forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			829 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			829 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | ///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
 | ||
|  | ///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
 | ||
|  | ///with reproduction case
 | ||
|  | //#define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
 | ||
|  | //#define ZERO_MARGIN
 | ||
|  | 
 | ||
|  | #include "btConvexConvexAlgorithm.h"
 | ||
|  | 
 | ||
|  | //#include <stdio.h>
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
 | ||
|  | #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btTriangleShape.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
 | ||
|  | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btBoxShape.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btManifoldResult.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
 | ||
|  | 
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | ||
|  | 
 | ||
|  | ///////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | static SIMD_FORCE_INLINE void segmentsClosestPoints( | ||
|  | 	btVector3& ptsVector, | ||
|  | 	btVector3& offsetA, | ||
|  | 	btVector3& offsetB, | ||
|  | 	btScalar& tA, btScalar& tB, | ||
|  | 	const btVector3& translation, | ||
|  | 	const btVector3& dirA, btScalar hlenA, | ||
|  | 	const btVector3& dirB, btScalar hlenB ) | ||
|  | { | ||
|  | 	// compute the parameters of the closest points on each line segment
 | ||
|  | 
 | ||
|  | 	btScalar dirA_dot_dirB = btDot(dirA,dirB); | ||
|  | 	btScalar dirA_dot_trans = btDot(dirA,translation); | ||
|  | 	btScalar dirB_dot_trans = btDot(dirB,translation); | ||
|  | 
 | ||
|  | 	btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB; | ||
|  | 
 | ||
|  | 	if ( denom == 0.0f ) { | ||
|  | 		tA = 0.0f; | ||
|  | 	} else { | ||
|  | 		tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom; | ||
|  | 		if ( tA < -hlenA ) | ||
|  | 			tA = -hlenA; | ||
|  | 		else if ( tA > hlenA ) | ||
|  | 			tA = hlenA; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	tB = tA * dirA_dot_dirB - dirB_dot_trans; | ||
|  | 
 | ||
|  | 	if ( tB < -hlenB ) { | ||
|  | 		tB = -hlenB; | ||
|  | 		tA = tB * dirA_dot_dirB + dirA_dot_trans; | ||
|  | 
 | ||
|  | 		if ( tA < -hlenA ) | ||
|  | 			tA = -hlenA; | ||
|  | 		else if ( tA > hlenA ) | ||
|  | 			tA = hlenA; | ||
|  | 	} else if ( tB > hlenB ) { | ||
|  | 		tB = hlenB; | ||
|  | 		tA = tB * dirA_dot_dirB + dirA_dot_trans; | ||
|  | 
 | ||
|  | 		if ( tA < -hlenA ) | ||
|  | 			tA = -hlenA; | ||
|  | 		else if ( tA > hlenA ) | ||
|  | 			tA = hlenA; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// compute the closest points relative to segment centers.
