forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "btHingeConstraint.h"
 | ||
|  | #include "BulletDynamics/Dynamics/btRigidBody.h"
 | ||
|  | #include "LinearMath/btTransformUtil.h"
 | ||
|  | #include "LinearMath/btMinMax.h"
 | ||
|  | #include <new>
 | ||
|  | #include "btSolverBody.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //#define HINGE_USE_OBSOLETE_SOLVER false
 | ||
|  | #define HINGE_USE_OBSOLETE_SOLVER false
 | ||
|  | 
 | ||
|  | #define HINGE_USE_FRAME_OFFSET true
 | ||
|  | 
 | ||
|  | #ifndef __SPU__
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, | ||
|  | 									 const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA) | ||
|  | 									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), | ||
|  | #ifdef _BT_USE_CENTER_LIMIT_
 | ||
|  | 									 m_limit(), | ||
|  | #endif
 | ||
|  | 									 m_angularOnly(false), | ||
|  | 									 m_enableAngularMotor(false), | ||
|  | 									 m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | ||
|  | 									 m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | ||
|  | 									 m_useReferenceFrameA(useReferenceFrameA), | ||
|  | 									 m_flags(0), | ||
|  | 									 m_normalCFM(0), | ||
|  | 									 m_normalERP(0), | ||
|  | 									 m_stopCFM(0), | ||
|  | 									 m_stopERP(0) | ||
|  | { | ||
|  | 	m_rbAFrame.getOrigin() = pivotInA; | ||
|  | 	 | ||
|  | 	// since no frame is given, assume this to be zero angle and just pick rb transform axis
 | ||
|  | 	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); | ||
|  | 
 | ||
|  | 	btVector3 rbAxisA2; | ||
|  | 	btScalar projection = axisInA.dot(rbAxisA1); | ||
|  | 	if (projection >= 1.0f - SIMD_EPSILON) { | ||
|  | 		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); | ||
|  | 		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); | ||
|  | 	} else if (projection <= -1.0f + SIMD_EPSILON) { | ||
|  | 		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); | ||
|  | 		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);       | ||
|  | 	} else { | ||
|  | 		rbAxisA2 = axisInA.cross(rbAxisA1); | ||
|  | 		rbAxisA1 = rbAxisA2.cross(axisInA); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | ||
|  | 									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | ||
|  | 									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | ||
|  | 
 | ||
|  | 	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | ||
|  | 	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | ||
|  | 	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	 | ||
|  | 	 | ||
|  | 	m_rbBFrame.getOrigin() = pivotInB; | ||
|  | 	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | ||
|  | 									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | ||
|  | 									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | ||
|  | 	 | ||
|  | #ifndef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	//start with free
 | ||
|  | 	m_lowerLimit = btScalar(1.0f); | ||
|  | 	m_upperLimit = btScalar(-1.0f); | ||
|  | 	m_biasFactor = 0.3f; | ||
|  | 	m_relaxationFactor = 1.0f; | ||
|  | 	m_limitSoftness = 0.9f; | ||
|  | 	m_solveLimit = false; | ||
|  | #endif
 | ||
|  | 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA) | ||
|  | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), | ||
|  | #ifdef _BT_USE_CENTER_LIMIT_
 | ||
|  | m_limit(), | ||
|  | #endif
 | ||
|  | m_angularOnly(false), m_enableAngularMotor(false),  | ||
|  | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | ||
|  | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | ||
|  | m_useReferenceFrameA(useReferenceFrameA), | ||
|  | m_flags(0), | ||
|  | m_normalCFM(0), | ||
|  | m_normalERP(0), | ||
|  | m_stopCFM(0), | ||
|  | m_stopERP(0) | ||
|  | { | ||
|  | 
 | ||
|  | 	// since no frame is given, assume this to be zero angle and just pick rb transform axis
 | ||
|  | 	// fixed axis in worldspace
 | ||
|  | 	btVector3 rbAxisA1, rbAxisA2; | ||
|  | 	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); | ||
|  | 
 | ||
|  | 	m_rbAFrame.getOrigin() = pivotInA; | ||
|  | 	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | ||
|  | 									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | ||
|  | 									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | ||
|  | 
 | ||
|  | 	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA; | ||
|  | 
 | ||
|  | 	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | ||
|  | 	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | ||
|  | 	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); | ||
|  | 	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | ||
|  | 									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | ||
|  | 									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | ||
|  | 	 | ||
|  | #ifndef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	//start with free
 | ||
|  | 	m_lowerLimit = btScalar(1.0f); | ||
|  | 	m_upperLimit = btScalar(-1.0f); | ||
|  | 	m_biasFactor = 0.3f; | ||
|  | 	m_relaxationFactor = 1.0f; | ||
|  | 	m_limitSoftness = 0.9f; | ||
|  | 	m_solveLimit = false; | ||
|  | #endif
 | ||
|  | 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB,  | ||
|  | 								     const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA) | ||
|  | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), | ||
|  | #ifdef _BT_USE_CENTER_LIMIT_
 | ||
|  | m_limit(), | ||
|  | #endif
 | ||
|  | m_angularOnly(false), | ||
|  | m_enableAngularMotor(false), | ||
|  | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | ||
|  | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | ||
|  | m_useReferenceFrameA(useReferenceFrameA), | ||
|  | m_flags(0), | ||
|  | m_normalCFM(0), | ||
