| 
								 | 
							
										int z0 = (int)floorf(bmin[2]/sampleDist);
							 | 
						||
| 
								 | 
							
										int z1 = (int)ceilf(bmax[2]/sampleDist);
							 | 
						||
| 
								 | 
							
										samples.clear();
							 | 
						||
| 
								 | 
							
										for (int z = z0; z < z1; ++z)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											for (int x = x0; x < x1; ++x)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												float pt[3];
							 | 
						||
| 
								 | 
							
												pt[0] = x*sampleDist;
							 | 
						||
| 
								 | 
							
												pt[1] = (bmax[1]+bmin[1])*0.5f;
							 | 
						||
| 
								 | 
							
												pt[2] = z*sampleDist;
							 | 
						||
| 
								 | 
							
												// Make sure the samples are not too close to the edges.
							 | 
						||
| 
								 | 
							
												if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
							 | 
						||
| 
								 | 
							
												samples.push(x);
							 | 
						||
| 
								 | 
							
												samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
							 | 
						||
| 
								 | 
							
												samples.push(z);
							 | 
						||
| 
								 | 
							
												samples.push(0); // Not added
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Add the samples starting from the one that has the most
							 | 
						||
| 
								 | 
							
										// error. The procedure stops when all samples are added
							 | 
						||
| 
								 | 
							
										// or when the max error is within treshold.
							 | 
						||
| 
								 | 
							
										const int nsamples = samples.size()/4;
							 | 
						||
| 
								 | 
							
										for (int iter = 0; iter < nsamples; ++iter)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (nverts >= MAX_VERTS)
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Find sample with most error.
							 | 
						||
| 
								 | 
							
											float bestpt[3] = {0,0,0};
							 | 
						||
| 
								 | 
							
											float bestd = 0;
							 | 
						||
| 
								 | 
							
											int besti = -1;
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < nsamples; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int* s = &samples[i*4];
							 | 
						||
| 
								 | 
							
												if (s[3]) continue; // skip added.
							 | 
						||
| 
								 | 
							
												float pt[3];
							 | 
						||
| 
								 | 
							
												// The sample location is jittered to get rid of some bad triangulations
							 | 
						||
| 
								 | 
							
												// which are cause by symmetrical data from the grid structure.
							 | 
						||
| 
								 | 
							
												pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
							 | 
						||
| 
								 | 
							
												pt[1] = s[1]*chf.ch;
							 | 
						||
| 
								 | 
							
												pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
							 | 
						||
| 
								 | 
							
												float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
							 | 
						||
| 
								 | 
							
												if (d < 0) continue; // did not hit the mesh.
							 | 
						||
| 
								 | 
							
												if (d > bestd)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													bestd = d;
							 | 
						||
| 
								 | 
							
													besti = i;
							 | 
						||
| 
								 | 
							
													rcVcopy(bestpt,pt);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// If the max error is within accepted threshold, stop tesselating.
							 | 
						||
| 
								 | 
							
											if (bestd <= sampleMaxError || besti == -1)
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											// Mark sample as added.
							 | 
						||
| 
								 | 
							
											samples[besti*4+3] = 1;
							 | 
						||
| 
								 | 
							
											// Add the new sample point.
							 | 
						||
| 
								 | 
							
											rcVcopy(&verts[nverts*3],bestpt);
							 | 
						||
| 
								 | 
							
											nverts++;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Create new triangulation.
							 | 
						||
| 
								 | 
							
											// TODO: Incremental add instead of full rebuild.
							 | 
						||
| 
								 | 
							
											edges.clear();
							 | 
						||
| 
								 | 
							
											tris.clear();
							 | 
						||
| 
								 | 
							
											delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int ntris = tris.size()/4;
							 | 
						||
| 
								 | 
							
									if (ntris > MAX_TRIS)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										tris.resize(MAX_TRIS*4);
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
																	const unsigned short* poly, const int npoly,
							 | 
						||
| 
								 | 
							
																	const unsigned short* verts, const int bs,
							 | 
						||
| 
								 | 
							
																	rcHeightPatch& hp, rcIntArray& array)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Note: Reads to the compact heightfield are offset by border size (bs)
							 | 
						||
| 
								 | 
							