 | ||
|  | 
 | ||
|  | 	offsetA = dirA * tA; | ||
|  | 	offsetB = dirB * tB; | ||
|  | 
 | ||
|  | 	ptsVector = translation - offsetA + offsetB; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance( | ||
|  | 	btVector3& normalOnB, | ||
|  | 	btVector3& pointOnB, | ||
|  | 	btScalar capsuleLengthA, | ||
|  | 	btScalar	capsuleRadiusA, | ||
|  | 	btScalar capsuleLengthB, | ||
|  | 	btScalar	capsuleRadiusB, | ||
|  | 	int capsuleAxisA, | ||
|  | 	int capsuleAxisB, | ||
|  | 	const btTransform& transformA, | ||
|  | 	const btTransform& transformB, | ||
|  | 	btScalar distanceThreshold ) | ||
|  | { | ||
|  | 	btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA); | ||
|  | 	btVector3 translationA = transformA.getOrigin(); | ||
|  | 	btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB); | ||
|  | 	btVector3 translationB = transformB.getOrigin(); | ||
|  | 
 | ||
|  | 	// translation between centers
 | ||
|  | 
 | ||
|  | 	btVector3 translation = translationB - translationA; | ||
|  | 
 | ||
|  | 	// compute the closest points of the capsule line segments
 | ||
|  | 
 | ||
|  | 	btVector3 ptsVector;           // the vector between the closest points
 | ||
|  | 	 | ||
|  | 	btVector3 offsetA, offsetB;    // offsets from segment centers to their closest points
 | ||
|  | 	btScalar tA, tB;              // parameters on line segment
 | ||
|  | 
 | ||
|  | 	segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation, | ||
|  | 						   directionA, capsuleLengthA, directionB, capsuleLengthB ); | ||
|  | 
 | ||
|  | 	btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB; | ||
|  | 
 | ||
|  | 	if ( distance > distanceThreshold ) | ||
|  | 		return distance; | ||
|  | 
 | ||
|  | 	btScalar lenSqr = ptsVector.length2(); | ||
|  | 	if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON)) | ||
|  | 	{ | ||
|  | 		//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
 | ||
|  | 		btVector3 q; | ||
|  | 		btPlaneSpace1(directionA,normalOnB,q); | ||
|  | 	} else | ||
|  | 	{ | ||
|  | 		// compute the contact normal
 | ||
|  | 		normalOnB = ptsVector*-btRecipSqrt(lenSqr); | ||
|  | 	} | ||
|  | 	pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB; | ||
|  | 
 | ||
|  | 	return distance; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver) | ||
|  | { | ||
|  | 	m_numPerturbationIterations = 0; | ||
|  | 	m_minimumPointsPerturbationThreshold = 3; | ||
|  | 	m_pdSolver = pdSolver; | ||
|  | } | ||
|  | 
 | ||
|  | btConvexConvexAlgorithm::CreateFunc::~CreateFunc()  | ||
|  | {  | ||
|  | } | ||
|  | 
 | ||
|  | btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold) | ||
|  | : btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap), | ||
|  | m_pdSolver(pdSolver), | ||
|  | m_ownManifold (false), | ||
|  | m_manifoldPtr(mf), | ||
|  | m_lowLevelOfDetail(false), | ||
|  | #ifdef USE_SEPDISTANCE_UTIL2
 | ||
|  | m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(), | ||
|  | 			  (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()), | ||
|  | #endif
 | ||
|  | m_numPerturbationIterations(numPerturbationIterations), | ||
|  | m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold) | ||
|  | { | ||
|  | 	(void)body0Wrap; | ||
|  | 	(void)body1Wrap; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btConvexConvexAlgorithm::~btConvexConvexAlgorithm() | ||
|  | { | ||
|  | 	if (m_ownManifold) | ||
|  | 	{ | ||
|  | 		if (m_manifoldPtr) | ||
|  | 			m_dispatcher->releaseManifold(m_manifoldPtr); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void	btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel) | ||
|  | { | ||
|  | 	m_lowLevelOfDetail = useLowLevel; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | struct btPerturbedContactResult : public btManifoldResult | ||
|  | { | ||