|  | m_normalERP(0), | ||
|  | m_stopCFM(0), | ||
|  | m_stopERP(0) | ||
|  | { | ||
|  | #ifndef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	//start with free
 | ||
|  | 	m_lowerLimit = btScalar(1.0f); | ||
|  | 	m_upperLimit = btScalar(-1.0f); | ||
|  | 	m_biasFactor = 0.3f; | ||
|  | 	m_relaxationFactor = 1.0f; | ||
|  | 	m_limitSoftness = 0.9f; | ||
|  | 	m_solveLimit = false; | ||
|  | #endif
 | ||
|  | 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | ||
|  | }			 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA) | ||
|  | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), | ||
|  | #ifdef _BT_USE_CENTER_LIMIT_
 | ||
|  | m_limit(), | ||
|  | #endif
 | ||
|  | m_angularOnly(false), | ||
|  | m_enableAngularMotor(false), | ||
|  | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | ||
|  | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | ||
|  | m_useReferenceFrameA(useReferenceFrameA), | ||
|  | m_flags(0), | ||
|  | m_normalCFM(0), | ||
|  | m_normalERP(0), | ||
|  | m_stopCFM(0), | ||
|  | m_stopERP(0) | ||
|  | { | ||
|  | 	///not providing rigidbody B means implicitly using worldspace for body B
 | ||
|  | 
 | ||
|  | 	m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); | ||
|  | #ifndef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	//start with free
 | ||
|  | 	m_lowerLimit = btScalar(1.0f); | ||
|  | 	m_upperLimit = btScalar(-1.0f); | ||
|  | 	m_biasFactor = 0.3f; | ||
|  | 	m_relaxationFactor = 1.0f; | ||
|  | 	m_limitSoftness = 0.9f; | ||
|  | 	m_solveLimit = false; | ||
|  | #endif
 | ||
|  | 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void	btHingeConstraint::buildJacobian() | ||
|  | { | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 		m_appliedImpulse = btScalar(0.); | ||
|  | 		m_accMotorImpulse = btScalar(0.); | ||
|  | 
 | ||
|  | 		if (!m_angularOnly) | ||
|  | 		{ | ||
|  | 			btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | ||
|  | 			btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | ||
|  | 			btVector3 relPos = pivotBInW - pivotAInW; | ||
|  | 
 | ||
|  | 			btVector3 normal[3]; | ||
|  | 			if (relPos.length2() > SIMD_EPSILON) | ||
|  | 			{ | ||
|  | 				normal[0] = relPos.normalized(); | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				normal[0].setValue(btScalar(1.0),0,0); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			btPlaneSpace1(normal[0], normal[1], normal[2]); | ||
|  | 
 | ||
|  | 			for (int i=0;i<3;i++) | ||
|  | 			{ | ||
|  | 				new (&m_jac[i]) btJacobianEntry( | ||
|  | 				m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 				m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 				pivotAInW - m_rbA.getCenterOfMassPosition(), | ||
|  | 				pivotBInW - m_rbB.getCenterOfMassPosition(), | ||
|  | 				normal[i], | ||
|  | 				m_rbA.getInvInertiaDiagLocal(), | ||
|  | 				m_rbA.getInvMass(), | ||
|  | 				m_rbB.getInvInertiaDiagLocal(), | ||
|  | 				m_rbB.getInvMass()); | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		//calculate two perpendicular jointAxis, orthogonal to hingeAxis
 | ||
|  | 		//these two jointAxis require equal angular velocities for both bodies
 | ||
|  | 
 | ||
|  | 		//this is unused for now, it's a todo
 | ||
|  | 		btVector3 jointAxis0local; | ||
|  | 		btVector3 jointAxis1local; | ||
|  | 		 | ||
|  | 		btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); | ||
|  | 
 | ||
|  | 		btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; | ||
|  | 		btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; | ||
|  | 		btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); | ||
|  | 			 | ||
|  | 		new (&m_jacAng[0])	btJacobianEntry(jointAxis0, | ||
|  | 			m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbA.getInvInertiaDiagLocal(), | ||
|  | 			m_rbB.getInvInertiaDiagLocal()); | ||
|  | 
 | ||
|  | 		new (&m_jacAng[1])	btJacobianEntry(jointAxis1, | ||
|  | 			m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbA.getInvInertiaDiagLocal(), | ||
|  | 			m_rbB.getInvInertiaDiagLocal()); | ||
|  | 
 | ||
|  | 		new (&m_jacAng[2])	btJacobianEntry(hingeAxisWorld, | ||
|  | 			m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  | 			m_rbA.getInvInertiaDiagLocal(), | ||
|  | 			m_rbB.getInvInertiaDiagLocal()); | ||
|  | 
 | ||
|  | 			// clear accumulator
 | ||
|  | 			m_accLimitImpulse = btScalar(0.); | ||
|  | 
 | ||
|  | 			// test angular limit
 | ||
|  | 			testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | 
 | ||
|  | 		//Compute K = J*W*J' for hinge axis
 | ||
|  | 		btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2); | ||
|  | 		m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + | ||
|  | 							 getRigidBodyB().computeAngularImpulseDenominator(axisA)); | ||
|  | 
 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif //__SPU__
 | ||
|  | 
 | ||
|  | 
 | ||
|  | static inline btScalar btNormalizeAnglePositive(btScalar angle) | ||
|  | { | ||
|  |   return btFmod(btFmod(angle, btScalar(2.0*SIMD_PI)) + btScalar(2.0*SIMD_PI), btScalar(2.0*SIMD_PI)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | static btScalar btShortestAngularDistance(btScalar accAngle, btScalar curAngle) | ||
|  | { | ||
|  | 	btScalar result = btNormalizeAngle(btNormalizeAnglePositive(btNormalizeAnglePositive(curAngle) - | ||
|  | 	btNormalizeAnglePositive(accAngle))); | ||
|  | 	return result; | ||
|  | } | ||
|  | 
 | ||
|  | static btScalar btShortestAngleUpdate(btScalar accAngle, btScalar curAngle) | ||
|  | { | ||
|  | 	btScalar tol(0.3); | ||
|  | 	btScalar result = btShortestAngularDistance(accAngle, curAngle); | ||
|  | 
 | ||
|  | 	  if (btFabs(result) > tol) | ||
|  | 		return curAngle; | ||
|  | 	  else | ||
|  | 		return accAngle + result; | ||