									// since border size offset is already removed from the polymesh vertices.
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									static const int offset[9*2] =
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
							 | 
						||
| 
								 | 
							
									};
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find cell closest to a poly vertex
							 | 
						||
| 
								 | 
							
									int startCellX = 0, startCellY = 0, startSpanIndex = -1;
							 | 
						||
| 
								 | 
							
									int dmin = RC_UNSET_HEIGHT;
							 | 
						||
| 
								 | 
							
									for (int j = 0; j < npoly && dmin > 0; ++j)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int k = 0; k < 9 && dmin > 0; ++k)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
							 | 
						||
| 
								 | 
							
											const int ay = (int)verts[poly[j]*3+1];
							 | 
						||
| 
								 | 
							
											const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
							 | 
						||
| 
								 | 
							
											if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
							 | 
						||
| 
								 | 
							
												az < hp.ymin || az >= hp.ymin+hp.height)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
							 | 
						||
| 
								 | 
							
											for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
												int d = rcAbs(ay - (int)s.y);
							 | 
						||
| 
								 | 
							
												if (d < dmin)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													startCellX = ax;
							 | 
						||
| 
								 | 
							
													startCellY = az;
							 | 
						||
| 
								 | 
							
													startSpanIndex = i;
							 | 
						||
| 
								 | 
							
													dmin = d;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcAssert(startSpanIndex != -1);
							 | 
						||
| 
								 | 
							
									// Find center of the polygon
							 | 
						||
| 
								 | 
							
									int pcx = 0, pcy = 0;
							 | 
						||
| 
								 | 
							
									for (int j = 0; j < npoly; ++j)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										pcx += (int)verts[poly[j]*3+0];
							 | 
						||
| 
								 | 
							
										pcy += (int)verts[poly[j]*3+2];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									pcx /= npoly;
							 | 
						||
| 
								 | 
							
									pcy /= npoly;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Use seeds array as a stack for DFS
							 | 
						||
| 
								 | 
							
									array.clear();
							 | 
						||
| 
								 | 
							
									array.push(startCellX);
							 | 
						||
| 
								 | 
							
									array.push(startCellY);
							 | 
						||
| 
								 | 
							
									array.push(startSpanIndex);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int dirs[] = { 0, 1, 2, 3 };
							 | 
						||
| 
								 | 
							
									memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
							 | 
						||
| 
								 | 
							
									// DFS to move to the center. Note that we need a DFS here and can not just move
							 | 
						||
| 
								 | 
							
									// directly towards the center without recording intermediate nodes, even though the polygons
							 | 
						||
| 
								 | 
							
									// are convex. In very rare we can get stuck due to contour simplification if we do not
							 | 
						||
| 
								 | 
							
									// record nodes.
							 | 
						||
| 
								 | 
							
									int cx = -1, cy = -1, ci = -1;
							 | 
						||
| 
								 | 
							
									while (true)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (array.size() < 3)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										ci = array.pop();
							 | 
						||
| 
								 | 
							
										cy = array.pop();
							 | 
						||
| 
								 | 
							
										cx = array.pop();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if (cx == pcx && cy == pcy)
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// If we are already at the correct X-position, prefer direction
							 | 
						||
| 
								 | 
							
										// directly towards the center in the Y-axis; otherwise prefer
							 | 
						||
| 
								 | 
							
										// direction in the X-axis
							 | 
						||
| 
								 | 
							
										int directDir;
							 | 
						||
| 
								 | 
							
										if (cx == pcx)
							 | 
						||
| 
								 | 
							
											directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Push the direct dir last so we start with this on next iteration
							 | 
						||
| 
								 | 
							
										rcSwap(dirs[directDir], dirs[3]);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const rcCompactSpan& cs = chf.spans[ci];
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < 4; i++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int dir = dirs[i];
							 | 
						||
| 
								 | 
							
											if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											int newX = cx + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
											int newY = cy + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											int hpx = newX - hp.xmin;
							 | 
						||
| 
								 | 
							
											int hpy = newY - hp.ymin;
							 | 
						||
| 
								 | 
							
											if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if (hp.data[hpx+hpy*hp.width] != 0)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											hp.data[hpx+hpy*hp.width] = 1;
							 | 
						||
| 
								 | 
							
											array.push(newX);
							 | 
						||
| 
								 | 
							
											array.push(newY);
							 | 
						||
| 
								 | 
							
											array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										rcSwap(dirs[directDir], dirs[3]);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									array.clear();
							 | 
						||
| 
								 | 
							