|  | 	btManifoldResult* m_originalManifoldResult; | ||
|  | 	btTransform m_transformA; | ||
|  | 	btTransform m_transformB; | ||
|  | 	btTransform	m_unPerturbedTransform; | ||
|  | 	bool	m_perturbA; | ||
|  | 	btIDebugDraw*	m_debugDrawer; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer) | ||
|  | 		:m_originalManifoldResult(originalResult), | ||
|  | 		m_transformA(transformA), | ||
|  | 		m_transformB(transformB), | ||
|  | 		m_unPerturbedTransform(unPerturbedTransform), | ||
|  | 		m_perturbA(perturbA), | ||
|  | 		m_debugDrawer(debugDrawer) | ||
|  | 	{ | ||
|  | 	} | ||
|  | 	virtual ~ btPerturbedContactResult() | ||
|  | 	{ | ||
|  | 	} | ||
|  | 
 | ||
|  | 	virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth) | ||
|  | 	{ | ||
|  | 		btVector3 endPt,startPt; | ||
|  | 		btScalar newDepth; | ||
|  | 		btVector3 newNormal; | ||
|  | 
 | ||
|  | 		if (m_perturbA) | ||
|  | 		{ | ||
|  | 			btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth; | ||
|  | 			endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg); | ||
|  | 			newDepth = (endPt -  pointInWorld).dot(normalOnBInWorld); | ||
|  | 			startPt = endPt+normalOnBInWorld*newDepth; | ||
|  | 		} else | ||
|  | 		{ | ||
|  | 			endPt = pointInWorld + normalOnBInWorld*orgDepth; | ||
|  | 			startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld); | ||
|  | 			newDepth = (endPt -  startPt).dot(normalOnBInWorld); | ||
|  | 			 | ||
|  | 		} | ||
|  | 
 | ||
|  | //#define DEBUG_CONTACTS 1
 | ||
|  | #ifdef DEBUG_CONTACTS
 | ||
|  | 		m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0)); | ||
|  | 		m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0)); | ||
|  | 		m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1)); | ||
|  | #endif //DEBUG_CONTACTS
 | ||
|  | 
 | ||
|  | 		 | ||
|  | 		m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth); | ||
|  | 	} | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | extern btScalar gContactBreakingThreshold; | ||
|  | 
 | ||
|  | 
 | ||
|  | //
 | ||
|  | // Convex-Convex collision algorithm
 | ||
|  | //
 | ||
|  | void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) | ||
|  | { | ||
|  | 
 | ||
|  | 	if (!m_manifoldPtr) | ||
|  | 	{ | ||
|  | 		//swapped?
 | ||
|  | 		m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject()); | ||
|  | 		m_ownManifold = true; | ||
|  | 	} | ||
|  | 	resultOut->setPersistentManifold(m_manifoldPtr); | ||
|  | 
 | ||
|  | 	//comment-out next line to test multi-contact generation
 | ||
|  | 	//resultOut->getPersistentManifold()->clearManifold();
 | ||
|  | 	 | ||
|  | 
 | ||
|  | 	const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape()); | ||
|  | 	const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape()); | ||
|  | 
 | ||
|  | 	btVector3  normalOnB; | ||
|  | 		btVector3  pointOnBWorld; | ||
|  | #ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
 | ||
|  | 	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)) | ||
|  | 	{ | ||
|  | 		//m_manifoldPtr->clearManifold();
 | ||
|  | 
 | ||
|  | 		btCapsuleShape* capsuleA = (btCapsuleShape*) min0; | ||
|  | 		btCapsuleShape* capsuleB = (btCapsuleShape*) min1; | ||
|  | 		 | ||
|  | 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 
 | ||
|  | 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(), | ||
|  | 			capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(), | ||
|  | 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold); | ||
|  | 
 | ||
|  | 		if (dist<threshold) | ||
|  | 		{ | ||
|  | 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON)); | ||
|  | 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	 | ||
|  | 		} | ||
|  | 		resultOut->refreshContactPoints(); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == SPHERE_SHAPE_PROXYTYPE)) | ||