|  | 
 | ||
|  | 	return curAngle; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btHingeAccumulatedAngleConstraint::getAccumulatedHingeAngle() | ||
|  | { | ||
|  | 	btScalar hingeAngle = getHingeAngle(); | ||
|  | 	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,hingeAngle); | ||
|  | 	return m_accumulatedAngle; | ||
|  | } | ||
|  | void	btHingeAccumulatedAngleConstraint::setAccumulatedHingeAngle(btScalar accAngle) | ||
|  | { | ||
|  | 	m_accumulatedAngle  = accAngle; | ||
|  | } | ||
|  | 
 | ||
|  | void btHingeAccumulatedAngleConstraint::getInfo1(btConstraintInfo1* info) | ||
|  | { | ||
|  | 	//update m_accumulatedAngle
 | ||
|  | 	btScalar curHingeAngle = getHingeAngle(); | ||
|  | 	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,curHingeAngle); | ||
|  | 
 | ||
|  | 	btHingeConstraint::getInfo1(info); | ||
|  | 	 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btHingeConstraint::getInfo1(btConstraintInfo1* info) | ||
|  | { | ||
|  | 
 | ||
|  | 
 | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 		info->m_numConstraintRows = 0; | ||
|  | 		info->nub = 0; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular
 | ||
|  | 		info->nub = 1;  | ||
|  | 		//always add the row, to avoid computation (data is not available yet)
 | ||
|  | 		//prepare constraint
 | ||
|  | 		testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | 		if(getSolveLimit() || getEnableAngularMotor()) | ||
|  | 		{ | ||
|  | 			info->m_numConstraintRows++; // limit 3rd anguar as well
 | ||
|  | 			info->nub--;  | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info) | ||
|  | { | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 		info->m_numConstraintRows = 0; | ||
|  | 		info->nub = 0; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		//always add the 'limit' row, to avoid computation (data is not available yet)
 | ||
|  | 		info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular
 | ||
|  | 		info->nub = 0;  | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void btHingeConstraint::getInfo2 (btConstraintInfo2* info) | ||
|  | { | ||
|  | 	if(m_useOffsetForConstraintFrame) | ||
|  | 	{ | ||
|  | 		getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void	btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | 	///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now
 | ||
|  | 	testLimit(transA,transB); | ||
|  | 
 | ||
|  | 	getInfo2Internal(info,transA,transB,angVelA,angVelB); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | 
 | ||
|  | 	btAssert(!m_useSolveConstraintObsolete); | ||
|  | 	int i, skip = info->rowskip; | ||
|  | 	// transforms in world space
 | ||
|  | 	btTransform trA = transA*m_rbAFrame; | ||
|  | 	btTransform trB = transB*m_rbBFrame; | ||
|  | 	// pivot point
 | ||
|  | 	btVector3 pivotAInW = trA.getOrigin(); | ||
|  | 	btVector3 pivotBInW = trB.getOrigin(); | ||
|  | #if 0
 | ||
|  | 	if (0) | ||
|  | 	{ | ||
|  | 		for (i=0;i<6;i++) | ||
|  | 		{ | ||
|  | 			info->m_J1linearAxis[i*skip]=0; | ||
|  | 			info->m_J1linearAxis[i*skip+1]=0; | ||
|  | 			info->m_J1linearAxis[i*skip+2]=0; | ||
|  | 
 | ||
|  | 			info->m_J1angularAxis[i*skip]=0; | ||
|  | 			info->m_J1angularAxis[i*skip+1]=0; | ||
|  | 			info->m_J1angularAxis[i*skip+2]=0; | ||
|  | 
 | ||
|  | 			info->m_J2linearAxis[i*skip]=0; | ||
|  | 			info->m_J2linearAxis[i*skip+1]=0; | ||
|  | 			info->m_J2linearAxis[i*skip+2]=0; | ||
|  | 
 | ||
|  | 			info->m_J2angularAxis[i*skip]=0; | ||
|  | 			info->m_J2angularAxis[i*skip+1]=0; | ||
|  | 			info->m_J2angularAxis[i*skip+2]=0; | ||
|  | 
 | ||
|  | 			info->m_constraintError[i*skip]=0.f; | ||
|  | 		} | ||
|  | 	} | ||
|  | #endif //#if 0
 | ||
|  | 	// linear (all fixed)
 | ||
|  | 
 | ||
|  | 	if (!m_angularOnly) | ||
|  | 	{ | ||
|  | 		info->m_J1linearAxis[0] = 1; | ||
|  | 		info->m_J1linearAxis[skip + 1] = 1; | ||
|  | 		info->m_J1linearAxis[2 * skip + 2] = 1; | ||
|  | 
 | ||
|  | 		info->m_J2linearAxis[0] = -1; | ||
|  | 		info->m_J2linearAxis[skip + 1] = -1; | ||
|  | 		info->m_J2linearAxis[2 * skip + 2] = -1; | ||
|  | 	}	 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btVector3 a1 = pivotAInW - transA.getOrigin(); | ||
|  | 	{ | ||
|  | 		btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); | ||
|  | 		btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip); | ||
|  | 		btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip); | ||
|  | 		btVector3 a1neg = -a1; | ||
|  | 		a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); | ||
|  | 	} | ||
|  | 	btVector3 a2 = pivotBInW - transB.getOrigin(); | ||
|  | 	{ | ||
|  | 		btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); | ||
|  | 		btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip); | ||
|  | 		btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip); | ||
|  | 		a2.getSkewSymmetricMatrix(angular0,angular1,angular2); | ||
|  | 	} | ||
|  | 	// linear RHS
 | ||
|  | 	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM) ? m_normalERP : info->erp; | ||
|  | 
 | ||
|  |     btScalar k = info->fps * normalErp; | ||
|  | 	if (!m_angularOnly) | ||
|  | 	{ | ||
|  | 		for(i = 0; i < 3; i++) | ||
|  | 		{ | ||
|  | 			info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	// make rotations around X and Y equal
 | ||
|  | 	// the hinge axis should be the only unconstrained
 | ||
|  | 	// rotational axis, the angular velocity of the two bodies perpendicular to
 | ||
|  | 	// the hinge axis should be equal. thus the constraint equations are
 | ||
|  | 	//    p*w1 - p*w2 = 0
 | ||
|  | 	//    q*w1 - q*w2 = 0
 | ||
|  | 	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
 | ||
|  | 	// are the angular velocity vectors of the two bodies.