									// getHeightData seeds are given in coordinates with borders
							 | 
						||
| 
								 | 
							
									array.push(cx+bs);
							 | 
						||
| 
								 | 
							
									array.push(cy+bs);
							 | 
						||
| 
								 | 
							
									array.push(ci);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
							 | 
						||
| 
								 | 
							
									const rcCompactSpan& cs = chf.spans[ci];
							 | 
						||
| 
								 | 
							
									hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void push3(rcIntArray& queue, int v1, int v2, int v3)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									queue.resize(queue.size() + 3);
							 | 
						||
| 
								 | 
							
									queue[queue.size() - 3] = v1;
							 | 
						||
| 
								 | 
							
									queue[queue.size() - 2] = v2;
							 | 
						||
| 
								 | 
							
									queue[queue.size() - 1] = v3;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
														  const unsigned short* poly, const int npoly,
							 | 
						||
| 
								 | 
							
														  const unsigned short* verts, const int bs,
							 | 
						||
| 
								 | 
							
														  rcHeightPatch& hp, rcIntArray& queue,
							 | 
						||
| 
								 | 
							
														  int region)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Note: Reads to the compact heightfield are offset by border size (bs)
							 | 
						||
| 
								 | 
							
									// since border size offset is already removed from the polymesh vertices.
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									queue.clear();
							 | 
						||
| 
								 | 
							
									// Set all heights to RC_UNSET_HEIGHT.
							 | 
						||
| 
								 | 
							
									memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									bool empty = true;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// We cannot sample from this poly if it was created from polys
							 | 
						||
| 
								 | 
							
									// of different regions. If it was then it could potentially be overlapping
							 | 
						||
| 
								 | 
							
									// with polys of that region and the heights sampled here could be wrong.
							 | 
						||
| 
								 | 
							
									if (region != RC_MULTIPLE_REGS)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Copy the height from the same region, and mark region borders
							 | 
						||
| 
								 | 
							
										// as seed points to fill the rest.
							 | 
						||
| 
								 | 
							
										for (int hy = 0; hy < hp.height; hy++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int y = hp.ymin + hy + bs;
							 | 
						||
| 
								 | 
							
											for (int hx = 0; hx < hp.width; hx++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												int x = hp.xmin + hx + bs;
							 | 
						||
| 
								 | 
							
												const rcCompactCell& c = chf.cells[x + y*chf.width];
							 | 
						||
| 
								 | 
							
												for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
													if (s.reg == region)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// Store height
							 | 
						||
| 
								 | 
							
														hp.data[hx + hy*hp.width] = s.y;
							 | 
						||
| 
								 | 
							
														empty = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// If any of the neighbours is not in same region,
							 | 
						||
| 
								 | 
							
														// add the current location as flood fill start
							 | 
						||
| 
								 | 
							
														bool border = false;
							 | 
						||
| 
								 | 
							
														for (int dir = 0; dir < 4; ++dir)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
															{
							 | 
						||
| 
								 | 
							
																const int ax = x + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
																const int ay = y + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
																const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
							 | 
						||
| 
								 | 
							
																const rcCompactSpan& as = chf.spans[ai];
							 | 
						||
| 
								 | 
							
																if (as.reg != region)
							 | 
						||
| 
								 | 
							
																{
							 | 
						||
| 
								 | 
							
																	border = true;
							 | 
						||
| 
								 | 
							
																	break;
							 | 
						||
| 
								 | 
							
																}
							 | 
						||
| 
								 | 
							
															}
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
														if (border)
							 | 
						||
| 
								 | 
							
															push3(queue, x, y, i);
							 | 
						||
| 
								 | 
							
														break;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// if the polygon does not contain any points from the current region (rare, but happens)
							 | 
						||
| 
								 | 
							
									// or if it could potentially be overlapping polygons of the same region,
							 | 
						||
| 
								 | 
							