|  | 	{ | ||
|  | 		//m_manifoldPtr->clearManifold();
 | ||
|  | 
 | ||
|  | 		btCapsuleShape* capsuleA = (btCapsuleShape*) min0; | ||
|  | 		btSphereShape* capsuleB = (btSphereShape*) min1; | ||
|  | 		 | ||
|  | 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 
 | ||
|  | 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(), | ||
|  | 			0.,capsuleB->getRadius(),capsuleA->getUpAxis(),1, | ||
|  | 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold); | ||
|  | 
 | ||
|  | 		if (dist<threshold) | ||
|  | 		{ | ||
|  | 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON)); | ||
|  | 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	 | ||
|  | 		} | ||
|  | 		resultOut->refreshContactPoints(); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if ((min0->getShapeType() == SPHERE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)) | ||
|  | 	{ | ||
|  | 		//m_manifoldPtr->clearManifold();
 | ||
|  | 
 | ||
|  | 		btSphereShape* capsuleA = (btSphereShape*) min0; | ||
|  | 		btCapsuleShape* capsuleB = (btCapsuleShape*) min1; | ||
|  | 		 | ||
|  | 		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 
 | ||
|  | 		btScalar dist = capsuleCapsuleDistance(normalOnB,	pointOnBWorld,0.,capsuleA->getRadius(), | ||
|  | 			capsuleB->getHalfHeight(),capsuleB->getRadius(),1,capsuleB->getUpAxis(), | ||
|  | 			body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold); | ||
|  | 
 | ||
|  | 		if (dist<threshold) | ||
|  | 		{ | ||
|  | 			btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON)); | ||
|  | 			resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);	 | ||
|  | 		} | ||
|  | 		resultOut->refreshContactPoints(); | ||
|  | 		return; | ||
|  | 	} | ||
|  | #endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef USE_SEPDISTANCE_UTIL2
 | ||
|  | 	if (dispatchInfo.m_useConvexConservativeDistanceUtil) | ||
|  | 	{ | ||
|  | 		m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform()); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f) | ||
|  | #endif //USE_SEPDISTANCE_UTIL2
 | ||
|  | 
 | ||
|  | 	{ | ||
|  | 
 | ||
|  | 	 | ||
|  | 	btGjkPairDetector::ClosestPointInput input; | ||
|  |     btVoronoiSimplexSolver simplexSolver; | ||
|  |     btGjkPairDetector	gjkPairDetector( min0, min1, &simplexSolver, m_pdSolver ); | ||
|  | 	//TODO: if (dispatchInfo.m_useContinuous)
 | ||
|  | 	gjkPairDetector.setMinkowskiA(min0); | ||
|  | 	gjkPairDetector.setMinkowskiB(min1); | ||
|  | 
 | ||
|  | #ifdef USE_SEPDISTANCE_UTIL2
 | ||
|  | 	if (dispatchInfo.m_useConvexConservativeDistanceUtil) | ||
|  | 	{ | ||
|  | 		input.m_maximumDistanceSquared = BT_LARGE_FLOAT; | ||
|  | 	} else | ||
|  | #endif //USE_SEPDISTANCE_UTIL2
 | ||
|  | 	{ | ||
|  | 		//if (dispatchInfo.m_convexMaxDistanceUseCPT)
 | ||
|  | 		//{
 | ||
|  | 		//	input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
 | ||
|  | 		//} else
 | ||
|  | 		//{
 | ||
|  | 		input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold()+resultOut->m_closestPointDistanceThreshold; | ||
|  | //		}
 | ||
|  | 
 | ||
|  | 		input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	input.m_transformA = body0Wrap->getWorldTransform(); | ||
|  | 	input.m_transformB = body1Wrap->getWorldTransform(); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	 | ||
|  | 
 | ||
|  | #ifdef USE_SEPDISTANCE_UTIL2
 | ||
|  | 	btScalar sepDist = 0.f; | ||
|  | 	if (dispatchInfo.m_useConvexConservativeDistanceUtil) | ||
|  | 	{ | ||
|  | 		sepDist = gjkPairDetector.getCachedSeparatingDistance(); | ||
|  | 		if (sepDist>SIMD_EPSILON) | ||
|  | 		{ | ||
|  | 			sepDist += dispatchInfo.m_convexConservativeDistanceThreshold; | ||
|  | 			//now perturbe directions to get multiple contact points
 | ||
|  | 			 | ||
|  | 		} | ||
|  | 	} | ||
|  | #endif //USE_SEPDISTANCE_UTIL2
