forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*************************************************************************
 | ||
|  | *                                                                       * | ||
|  | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       * | ||
|  | * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          * | ||
|  | *                                                                       * | ||
|  | * This library is free software; you can redistribute it and/or         * | ||
|  | * modify it under the terms of EITHER:                                  * | ||
|  | *   (1) The GNU Lesser General Public License as published by the Free  * | ||
|  | *       Software Foundation; either version 2.1 of the License, or (at  * | ||
|  | *       your option) any later version. The text of the GNU Lesser      * | ||
|  | *       General Public License is included with this library in the     * | ||
|  | *       file LICENSE.TXT.                                               * | ||
|  | *   (2) The BSD-style license that is included with this library in     * | ||
|  | *       the file LICENSE-BSD.TXT.                                       * | ||
|  | *                                                                       * | ||
|  | * This library is distributed in the hope that it will be useful,       * | ||
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of        * | ||
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    * | ||
|  | * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     * | ||
|  | *                                                                       * | ||
|  | *************************************************************************/ | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | 
 | ||
|  | THE ALGORITHM | ||
|  | ------------- | ||
|  | 
 | ||
|  | solve A*x = b+w, with x and w subject to certain LCP conditions. | ||
|  | each x(i),w(i) must lie on one of the three line segments in the following | ||
|  | diagram. each line segment corresponds to one index set : | ||
|  | 
 | ||
|  |      w(i) | ||
|  |      /|\      |           : | ||
|  |       |       |           : | ||
|  |       |       |i in N     : | ||
|  |   w>0 |       |state[i]=0 : | ||
|  |       |       |           : | ||
|  |       |       |           :  i in C | ||
|  |   w=0 +       +-----------------------+ | ||
|  |       |                   :           | | ||
|  |       |                   :           | | ||
|  |   w<0 |                   :           |i in N | ||
|  |       |                   :           |state[i]=1 | ||
|  |       |                   :           | | ||
|  |       |                   :           | | ||
|  |       +-------|-----------|-----------|----------> x(i) | ||
|  |              lo           0           hi | ||
|  | 
 | ||
|  | the Dantzig algorithm proceeds as follows: | ||
|  |   for i=1:n | ||
|  |     * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or | ||
|  |       negative towards the line. as this is done, the other (x(j),w(j)) | ||
|  |       for j<i are constrained to be on the line. if any (x,w) reaches the | ||
|  |       end of a line segment then it is switched between index sets. | ||
|  |     * i is added to the appropriate index set depending on what line segment | ||
|  |       it hits. | ||
|  | 
 | ||
|  | we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit | ||
|  | simpler, because the starting point for x(i),w(i) is always on the dotted | ||
|  | line x=0 and x will only ever increase in one direction, so it can only hit | ||
|  | two out of the three line segments. | ||
|  | 
 | ||
|  | 
 | ||
|  | NOTES | ||
|  | ----- | ||
|  | 
 | ||
|  | this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m". | ||
|  | the implementation is split into an LCP problem object (btLCP) and an LCP | ||
|  | driver function. most optimization occurs in the btLCP object. | ||
|  | 
 | ||
|  | a naive implementation of the algorithm requires either a lot of data motion | ||
|  | or a lot of permutation-array lookup, because we are constantly re-ordering | ||
|  | rows and columns. to avoid this and make a more optimized algorithm, a | ||
|  | non-trivial data structure is used to represent the matrix A (this is | ||
|  | implemented in the fast version of the btLCP object). | ||
|  | 
 | ||
|  | during execution of this algorithm, some indexes in A are clamped (set C), | ||
|  | some are non-clamped (set N), and some are "don't care" (where x=0). | ||
|  | A,x,b,w (and other problem vectors) are permuted such that the clamped | ||
|  | indexes are first, the unclamped indexes are next, and the don't-care | ||