									// then use the center as the seed point.
							 | 
						||
| 
								 | 
							
									if (empty)
							 | 
						||
| 
								 | 
							
										seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									static const int RETRACT_SIZE = 256;
							 | 
						||
| 
								 | 
							
									int head = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// We assume the seed is centered in the polygon, so a BFS to collect
							 | 
						||
| 
								 | 
							
									// height data will ensure we do not move onto overlapping polygons and
							 | 
						||
| 
								 | 
							
									// sample wrong heights.
							 | 
						||
| 
								 | 
							
									while (head*3 < queue.size())
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int cx = queue[head*3+0];
							 | 
						||
| 
								 | 
							
										int cy = queue[head*3+1];
							 | 
						||
| 
								 | 
							
										int ci = queue[head*3+2];
							 | 
						||
| 
								 | 
							
										head++;
							 | 
						||
| 
								 | 
							
										if (head >= RETRACT_SIZE)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											head = 0;
							 | 
						||
| 
								 | 
							
											if (queue.size() > RETRACT_SIZE*3)
							 | 
						||
| 
								 | 
							
												memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
							 | 
						||
| 
								 | 
							
											queue.resize(queue.size()-RETRACT_SIZE*3);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										const rcCompactSpan& cs = chf.spans[ci];
							 | 
						||
| 
								 | 
							
										for (int dir = 0; dir < 4; ++dir)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											const int ax = cx + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
											const int ay = cy + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
											const int hx = ax - hp.xmin - bs;
							 | 
						||
| 
								 | 
							
											const int hy = ay - hp.ymin - bs;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
							 | 
						||
| 
								 | 
							
											const rcCompactSpan& as = chf.spans[ai];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											hp.data[hx + hy*hp.width] = as.y;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											push3(queue, ax, ay, ai);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned char getEdgeFlags(const float* va, const float* vb,
							 | 
						||
| 
								 | 
							
																  const float* vpoly, const int npoly)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
							 | 
						||
| 
								 | 
							
									// Figure out if edge (va,vb) is part of the polygon boundary.
							 | 
						||
| 
								 | 
							
									static const float thrSqr = rcSqr(0.001f);
							 | 
						||
| 
								 | 
							
									for (int i = 0, j = npoly-1; i < npoly; j=i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
							 | 
						||
| 
								 | 
							
											distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
							 | 
						||
| 
								 | 
							
											return 1;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
							 | 
						||
| 
								 | 
							
																 const float* vpoly, const int npoly)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned char flags = 0;
							 | 
						||
| 
								 | 
							
									flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
							 | 
						||
| 
								 | 
							
									flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
							 | 
						||
| 
								 | 
							
									flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
							 | 
						||
| 
								 | 
							
									return flags;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// @par
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// See the #rcConfig documentation for more information on the configuration parameters.
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
							 | 
						||
| 
								 | 
							
								bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
														   const float sampleDist, const float sampleMaxError,
							 | 
						||
| 
								 | 
							
														   rcPolyMeshDetail& dmesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (mesh.nverts == 0 || mesh.npolys == 0)
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int nvp = mesh.nvp;
							 | 
						||
| 
								 | 
							
									const float cs = mesh.cs;
							 | 
						||
| 
								 | 
							
									const float ch = mesh.ch;
							 | 
						||
| 
								 | 
							
									const float* orig = mesh.bmin;
							 | 
						||
| 
								 | 
							
									const int borderSize = mesh.borderSize;
							 | 
						||
| 
								 | 
							
									const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcIntArray edges(64);
							 | 
						||
| 
								 | 
							
									rcIntArray tris(512);
							 | 
						||
| 
								 | 
							
									rcIntArray arr(512);
							 | 
						||
| 
								 | 
							
									rcIntArray samples(512);
							 | 
						||
| 
								 | 
							
									float verts[256*3];
							 | 
						||
| 
								 | 
							
									rcHeightPatch hp;
							 | 
						||
| 
								 | 
							
									int nPolyVerts = 0;
							 | 
						||
| 
								 | 
							
									int maxhw = 0, maxhh = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!bounds)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!poly)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find max size for a polygon area.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										int& xmin = bounds[i*4+0];
							 | 
						||
| 
								 | 
							