 | ||
|  | 
 | ||
|  | 	if (min0->isPolyhedral() && min1->isPolyhedral()) | ||
|  | 	{ | ||
|  | 
 | ||
|  | 
 | ||
|  | 		struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result | ||
|  | 		{ | ||
|  | 			virtual void setShapeIdentifiersA(int partId0,int index0){} | ||
|  | 			virtual void setShapeIdentifiersB(int partId1,int index1){} | ||
|  | 			virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)  | ||
|  | 			{ | ||
|  | 			} | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		 | ||
|  | 		struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result | ||
|  | 		{ | ||
|  | 			btDiscreteCollisionDetectorInterface::Result* m_originalResult; | ||
|  | 			btVector3	m_reportedNormalOnWorld; | ||
|  | 			btScalar m_marginOnA; | ||
|  | 			btScalar m_marginOnB; | ||
|  | 			btScalar	m_reportedDistance; | ||
|  | 			 | ||
|  | 			bool		m_foundResult; | ||
|  | 			btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB) | ||
|  | 			:m_originalResult(result), | ||
|  | 			m_marginOnA(marginOnA), | ||
|  | 			m_marginOnB(marginOnB), | ||
|  | 			m_foundResult(false) | ||
|  | 			{ | ||
|  | 			} | ||
|  | 			 | ||
|  | 			virtual void setShapeIdentifiersA(int partId0,int index0){} | ||
|  | 			virtual void setShapeIdentifiersB(int partId1,int index1){} | ||
|  | 			virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorldOrg,btScalar depthOrg)  | ||
|  | 			{ | ||
|  | 				m_reportedDistance = depthOrg; | ||
|  | 				m_reportedNormalOnWorld = normalOnBInWorld; | ||
|  | 				 | ||
|  | 				btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld*m_marginOnB; | ||
|  | 				m_reportedDistance = depthOrg+(m_marginOnA+m_marginOnB); | ||
|  | 				if (m_reportedDistance<0.f) | ||
|  | 				{ | ||
|  | 					m_foundResult = true;					 | ||
|  | 				} | ||
|  | 				m_originalResult->addContactPoint(normalOnBInWorld,adjustedPointB,m_reportedDistance); | ||
|  | 			} | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		 | ||
|  | 		btDummyResult dummy; | ||
|  | 
 | ||
|  | ///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
 | ||
|  | 
 | ||
|  | 		btScalar min0Margin = min0->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min0->getMargin(); | ||
|  | 		btScalar min1Margin = min1->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min1->getMargin(); | ||
|  | 
 | ||
|  | 		btWithoutMarginResult	withoutMargin(resultOut, min0Margin,min1Margin); | ||
|  | 
 | ||
|  | 		btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0; | ||
|  | 		btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1; | ||
|  | 		if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron()) | ||
|  | 		{ | ||
|  | 
 | ||
|  | 
 | ||
|  | 			 | ||
|  | 
 | ||
|  | 			btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 
 | ||
|  | 			btScalar minDist = -1e30f; | ||
|  | 			btVector3 sepNormalWorldSpace; | ||
|  | 			bool foundSepAxis  = true; | ||
|  | 
 | ||
|  | 			if (dispatchInfo.m_enableSatConvex) | ||
|  | 			{ | ||
|  | 				foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis( | ||
|  | 					*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(), | ||
|  | 					body0Wrap->getWorldTransform(),  | ||
|  | 					body1Wrap->getWorldTransform(), | ||
|  | 					sepNormalWorldSpace,*resultOut); | ||
|  | 			} else | ||
|  | 			{ | ||
|  | #ifdef ZERO_MARGIN
 | ||
|  | 				gjkPairDetector.setIgnoreMargin(true); | ||
|  | 				gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); | ||
|  | #else
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 				gjkPairDetector.getClosestPoints(input,withoutMargin,dispatchInfo.m_debugDraw); | ||
|  | 				//gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
 | ||
|  | #endif //ZERO_MARGIN
 | ||
|  | 				//btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
 | ||