 | ||
|  | 	// get hinge axis (Z)
 | ||
|  | 	btVector3 ax1 = trA.getBasis().getColumn(2); | ||
|  | 	// get 2 orthos to hinge axis (X, Y)
 | ||
|  | 	btVector3 p = trA.getBasis().getColumn(0); | ||
|  | 	btVector3 q = trA.getBasis().getColumn(1); | ||
|  | 	// set the two hinge angular rows 
 | ||
|  |     int s3 = 3 * info->rowskip; | ||
|  |     int s4 = 4 * info->rowskip; | ||
|  | 
 | ||
|  | 	info->m_J1angularAxis[s3 + 0] = p[0]; | ||
|  | 	info->m_J1angularAxis[s3 + 1] = p[1]; | ||
|  | 	info->m_J1angularAxis[s3 + 2] = p[2]; | ||
|  | 	info->m_J1angularAxis[s4 + 0] = q[0]; | ||
|  | 	info->m_J1angularAxis[s4 + 1] = q[1]; | ||
|  | 	info->m_J1angularAxis[s4 + 2] = q[2]; | ||
|  | 
 | ||
|  | 	info->m_J2angularAxis[s3 + 0] = -p[0]; | ||
|  | 	info->m_J2angularAxis[s3 + 1] = -p[1]; | ||
|  | 	info->m_J2angularAxis[s3 + 2] = -p[2]; | ||
|  | 	info->m_J2angularAxis[s4 + 0] = -q[0]; | ||
|  | 	info->m_J2angularAxis[s4 + 1] = -q[1]; | ||
|  | 	info->m_J2angularAxis[s4 + 2] = -q[2]; | ||
|  |     // compute the right hand side of the constraint equation. set relative
 | ||
|  |     // body velocities along p and q to bring the hinge back into alignment.
 | ||
|  |     // if ax1,ax2 are the unit length hinge axes as computed from body1 and
 | ||
|  |     // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
 | ||
|  |     // if `theta' is the angle between ax1 and ax2, we need an angular velocity
 | ||
|  |     // along u to cover angle erp*theta in one step :
 | ||
|  |     //   |angular_velocity| = angle/time = erp*theta / stepsize
 | ||
|  |     //                      = (erp*fps) * theta
 | ||
|  |     //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
 | ||
|  |     //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
 | ||
|  |     // ...as ax1 and ax2 are unit length. if theta is smallish,
 | ||
|  |     // theta ~= sin(theta), so
 | ||
|  |     //    angular_velocity  = (erp*fps) * (ax1 x ax2)
 | ||
|  |     // ax1 x ax2 is in the plane space of ax1, so we project the angular
 | ||
|  |     // velocity to p and q to find the right hand side.
 | ||
|  |     btVector3 ax2 = trB.getBasis().getColumn(2); | ||
|  | 	btVector3 u = ax1.cross(ax2); | ||
|  | 	info->m_constraintError[s3] = k * u.dot(p); | ||
|  | 	info->m_constraintError[s4] = k * u.dot(q); | ||
|  | 	// check angular limits
 | ||
|  | 	int nrow = 4; // last filled row
 | ||
|  | 	int srow; | ||
|  | 	btScalar limit_err = btScalar(0.0); | ||
|  | 	int limit = 0; | ||
|  | 	if(getSolveLimit()) | ||
|  | 	{ | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	limit_err = m_limit.getCorrection() * m_referenceSign; | ||
|  | #else
 | ||
|  | 	limit_err = m_correction * m_referenceSign; | ||
|  | #endif
 | ||
|  | 	limit = (limit_err > btScalar(0.0)) ? 1 : 2; | ||
|  | 
 | ||
|  | 	} | ||
|  | 	// if the hinge has joint limits or motor, add in the extra row
 | ||
|  | 	bool powered = getEnableAngularMotor(); | ||
|  | 	if(limit || powered) | ||
|  | 	{ | ||
|  | 		nrow++; | ||
|  | 		srow = nrow * info->rowskip; | ||
|  | 		info->m_J1angularAxis[srow+0] = ax1[0]; | ||
|  | 		info->m_J1angularAxis[srow+1] = ax1[1]; | ||
|  | 		info->m_J1angularAxis[srow+2] = ax1[2]; | ||
|  | 
 | ||
|  | 		info->m_J2angularAxis[srow+0] = -ax1[0]; | ||
|  | 		info->m_J2angularAxis[srow+1] = -ax1[1]; | ||
|  | 		info->m_J2angularAxis[srow+2] = -ax1[2]; | ||
|  | 
 | ||
|  | 		btScalar lostop = getLowerLimit(); | ||
|  | 		btScalar histop = getUpperLimit(); | ||
|  | 		if(limit && (lostop == histop)) | ||
|  | 		{  // the joint motor is ineffective
 | ||
|  | 			powered = false; | ||
|  | 		} | ||
|  | 		info->m_constraintError[srow] = btScalar(0.0f); | ||
|  | 		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp; | ||
|  | 		if(powered) | ||
|  | 		{ | ||
|  | 			if(m_flags & BT_HINGE_FLAGS_CFM_NORM) | ||
|  | 			{ | ||
|  | 				info->cfm[srow] = m_normalCFM; | ||
|  | 			} | ||
|  | 			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); | ||
|  | 			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; | ||
|  | 			info->m_lowerLimit[srow] = - m_maxMotorImpulse; | ||
|  | 			info->m_upperLimit[srow] =   m_maxMotorImpulse; | ||
|  | 		} | ||
|  | 		if(limit) | ||
|  | 		{ | ||
|  | 			k = info->fps * currERP; | ||
|  | 			info->m_constraintError[srow] += k * limit_err; | ||
|  | 			if(m_flags & BT_HINGE_FLAGS_CFM_STOP) | ||
|  | 			{ | ||
|  | 				info->cfm[srow] = m_stopCFM; | ||
|  | 			} | ||
|  | 			if(lostop == histop)  | ||
|  | 			{ | ||
|  | 				// limited low and high simultaneously
 | ||
|  | 				info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  | 				info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  | 			} | ||