										int& xmax = bounds[i*4+1];
							 | 
						||
| 
								 | 
							
										int& ymin = bounds[i*4+2];
							 | 
						||
| 
								 | 
							
										int& ymax = bounds[i*4+3];
							 | 
						||
| 
								 | 
							
										xmin = chf.width;
							 | 
						||
| 
								 | 
							
										xmax = 0;
							 | 
						||
| 
								 | 
							
										ymin = chf.height;
							 | 
						||
| 
								 | 
							
										ymax = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nvp; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if(p[j] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											const unsigned short* v = &mesh.verts[p[j]*3];
							 | 
						||
| 
								 | 
							
											xmin = rcMin(xmin, (int)v[0]);
							 | 
						||
| 
								 | 
							
											xmax = rcMax(xmax, (int)v[0]);
							 | 
						||
| 
								 | 
							
											ymin = rcMin(ymin, (int)v[2]);
							 | 
						||
| 
								 | 
							
											ymax = rcMax(ymax, (int)v[2]);
							 | 
						||
| 
								 | 
							
											nPolyVerts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										xmin = rcMax(0,xmin-1);
							 | 
						||
| 
								 | 
							
										xmax = rcMin(chf.width,xmax+1);
							 | 
						||
| 
								 | 
							
										ymin = rcMax(0,ymin-1);
							 | 
						||
| 
								 | 
							
										ymax = rcMin(chf.height,ymax+1);
							 | 
						||
| 
								 | 
							
										if (xmin >= xmax || ymin >= ymax) continue;
							 | 
						||
| 
								 | 
							
										maxhw = rcMax(maxhw, xmax-xmin);
							 | 
						||
| 
								 | 
							
										maxhh = rcMax(maxhh, ymax-ymin);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
							 | 
						||
| 
								 | 
							
									if (!hp.data)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dmesh.nmeshes = mesh.npolys;
							 | 
						||
| 
								 | 
							
									dmesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									dmesh.ntris = 0;
							 | 
						||
| 
								 | 
							
									dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dmesh.meshes)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int vcap = nPolyVerts+nPolyVerts/2;
							 | 
						||
| 
								 | 
							
									int tcap = vcap*2;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dmesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dmesh.verts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									dmesh.ntris = 0;
							 | 
						||
| 
								 | 
							
									dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dmesh.tris)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store polygon vertices for processing.
							 | 
						||
| 
								 | 
							
										int npoly = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nvp; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if(p[j] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											const unsigned short* v = &mesh.verts[p[j]*3];
							 | 
						||
| 
								 | 
							
											poly[j*3+0] = v[0]*cs;
							 | 
						||
| 
								 | 
							
											poly[j*3+1] = v[1]*ch;
							 | 
						||
| 
								 | 
							
											poly[j*3+2] = v[2]*cs;
							 | 
						||
| 
								 | 
							
											npoly++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Get the height data from the area of the polygon.
							 | 
						||
| 
								 | 
							
										hp.xmin = bounds[i*4+0];
							 | 
						||
| 
								 | 
							
										hp.ymin = bounds[i*4+2];
							 | 
						||
| 
								 | 
							
										hp.width = bounds[i*4+1]-bounds[i*4+0];
							 | 
						||
| 
								 | 
							
										hp.height = bounds[i*4+3]-bounds[i*4+2];
							 | 
						||
| 
								 | 
							
										getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Build detail mesh.
							 | 
						||
| 
								 | 
							
										int nverts = 0;
							 | 
						||
| 
								 | 
							
										if (!buildPolyDetail(ctx, poly, npoly,
							 | 
						||
| 
								 | 
							
															 sampleDist, sampleMaxError,
							 | 
						||
| 
								 | 
							
															 heightSearchRadius, chf, hp,
							 | 
						||
| 
								 | 
							
															 verts, nverts, tris,
							 | 
						||
| 
								 | 
							
															 edges, samples))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Move detail verts to world space.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nverts; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											verts[j*3+0] += orig[0];
							 | 
						||
| 
								 | 
							
											verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
							 | 
						||
| 
								 | 
							
											verts[j*3+2] += orig[2];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										// Offset poly too, will be used to flag checking.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < npoly; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											poly[j*3+0] += orig[0];
							 | 
						||
| 
								 | 
							