|  | 				//if (l2>SIMD_EPSILON)
 | ||
|  | 				{ | ||
|  | 					sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld;//gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
 | ||
|  | 					//minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
 | ||
|  | 					minDist = withoutMargin.m_reportedDistance;//gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
 | ||
|  | 	 | ||
|  | #ifdef ZERO_MARGIN
 | ||
|  | 					foundSepAxis = true;//gjkPairDetector.getCachedSeparatingDistance()<0.f;
 | ||
|  | #else
 | ||
|  | 					foundSepAxis = withoutMargin.m_foundResult && minDist<0;//-(min0->getMargin()+min1->getMargin());
 | ||
|  | #endif
 | ||
|  | 				} | ||
|  | 			} | ||
|  | 			if (foundSepAxis) | ||
|  | 			{ | ||
|  | 				 | ||
|  | //				printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
 | ||
|  | 
 | ||
|  | 				worldVertsB1.resize(0); | ||
|  | 				btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(), | ||
|  | 					body0Wrap->getWorldTransform(),  | ||
|  | 																 body1Wrap->getWorldTransform(), minDist-threshold, threshold, worldVertsB1,worldVertsB2, | ||
|  | 																 *resultOut); | ||
|  |  				 | ||
|  | 			} | ||
|  | 			if (m_ownManifold) | ||
|  | 			{ | ||
|  | 				resultOut->refreshContactPoints(); | ||
|  | 			} | ||
|  | 			return; | ||
|  | 
 | ||
|  | 		} else | ||
|  | 		{ | ||
|  | 			//we can also deal with convex versus triangle (without connectivity data)
 | ||
|  | 			if (polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType()==TRIANGLE_SHAPE_PROXYTYPE) | ||
|  | 			{ | ||
|  | 
 | ||
|  | 				btVertexArray vertices; | ||
|  | 				btTriangleShape* tri = (btTriangleShape*)polyhedronB; | ||
|  | 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[0]); | ||
|  | 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[1]); | ||
|  | 				vertices.push_back(	body1Wrap->getWorldTransform()*tri->m_vertices1[2]); | ||
|  | 				 | ||
|  | 				//tri->initializePolyhedralFeatures();
 | ||
|  | 
 | ||
|  | 				btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); | ||
|  | 
 | ||
|  | 				btVector3 sepNormalWorldSpace; | ||
|  | 				btScalar minDist =-1e30f; | ||
|  | 				btScalar maxDist = threshold; | ||
|  | 				 | ||
|  | 				bool foundSepAxis = false; | ||
|  | 				if (0) | ||
|  | 				{ | ||
|  | 					polyhedronB->initializePolyhedralFeatures(); | ||
|  | 					 foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis( | ||
|  | 					*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(), | ||
|  | 					body0Wrap->getWorldTransform(),  | ||
|  | 					body1Wrap->getWorldTransform(), | ||
|  | 					sepNormalWorldSpace,*resultOut); | ||
|  | 				//	 printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
 | ||
|  | 
 | ||
|  | 				} else | ||
|  | 				{ | ||
|  | #ifdef ZERO_MARGIN
 | ||
|  | 					gjkPairDetector.setIgnoreMargin(true); | ||
|  | 					gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); | ||
|  | #else
 | ||
|  | 					gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw); | ||
|  | #endif//ZERO_MARGIN
 | ||
|  | 					 | ||
|  | 					btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2(); | ||
|  | 					if (l2>SIMD_EPSILON) | ||
|  | 					{ | ||
|  | 						sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2); | ||
|  | 						//minDist = gjkPairDetector.getCachedSeparatingDistance();
 | ||
|  | 						//maxDist = threshold;
 | ||
|  | 						minDist = gjkPairDetector.getCachedSeparatingDistance()-min0->getMargin()-min1->getMargin(); | ||
|  | 						foundSepAxis = true; | ||
|  | 					} | ||
|  | 				} | ||
|  | 
 | ||
|  | 				 | ||
|  | 			if (foundSepAxis) | ||
|  | 			{ | ||
|  | 				worldVertsB2.resize(0); | ||
|  | 				btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),  | ||