|  | 			else if(limit == 1)  | ||
|  | 			{ // low limit
 | ||
|  | 				info->m_lowerLimit[srow] = 0; | ||
|  | 				info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  | 			} | ||
|  | 			else  | ||
|  | 			{ // high limit
 | ||
|  | 				info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  | 				info->m_upperLimit[srow] = 0; | ||
|  | 			} | ||
|  | 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
 | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 			btScalar bounce = m_limit.getRelaxationFactor(); | ||
|  | #else
 | ||
|  | 			btScalar bounce = m_relaxationFactor; | ||
|  | #endif
 | ||
|  | 			if(bounce > btScalar(0.0)) | ||
|  | 			{ | ||
|  | 				btScalar vel = angVelA.dot(ax1); | ||
|  | 				vel -= angVelB.dot(ax1); | ||
|  | 				// only apply bounce if the velocity is incoming, and if the
 | ||
|  | 				// resulting c[] exceeds what we already have.
 | ||
|  | 				if(limit == 1) | ||
|  | 				{	// low limit
 | ||
|  | 					if(vel < 0) | ||
|  | 					{ | ||
|  | 						btScalar newc = -bounce * vel; | ||
|  | 						if(newc > info->m_constraintError[srow]) | ||
|  | 						{ | ||
|  | 							info->m_constraintError[srow] = newc; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{	// high limit - all those computations are reversed
 | ||
|  | 					if(vel > 0) | ||
|  | 					{ | ||
|  | 						btScalar newc = -bounce * vel; | ||
|  | 						if(newc < info->m_constraintError[srow]) | ||
|  | 						{ | ||
|  | 							info->m_constraintError[srow] = newc; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 			info->m_constraintError[srow] *= m_limit.getBiasFactor(); | ||
|  | #else
 | ||
|  | 			info->m_constraintError[srow] *= m_biasFactor; | ||
|  | #endif
 | ||
|  | 		} // if(limit)
 | ||
|  | 	} // if angular limit or powered
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btHingeConstraint::setFrames(const btTransform & frameA, const btTransform & frameB) | ||
|  | { | ||
|  | 	m_rbAFrame = frameA; | ||
|  | 	m_rbBFrame = frameB; | ||
|  | 	buildJacobian(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void	btHingeConstraint::updateRHS(btScalar	timeStep) | ||
|  | { | ||
|  | 	(void)timeStep; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btHingeConstraint::getHingeAngle() | ||
|  | { | ||
|  | 	return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | } | ||
|  | 
 | ||
|  | btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB) | ||
|  | { | ||
|  | 	const btVector3 refAxis0  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0); | ||
|  | 	const btVector3 refAxis1  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1); | ||
|  | 	const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1); | ||
|  | //	btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
 | ||
|  | 	btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); | ||
|  | 	return m_referenceSign * angle; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB) | ||
|  | { | ||
|  | 	// Compute limit information
 | ||
|  | 	m_hingeAngle = getHingeAngle(transA,transB); | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	m_limit.test(m_hingeAngle); | ||
|  | #else
 | ||
|  | 	m_correction = btScalar(0.); | ||
|  | 	m_limitSign = btScalar(0.); | ||
|  | 	m_solveLimit = false; | ||
|  | 	if (m_lowerLimit <= m_upperLimit) | ||
|  | 	{ | ||
|  | 		m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit); | ||
|  | 		if (m_hingeAngle <= m_lowerLimit) | ||
|  | 		{ | ||
|  | 			m_correction = (m_lowerLimit - m_hingeAngle); | ||
|  | 			m_limitSign = 1.0f; | ||
|  | 			m_solveLimit = true; | ||
|  | 		}  | ||
|  | 		else if (m_hingeAngle >= m_upperLimit) | ||
|  | 		{ | ||
|  | 			m_correction = m_upperLimit - m_hingeAngle; | ||
|  | 			m_limitSign = -1.0f; | ||
|  | 			m_solveLimit = true; | ||
|  | 		} | ||
|  | 	} | ||
|  | #endif
 | ||
|  | 	return; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static btVector3 vHinge(0, 0, btScalar(1)); | ||
|  | 
 | ||
|  | void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt) | ||
|  | { | ||
|  | 	// convert target from body to constraint space
 | ||
|  | 	btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation(); | ||
|  | 	qConstraint.normalize(); | ||
|  | 
 | ||
|  | 	// extract "pure" hinge component
 | ||
|  | 	btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize(); | ||
|  | 	btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge); | ||
|  | 	btQuaternion qHinge = qNoHinge.inverse() * qConstraint; | ||
|  | 	qHinge.normalize(); | ||
|  | 
 | ||
|  | 	// compute angular target, clamped to limits
 | ||
|  | 	btScalar targetAngle = qHinge.getAngle(); | ||
|  | 	if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate.