|  | indexes are last. this permutation is recorded in the array `p'. | ||
|  | initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped, | ||
|  | the corresponding elements of p are swapped. | ||
|  | 
 | ||
|  | because the C and N elements are grouped together in the rows of A, we can do | ||
|  | lots of work with a fast dot product function. if A,x,etc were not permuted | ||
|  | and we only had a permutation array, then those dot products would be much | ||
|  | slower as we would have a permutation array lookup in some inner loops. | ||
|  | 
 | ||
|  | A is accessed through an array of row pointers, so that element (i,j) of the | ||
|  | permuted matrix is A[i][j]. this makes row swapping fast. for column swapping | ||
|  | we still have to actually move the data. | ||
|  | 
 | ||
|  | during execution of this algorithm we maintain an L*D*L' factorization of | ||
|  | the clamped submatrix of A (call it `AC') which is the top left nC*nC | ||
|  | submatrix of A. there are two ways we could arrange the rows/columns in AC. | ||
|  | 
 | ||
|  | (1) AC is always permuted such that L*D*L' = AC. this causes a problem | ||
|  | when a row/column is removed from C, because then all the rows/columns of A | ||
|  | between the deleted index and the end of C need to be rotated downward. | ||
|  | this results in a lot of data motion and slows things down. | ||
|  | (2) L*D*L' is actually a factorization of a *permutation* of AC (which is | ||
|  | itself a permutation of the underlying A). this is what we do - the | ||
|  | permutation is recorded in the vector C. call this permutation A[C,C]. | ||
|  | when a row/column is removed from C, all we have to do is swap two | ||
|  | rows/columns and manipulate C. | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "btDantzigLCP.h"
 | ||
|  | 
 | ||
|  | #include <string.h>//memcpy
 | ||
|  | 
 | ||
|  | bool s_error = false; | ||
|  | 
 | ||
|  | //***************************************************************************
 | ||
|  | // code generation parameters
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define btLCP_FAST		// use fast btLCP object
 | ||
|  | 
 | ||
|  | // option 1 : matrix row pointers (less data copying)
 | ||
|  | #define BTROWPTRS
 | ||
|  | #define BTATYPE btScalar **
 | ||
|  | #define BTAROW(i) (m_A[i])
 | ||
|  | 
 | ||
|  | // option 2 : no matrix row pointers (slightly faster inner loops)
 | ||
|  | //#define NOROWPTRS
 | ||
|  | //#define BTATYPE btScalar *
 | ||
|  | //#define BTAROW(i) (m_A+(i)*m_nskip)
 | ||
|  | 
 | ||
|  | #define BTNUB_OPTIMIZATIONS
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* solve L*X=B, with B containing 1 right hand sides.
 | ||
|  |  * L is an n*n lower triangular matrix with ones on the diagonal. | ||
|  |  * L is stored by rows and its leading dimension is lskip. | ||
|  |  * B is an n*1 matrix that contains the right hand sides. | ||
|  |  * B is stored by columns and its leading dimension is also lskip. | ||
|  |  * B is overwritten with X. | ||
|  |  * this processes blocks of 2*2. | ||
|  |  * if this is in the factorizer source file, n must be a multiple of 2. | ||
|  |  */ | ||
|  | 
 | ||
|  | static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1) | ||
|  | {   | ||
|  |   /* declare variables - Z matrix, p and q vectors, etc */ | ||
|  |   btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex; | ||
|  |   const btScalar *ell; | ||
|  |   int i,j; | ||
|  |   /* compute all 2 x 1 blocks of X */ | ||
|  |   for (i=0; i < n; i+=2) { | ||
|  |     /* compute all 2 x 1 block of X, from rows i..i+2-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     Z21=0; | ||
|  |     ell = L + i*lskip1; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-2; j >= 0; j -= 2) { | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       m11 = p1 * q1; | ||
|  |       p2=ell[lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[1]; | ||
|  |       q1=ex[1]; | ||
|  |       m11 = p1 * q1; | ||
|  |       p2=ell[1+lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 2; | ||
|  |       ex += 2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 2; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       m11 = p1 * q1; | ||
|  |       p2=ell[lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 1; | ||
|  |       ex += 1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |     p1 = ell[lskip1]; | ||
|  |     Z21 = ex[1] - Z21 - p1*Z11; | ||
|  |     ex[1] = Z21; | ||
|  |     /* end of outer loop */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* solve L*X=B, with B containing 2 right hand sides.