|  | 					body0Wrap->getWorldTransform(), vertices, worldVertsB2,minDist-threshold, maxDist, *resultOut); | ||
|  | 			} | ||
|  | 				 | ||
|  | 				 | ||
|  | 				if (m_ownManifold) | ||
|  | 				{ | ||
|  | 					resultOut->refreshContactPoints(); | ||
|  | 				} | ||
|  | 				 | ||
|  | 				return; | ||
|  | 			} | ||
|  | 			 | ||
|  | 		} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	} | ||
|  | 	 | ||
|  | 	gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); | ||
|  | 
 | ||
|  | 	//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
 | ||
|  | 	 | ||
|  | 	//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
 | ||
|  | 	if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold) | ||
|  | 	{ | ||
|  | 		 | ||
|  | 		int i; | ||
|  | 		btVector3 v0,v1; | ||
|  | 		btVector3 sepNormalWorldSpace; | ||
|  | 		btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2(); | ||
|  | 	 | ||
|  | 		if (l2>SIMD_EPSILON) | ||
|  | 		{ | ||
|  | 			sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2); | ||
|  | 			 | ||
|  | 			btPlaneSpace1(sepNormalWorldSpace,v0,v1); | ||
|  | 
 | ||
|  | 
 | ||
|  | 			bool perturbeA = true; | ||
|  | 			const btScalar angleLimit = 0.125f * SIMD_PI; | ||
|  | 			btScalar perturbeAngle; | ||
|  | 			btScalar radiusA = min0->getAngularMotionDisc(); | ||
|  | 			btScalar radiusB = min1->getAngularMotionDisc(); | ||
|  | 			if (radiusA < radiusB) | ||
|  | 			{ | ||
|  | 				perturbeAngle = gContactBreakingThreshold /radiusA; | ||
|  | 				perturbeA = true; | ||
|  | 			} else | ||
|  | 			{ | ||
|  | 				perturbeAngle = gContactBreakingThreshold / radiusB; | ||
|  | 				perturbeA = false; | ||
|  | 			} | ||
|  | 			if ( perturbeAngle > angleLimit )  | ||
|  | 					perturbeAngle = angleLimit; | ||
|  | 
 | ||
|  | 			btTransform unPerturbedTransform; | ||
|  | 			if (perturbeA) | ||
|  | 			{ | ||
|  | 				unPerturbedTransform = input.m_transformA; | ||
|  | 			} else | ||
|  | 			{ | ||
|  | 				unPerturbedTransform = input.m_transformB; | ||
|  | 			} | ||
|  | 			 | ||
|  | 			for ( i=0;i<m_numPerturbationIterations;i++) | ||
|  | 			{ | ||
|  | 				if (v0.length2()>SIMD_EPSILON) | ||
|  | 				{ | ||
|  | 				btQuaternion perturbeRot(v0,perturbeAngle); | ||
|  | 				btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations)); | ||
|  | 				btQuaternion rotq(sepNormalWorldSpace,iterationAngle); | ||
|  | 				 | ||
|  | 				 | ||
|  | 				if (perturbeA) | ||
|  | 				{ | ||
|  | 					input.m_transformA.setBasis(  btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0Wrap->getWorldTransform().getBasis()); | ||
|  | 					input.m_transformB = body1Wrap->getWorldTransform(); | ||
|  | 	#ifdef DEBUG_CONTACTS
 | ||
|  | 					dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0); | ||
|  | 	#endif //DEBUG_CONTACTS
 | ||
|  | 				} else | ||
|  | 				{ | ||
|  | 					input.m_transformA = body0Wrap->getWorldTransform(); | ||
|  | 					input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1Wrap->getWorldTransform().getBasis()); | ||
|  | 	#ifdef DEBUG_CONTACTS
 | ||
|  | 					dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0); | ||
|  | 	#endif
 | ||
|  | 				} | ||
|  | 				 | ||
|  | 				btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw); | ||
|  | 				gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw); | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	 | ||
|  | 
 | ||
|  | #ifdef USE_SEPDISTANCE_UTIL2
 | ||
|  | 	if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON)) | ||
|  | 	{ | ||
|  | 		m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform()); | ||
|  | 	} | ||
|  | #endif //USE_SEPDISTANCE_UTIL2
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (m_ownManifold) | ||
|  | 	{ | ||
|  | 		resultOut->refreshContactPoints(); | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | bool disableCcd = false; | ||