 | ||
|  | 	{ | ||
|  | 		qHinge = -(qHinge); | ||
|  | 		targetAngle = qHinge.getAngle(); | ||
|  | 	} | ||
|  | 	if (qHinge.getZ() < 0) | ||
|  | 		targetAngle = -targetAngle; | ||
|  | 
 | ||
|  | 	setMotorTarget(targetAngle, dt); | ||
|  | } | ||
|  | 
 | ||
|  | void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt) | ||
|  | { | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	m_limit.fit(targetAngle); | ||
|  | #else
 | ||
|  | 	if (m_lowerLimit < m_upperLimit) | ||
|  | 	{ | ||
|  | 		if (targetAngle < m_lowerLimit) | ||
|  | 			targetAngle = m_lowerLimit; | ||
|  | 		else if (targetAngle > m_upperLimit) | ||
|  | 			targetAngle = m_upperLimit; | ||
|  | 	} | ||
|  | #endif
 | ||
|  | 	// compute angular velocity
 | ||
|  | 	btScalar curAngle  = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | 	btScalar dAngle = targetAngle - curAngle; | ||
|  | 	m_motorTargetVelocity = dAngle / dt; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | 	btAssert(!m_useSolveConstraintObsolete); | ||
|  | 	int i, s = info->rowskip; | ||
|  | 	// transforms in world space
 | ||
|  | 	btTransform trA = transA*m_rbAFrame; | ||
|  | 	btTransform trB = transB*m_rbBFrame; | ||
|  | 	// pivot point
 | ||
|  | //	btVector3 pivotAInW = trA.getOrigin();
 | ||
|  | //	btVector3 pivotBInW = trB.getOrigin();
 | ||
|  | #if 1
 | ||
|  | 	// difference between frames in WCS
 | ||
|  | 	btVector3 ofs = trB.getOrigin() - trA.getOrigin(); | ||
|  | 	// now get weight factors depending on masses
 | ||
|  | 	btScalar miA = getRigidBodyA().getInvMass(); | ||
|  | 	btScalar miB = getRigidBodyB().getInvMass(); | ||
|  | 	bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); | ||
|  | 	btScalar miS = miA + miB; | ||
|  | 	btScalar factA, factB; | ||
|  | 	if(miS > btScalar(0.f)) | ||
|  | 	{ | ||
|  | 		factA = miB / miS; | ||
|  | 	} | ||
|  | 	else  | ||
|  | 	{ | ||
|  | 		factA = btScalar(0.5f); | ||
|  | 	} | ||
|  | 	factB = btScalar(1.0f) - factA; | ||
|  | 	// get the desired direction of hinge axis
 | ||
|  | 	// as weighted sum of Z-orthos of frameA and frameB in WCS
 | ||
|  | 	btVector3 ax1A = trA.getBasis().getColumn(2); | ||
|  | 	btVector3 ax1B = trB.getBasis().getColumn(2); | ||
|  | 	btVector3 ax1 = ax1A * factA + ax1B * factB; | ||
|  | 	ax1.normalize(); | ||
|  | 	// fill first 3 rows 
 | ||
|  | 	// we want: velA + wA x relA == velB + wB x relB
 | ||
|  | 	btTransform bodyA_trans = transA; | ||
|  | 	btTransform bodyB_trans = transB; | ||
|  | 	int s0 = 0; | ||
|  | 	int s1 = s; | ||
|  | 	int s2 = s * 2; | ||
|  | 	int nrow = 2; // last filled row
 | ||
|  | 	btVector3 tmpA, tmpB, relA, relB, p, q; | ||
|  | 	// get vector from bodyB to frameB in WCS
 | ||
|  | 	relB = trB.getOrigin() - bodyB_trans.getOrigin(); | ||
|  | 	// get its projection to hinge axis
 | ||
|  | 	btVector3 projB = ax1 * relB.dot(ax1); | ||
|  | 	// get vector directed from bodyB to hinge axis (and orthogonal to it)
 | ||
|  | 	btVector3 orthoB = relB - projB; | ||
|  | 	// same for bodyA
 | ||
|  | 	relA = trA.getOrigin() - bodyA_trans.getOrigin(); | ||
|  | 	btVector3 projA = ax1 * relA.dot(ax1); | ||
|  | 	btVector3 orthoA = relA - projA; | ||
|  | 	btVector3 totalDist = projA - projB; | ||
|  | 	// get offset vectors relA and relB
 | ||
|  | 	relA = orthoA + totalDist * factA; | ||
|  | 	relB = orthoB - totalDist * factB; | ||
|  | 	// now choose average ortho to hinge axis
 | ||
|  | 	p = orthoB * factA + orthoA * factB; | ||
|  | 	btScalar len2 = p.length2(); | ||
|  | 	if(len2 > SIMD_EPSILON) | ||
|  | 	{ | ||
|  | 		p /= btSqrt(len2); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		p = trA.getBasis().getColumn(1); | ||
|  | 	} | ||
|  | 	// make one more ortho
 | ||
|  | 	q = ax1.cross(p); | ||
|  | 	// fill three rows
 | ||
|  | 	tmpA = relA.cross(p); | ||
|  | 	tmpB = relB.cross(p); | ||
|  |     for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i]; | ||
|  |     for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i]; | ||
|  | 	tmpA = relA.cross(q); | ||
|  | 	tmpB = relB.cross(q); | ||