											poly[j*3+1] += orig[1];
							 | 
						||
| 
								 | 
							
											poly[j*3+2] += orig[2];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store detail submesh.
							 | 
						||
| 
								 | 
							
										const int ntris = tris.size()/4;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
							 | 
						||
| 
								 | 
							
										dmesh.meshes[i*4+1] = (unsigned int)nverts;
							 | 
						||
| 
								 | 
							
										dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
							 | 
						||
| 
								 | 
							
										dmesh.meshes[i*4+3] = (unsigned int)ntris;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store vertices, allocate more memory if necessary.
							 | 
						||
| 
								 | 
							
										if (dmesh.nverts+nverts > vcap)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											while (dmesh.nverts+nverts > vcap)
							 | 
						||
| 
								 | 
							
												vcap += 256;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
											if (!newv)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (dmesh.nverts)
							 | 
						||
| 
								 | 
							
												memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
							 | 
						||
| 
								 | 
							
											rcFree(dmesh.verts);
							 | 
						||
| 
								 | 
							
											dmesh.verts = newv;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nverts; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
							 | 
						||
| 
								 | 
							
											dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
							 | 
						||
| 
								 | 
							
											dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
							 | 
						||
| 
								 | 
							
											dmesh.nverts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store triangles, allocate more memory if necessary.
							 | 
						||
| 
								 | 
							
										if (dmesh.ntris+ntris > tcap)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											while (dmesh.ntris+ntris > tcap)
							 | 
						||
| 
								 | 
							
												tcap += 256;
							 | 
						||
| 
								 | 
							
											unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
											if (!newt)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (dmesh.ntris)
							 | 
						||
| 
								 | 
							
												memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
							 | 
						||
| 
								 | 
							
											rcFree(dmesh.tris);
							 | 
						||
| 
								 | 
							
											dmesh.tris = newt;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < ntris; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int* t = &tris[j*4];
							 | 
						||
| 
								 | 
							
											dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
							 | 
						||
| 
								 | 
							
											dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
							 | 
						||
| 
								 | 
							
											dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
							 | 
						||
| 
								 | 
							
											dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
							 | 
						||
| 
								 | 
							
											dmesh.ntris++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
							 | 
						||
| 
								 | 
							
								bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxVerts = 0;
							 | 
						||
| 
								 | 
							
									int maxTris = 0;
							 | 
						||
| 
								 | 
							
									int maxMeshes = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nmeshes; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (!meshes[i]) continue;
							 | 
						||
| 
								 | 
							
										maxVerts += meshes[i]->nverts;
							 | 
						||
| 
								 | 
							
										maxTris += meshes[i]->ntris;
							 | 
						||
| 
								 | 
							
										maxMeshes += meshes[i]->nmeshes;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.nmeshes = 0;
							 | 
						||
| 
								 | 
							
									mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.meshes)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.ntris = 0;
							 | 
						||
| 
								 | 
							
									mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.tris)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.verts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge datas.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nmeshes; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										rcPolyMeshDetail* dm = meshes[i];
							 | 
						||
| 
								 | 
							
										if (!dm) continue;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < dm->nmeshes; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
							 | 
						||
| 
								 | 
							
											unsigned int* src = &dm->meshes[j*4];
							 | 
						||
| 
								 | 
							
											dst[0] = (unsigned int)mesh.nverts+src[0];
							 | 
						||
| 
								 | 
							
											dst[1] = src[1];
							 | 
						||
| 
								 | 
							
											dst[2] = (unsigned int)mesh.ntris+src[2];
							 | 
						||
| 
								 | 
							
											dst[3] = src[3];
							 | 
						||
| 
								 | 
							
											mesh.nmeshes++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int k = 0; k < dm->nverts; ++k)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
							 | 
						||
| 
								 | 
							
											mesh.nverts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										for (int k = 0; k < dm->ntris; ++k)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
							 | 
						||
| 
								 | 
							
											mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
							 | 
						||
| 
								 | 
							
											mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
							 | 
						||
| 
								 | 
							
											mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
							 | 
						||
| 
								 | 
							
											mesh.ntris++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 |