|  | btScalar	btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) | ||
|  | { | ||
|  | 	(void)resultOut; | ||
|  | 	(void)dispatchInfo; | ||
|  | 	///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
 | ||
|  |      | ||
|  | 	///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
 | ||
|  | 	///col0->m_worldTransform,
 | ||
|  | 	btScalar resultFraction = btScalar(1.); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2(); | ||
|  | 	btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2(); | ||
|  |      | ||
|  | 	if (squareMot0 < col0->getCcdSquareMotionThreshold() && | ||
|  | 		squareMot1 < col1->getCcdSquareMotionThreshold()) | ||
|  | 		return resultFraction; | ||
|  | 
 | ||
|  | 	if (disableCcd) | ||
|  | 		return btScalar(1.); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	//An adhoc way of testing the Continuous Collision Detection algorithms
 | ||
|  | 	//One object is approximated as a sphere, to simplify things
 | ||
|  | 	//Starting in penetration should report no time of impact
 | ||
|  | 	//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
 | ||
|  | 	//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
 | ||
|  | 
 | ||
|  | 		 | ||
|  | 	/// Convex0 against sphere for Convex1
 | ||
|  | 	{ | ||
|  | 		btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape()); | ||
|  | 
 | ||
|  | 		btSphereShape	sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | ||
|  | 		btConvexCast::CastResult result; | ||
|  | 		btVoronoiSimplexSolver voronoiSimplex; | ||
|  | 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | ||
|  | 		///Simplification, one object is simplified as a sphere
 | ||
|  | 		btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex); | ||
|  | 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | ||
|  | 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), | ||
|  | 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) | ||
|  | 		{ | ||
|  | 		 | ||
|  | 			//store result.m_fraction in both bodies
 | ||
|  | 		 | ||
|  | 			if (col0->getHitFraction()> result.m_fraction) | ||
|  | 				col0->setHitFraction( result.m_fraction ); | ||
|  | 
 | ||
|  | 			if (col1->getHitFraction() > result.m_fraction) | ||
|  | 				col1->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (resultFraction > result.m_fraction) | ||
|  | 				resultFraction = result.m_fraction; | ||
|  | 
 | ||
|  | 		} | ||
|  | 		 | ||
|  | 		 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Sphere (for convex0) against Convex1
 | ||
|  | 	{ | ||
|  | 		btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape()); | ||
|  | 
 | ||
|  | 		btSphereShape	sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | ||
|  | 		btConvexCast::CastResult result; | ||
|  | 		btVoronoiSimplexSolver voronoiSimplex; | ||
|  | 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | ||
|  | 		///Simplification, one object is simplified as a sphere
 | ||
|  | 		btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex); | ||
|  | 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | ||
|  | 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), | ||
|  | 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) | ||
|  | 		{ | ||
|  | 		 | ||
|  | 			//store result.m_fraction in both bodies
 | ||
|  | 		 | ||
|  | 			if (col0->getHitFraction()	> result.m_fraction) | ||
|  | 				col0->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (col1->getHitFraction() > result.m_fraction) | ||
|  | 				col1->setHitFraction( result.m_fraction); | ||
|  | 
 | ||
|  | 			if (resultFraction > result.m_fraction) | ||
|  | 				resultFraction = result.m_fraction; | ||
|  | 
 | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return resultFraction; | ||
|  | 
 | ||
|  | } | ||
|  | 
 |