|  | 	if(hasStaticBody && getSolveLimit()) | ||
|  | 	{ // to make constraint between static and dynamic objects more rigid
 | ||
|  | 		// remove wA (or wB) from equation if angular limit is hit
 | ||
|  | 		tmpB *= factB; | ||
|  | 		tmpA *= factA; | ||
|  | 	} | ||
|  | 	for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i]; | ||
|  |     for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i]; | ||
|  | 	tmpA = relA.cross(ax1); | ||
|  | 	tmpB = relB.cross(ax1); | ||
|  | 	if(hasStaticBody) | ||
|  | 	{ // to make constraint between static and dynamic objects more rigid
 | ||
|  | 		// remove wA (or wB) from equation
 | ||
|  | 		tmpB *= factB; | ||
|  | 		tmpA *= factA; | ||
|  | 	} | ||
|  | 	for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; | ||
|  |     for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; | ||
|  | 
 | ||
|  | 	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM)? m_normalERP : info->erp; | ||
|  | 	btScalar k = info->fps * normalErp; | ||
|  | 
 | ||
|  | 	if (!m_angularOnly) | ||
|  | 	{ | ||
|  | 		for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i]; | ||
|  | 		for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i]; | ||
|  | 		for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i]; | ||
|  | 
 | ||
|  | 		for (i=0; i<3; i++) info->m_J2linearAxis[s0+i] = -p[i]; | ||
|  | 		for (i=0; i<3; i++) info->m_J2linearAxis[s1+i] = -q[i]; | ||
|  | 		for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -ax1[i]; | ||
|  | 
 | ||
|  | 	// compute three elements of right hand side
 | ||
|  | 	 | ||
|  | 		btScalar rhs = k * p.dot(ofs); | ||
|  | 		info->m_constraintError[s0] = rhs; | ||
|  | 		rhs = k * q.dot(ofs); | ||
|  | 		info->m_constraintError[s1] = rhs; | ||
|  | 		rhs = k * ax1.dot(ofs); | ||
|  | 		info->m_constraintError[s2] = rhs; | ||
|  | 	} | ||
|  | 	// the hinge axis should be the only unconstrained
 | ||
|  | 	// rotational axis, the angular velocity of the two bodies perpendicular to
 | ||
|  | 	// the hinge axis should be equal. thus the constraint equations are
 | ||
|  | 	//    p*w1 - p*w2 = 0
 | ||
|  | 	//    q*w1 - q*w2 = 0
 | ||
|  | 	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
 | ||
|  | 	// are the angular velocity vectors of the two bodies.
 | ||
|  | 	int s3 = 3 * s; | ||
|  | 	int s4 = 4 * s; | ||
|  | 	info->m_J1angularAxis[s3 + 0] = p[0]; | ||
|  | 	info->m_J1angularAxis[s3 + 1] = p[1]; | ||
|  | 	info->m_J1angularAxis[s3 + 2] = p[2]; | ||
|  | 	info->m_J1angularAxis[s4 + 0] = q[0]; | ||
|  | 	info->m_J1angularAxis[s4 + 1] = q[1]; | ||
|  | 	info->m_J1angularAxis[s4 + 2] = q[2]; | ||
|  | 
 | ||
|  | 	info->m_J2angularAxis[s3 + 0] = -p[0]; | ||
|  | 	info->m_J2angularAxis[s3 + 1] = -p[1]; | ||
|  | 	info->m_J2angularAxis[s3 + 2] = -p[2]; | ||
|  | 	info->m_J2angularAxis[s4 + 0] = -q[0]; | ||
|  | 	info->m_J2angularAxis[s4 + 1] = -q[1]; | ||
|  | 	info->m_J2angularAxis[s4 + 2] = -q[2]; | ||
|  | 	// compute the right hand side of the constraint equation. set relative
 | ||
|  | 	// body velocities along p and q to bring the hinge back into alignment.
 | ||
|  | 	// if ax1A,ax1B are the unit length hinge axes as computed from bodyA and
 | ||
|  | 	// bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
 | ||
|  | 	// if "theta" is the angle between ax1 and ax2, we need an angular velocity
 | ||
|  | 	// along u to cover angle erp*theta in one step :
 | ||
|  | 	//   |angular_velocity| = angle/time = erp*theta / stepsize
 | ||
|  | 	//                      = (erp*fps) * theta
 | ||
|  | 	//    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
 | ||
|  | 	//                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
 | ||
|  | 	// ...as ax1 and ax2 are unit length. if theta is smallish,
 | ||
|  | 	// theta ~= sin(theta), so
 | ||
|  | 	//    angular_velocity  = (erp*fps) * (ax1 x ax2)
 | ||
|  | 	// ax1 x ax2 is in the plane space of ax1, so we project the angular
 | ||
|  | 	// velocity to p and q to find the right hand side.
 | ||
|  | 	k = info->fps * normalErp;//??
 | ||
|  | 
 | ||
|  | 	btVector3 u = ax1A.cross(ax1B); | ||
|  | 	info->m_constraintError[s3] = k * u.dot(p); | ||
|  | 	info->m_constraintError[s4] = k * u.dot(q); | ||
|  | #endif
 | ||
|  | 	// check angular limits
 | ||
|  | 	nrow = 4; // last filled row
 | ||
|  | 	int srow; | ||
|  | 	btScalar limit_err = btScalar(0.0); | ||
|  | 	int limit = 0; | ||
|  | 	if(getSolveLimit()) | ||
|  | 	{ | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 	limit_err = m_limit.getCorrection() * m_referenceSign; | ||
|  | #else
 | ||
|  | 	limit_err = m_correction * m_referenceSign; | ||
|  | #endif
 | ||
|  | 	limit = (limit_err > btScalar(0.0)) ? 1 : 2; | ||
|  | 
 | ||
|  | 	} | ||
|  | 	// if the hinge has joint limits or motor, add in the extra row
 | ||
|  | 	bool powered = getEnableAngularMotor(); | ||
|  | 	if(limit || powered) | ||
|  | 	{ | ||
|  | 		nrow++; | ||
|  | 		srow = nrow * info->rowskip; | ||
|  | 		info->m_J1angularAxis[srow+0] = ax1[0]; | ||
|  | 		info->m_J1angularAxis[srow+1] = ax1[1]; | ||
|  | 		info->m_J1angularAxis[srow+2] = ax1[2]; | ||
|  | 
 | ||
|  | 		info->m_J2angularAxis[srow+0] = -ax1[0]; | ||
|  | 		info->m_J2angularAxis[srow+1] = -ax1[1]; | ||
|  | 		info->m_J2angularAxis[srow+2] = -ax1[2]; | ||
|  | 
 | ||
|  | 		btScalar lostop = getLowerLimit(); | ||
|  | 		btScalar histop = getUpperLimit(); | ||
|  | 		if(limit && (lostop == histop)) | ||
|  | 		{  // the joint motor is ineffective
 | ||
|  | 			powered = false; | ||
|  | 		} | ||
|  | 		info->m_constraintError[srow] = btScalar(0.0f); | ||
|  | 		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp; | ||
|  | 		if(powered) | ||
|  | 		{ | ||
|  | 			if(m_flags & BT_HINGE_FLAGS_CFM_NORM) | ||
|  | 			{ | ||
|  | 				info->cfm[srow] = m_normalCFM; | ||
|  | 			} | ||
|  | 			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); | ||
|  | 			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; | ||
|  | 			info->m_lowerLimit[srow] = - m_maxMotorImpulse; | ||
|  | 			info->m_upperLimit[srow] =   m_maxMotorImpulse; | ||
|  | 		} | ||
|  | 		if(limit) | ||
|  | 		{ | ||
|  | 			k = info->fps * currERP; | ||
|  | 			info->m_constraintError[srow] += k * limit_err; | ||
|  | 			if(m_flags & BT_HINGE_FLAGS_CFM_STOP) | ||
|  | 			{ | ||
|  | 				info->cfm[srow] = m_stopCFM; | ||
|  | 			} | ||
|  | 			if(lostop == histop)  | ||
|  | 			{ | ||
|  | 				// limited low and high simultaneously
 | ||
|  | 				info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  | 				info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  | 			} | ||
|  | 			else if(limit == 1)  | ||
|  | 			{ // low limit
 | ||
|  | 				info->m_lowerLimit[srow] = 0; | ||
|  | 				info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  | 			} | ||
|  | 			else  | ||
|  | 			{ // high limit
 | ||
|  | 				info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  | 				info->m_upperLimit[srow] = 0; | ||
|  | 			} | ||
|  | 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
 | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 			btScalar bounce = m_limit.getRelaxationFactor(); | ||
|  | #else
 | ||
|  | 			btScalar bounce = m_relaxationFactor; | ||
|  | #endif
 | ||
|  | 			if(bounce > btScalar(0.0)) | ||
|  | 			{ | ||
|  | 				btScalar vel = angVelA.dot(ax1); | ||
|  | 				vel -= angVelB.dot(ax1); | ||
|  | 				// only apply bounce if the velocity is incoming, and if the
 | ||
|  | 				// resulting c[] exceeds what we already have.
 | ||
|  | 				if(limit == 1) | ||
|  | 				{	// low limit
 | ||
|  | 					if(vel < 0) | ||
|  | 					{ | ||
|  | 						btScalar newc = -bounce * vel; | ||
|  | 						if(newc > info->m_constraintError[srow]) | ||
|  | 						{ | ||
|  | 							info->m_constraintError[srow] = newc; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{	// high limit - all those computations are reversed
 | ||
|  | 					if(vel > 0) | ||
|  | 					{ | ||
|  | 						btScalar newc = -bounce * vel; | ||
|  | 						if(newc < info->m_constraintError[srow]) | ||
|  | 						{ | ||
|  | 							info->m_constraintError[srow] = newc; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | #ifdef	_BT_USE_CENTER_LIMIT_
 | ||
|  | 			info->m_constraintError[srow] *= m_limit.getBiasFactor(); | ||
|  | #else
 | ||
|  | 			info->m_constraintError[srow] *= m_biasFactor; | ||
|  | #endif
 | ||
|  | 		} // if(limit)
 | ||
|  | 	} // if angular limit or powered
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | ||
|  | ///If no axis is provided, it uses the default axis for this constraint.
 | ||
|  | void btHingeConstraint::setParam(int num, btScalar value, int axis) | ||
|  | { | ||
|  | 	if((axis == -1) || (axis == 5)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{	 | ||
|  | 			case BT_CONSTRAINT_STOP_ERP : | ||
|  | 				m_stopERP = value; | ||
|  | 				m_flags |= BT_HINGE_FLAGS_ERP_STOP; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM : | ||
|  | 				m_stopCFM = value; | ||
|  | 				m_flags |= BT_HINGE_FLAGS_CFM_STOP; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM : | ||
|  | 				m_normalCFM = value; | ||
|  | 				m_flags |= BT_HINGE_FLAGS_CFM_NORM; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_ERP: | ||
|  | 				m_normalERP = value; | ||
|  | 				m_flags |= BT_HINGE_FLAGS_ERP_NORM; | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		btAssertConstrParams(0); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | ///return the local value of parameter
 | ||
|  | btScalar btHingeConstraint::getParam(int num, int axis) const  | ||
|  | { | ||
|  | 	btScalar retVal = 0; | ||
|  | 	if((axis == -1) || (axis == 5)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{	 | ||
|  | 			case BT_CONSTRAINT_STOP_ERP : | ||
|  | 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP); | ||
|  | 				retVal = m_stopERP; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM : | ||
|  | 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP); | ||
|  | 				retVal = m_stopCFM; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM : | ||
|  | 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM); | ||
|  | 				retVal = m_normalCFM; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_ERP: | ||
|  | 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_NORM); | ||
|  | 				retVal = m_normalERP; | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		btAssertConstrParams(0); | ||
|  | 	} | ||
|  | 	return retVal; | ||
|  | } | ||
|  | 
 | ||
|  | 
 |