 | ||
|  |  * L is an n*n lower triangular matrix with ones on the diagonal. | ||
|  |  * L is stored by rows and its leading dimension is lskip. | ||
|  |  * B is an n*2 matrix that contains the right hand sides. | ||
|  |  * B is stored by columns and its leading dimension is also lskip. | ||
|  |  * B is overwritten with X. | ||
|  |  * this processes blocks of 2*2. | ||
|  |  * if this is in the factorizer source file, n must be a multiple of 2. | ||
|  |  */ | ||
|  | 
 | ||
|  | static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1) | ||
|  | {   | ||
|  |   /* declare variables - Z matrix, p and q vectors, etc */ | ||
|  |   btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex; | ||
|  |   const btScalar *ell; | ||
|  |   int i,j; | ||
|  |   /* compute all 2 x 2 blocks of X */ | ||
|  |   for (i=0; i < n; i+=2) { | ||
|  |     /* compute all 2 x 2 block of X, from rows i..i+2-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     Z12=0; | ||
|  |     Z21=0; | ||
|  |     Z22=0; | ||
|  |     ell = L + i*lskip1; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-2; j >= 0; j -= 2) { | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       m11 = p1 * q1; | ||
|  |       q2=ex[lskip1]; | ||
|  |       m12 = p1 * q2; | ||
|  |       p2=ell[lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       m22 = p2 * q2; | ||
|  |       Z11 += m11; | ||
|  |       Z12 += m12; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[1]; | ||
|  |       q1=ex[1]; | ||
|  |       m11 = p1 * q1; | ||
|  |       q2=ex[1+lskip1]; | ||
|  |       m12 = p1 * q2; | ||
|  |       p2=ell[1+lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       m22 = p2 * q2; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 2; | ||
|  |       ex += 2; | ||
|  |       Z11 += m11; | ||
|  |       Z12 += m12; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 2; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       m11 = p1 * q1; | ||
|  |       q2=ex[lskip1]; | ||
|  |       m12 = p1 * q2; | ||
|  |       p2=ell[lskip1]; | ||
|  |       m21 = p2 * q1; | ||
|  |       m22 = p2 * q2; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 1; | ||
|  |       ex += 1; | ||
|  |       Z11 += m11; | ||
|  |       Z12 += m12; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |     Z12 = ex[lskip1] - Z12; | ||
|  |     ex[lskip1] = Z12; | ||
|  |     p1 = ell[lskip1]; | ||
|  |     Z21 = ex[1] - Z21 - p1*Z11; | ||
|  |     ex[1] = Z21; | ||
|  |     Z22 = ex[1+lskip1] - Z22 - p1*Z12; | ||
|  |     ex[1+lskip1] = Z22; | ||
|  |     /* end of outer loop */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1) | ||
|  | {   | ||
|  |   int i,j; | ||
|  |   btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22; | ||
|  |   if (n < 1) return; | ||
|  |    | ||
|  |   for (i=0; i<=n-2; i += 2) { | ||
|  |     /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */ | ||
|  |     btSolveL1_2 (A,A+i*nskip1,i,nskip1); | ||
|  |     /* scale the elements in a 2 x i block at A(i,0), and also */ | ||
|  |     /* compute Z = the outer product matrix that we'll need. */ | ||
|  |     Z11 = 0; | ||
|  |     Z21 = 0; | ||
|  |     Z22 = 0; | ||
|  |     ell = A+i*nskip1; | ||
|  |     dee = d; | ||
|  |     for (j=i-6; j >= 0; j -= 6) { | ||
|  |       p1 = ell[0]; | ||
|  |       p2 = ell[nskip1]; | ||
|  |       dd = dee[0]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[0] = q1; | ||
|  |       ell[nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       p1 = ell[1]; | ||
|  |       p2 = ell[1+nskip1]; | ||
|  |       dd = dee[1]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[1] = q1; | ||
|  |       ell[1+nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       p1 = ell[2]; | ||
|  |       p2 = ell[2+nskip1]; | ||
|  |       dd = dee[2]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[2] = q1; | ||
|  |       ell[2+nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       p1 = ell[3]; | ||
|  |       p2 = ell[3+nskip1]; | ||
|  |       dd = dee[3]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[3] = q1; | ||
|  |       ell[3+nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       p1 = ell[4]; | ||
|  |       p2 = ell[4+nskip1]; | ||
|  |       dd = dee[4]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[4] = q1; | ||
|  |       ell[4+nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       p1 = ell[5]; | ||
|  |       p2 = ell[5+nskip1]; | ||
|  |       dd = dee[5]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[5] = q1; | ||
|  |       ell[5+nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       ell += 6; | ||
|  |       dee += 6; | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 6; | ||
|  |     for (; j > 0; j--) { | ||
|  |       p1 = ell[0]; | ||
|  |       p2 = ell[nskip1]; | ||
|  |       dd = dee[0]; | ||
|  |       q1 = p1*dd; | ||
|  |       q2 = p2*dd; | ||
|  |       ell[0] = q1; | ||
|  |       ell[nskip1] = q2; | ||
|  |       m11 = p1*q1; | ||
|  |       m21 = p2*q1; | ||
|  |       m22 = p2*q2; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z22 += m22; | ||
|  |       ell++; | ||
|  |       dee++; | ||
|  |     } | ||
|  |     /* solve for diagonal 2 x 2 block at A(i,i) */ | ||
|  |     Z11 = ell[0] - Z11; | ||
|  |     Z21 = ell[nskip1] - Z21; | ||
|  |     Z22 = ell[1+nskip1] - Z22; | ||
|  |     dee = d + i; | ||
|  |     /* factorize 2 x 2 block Z,dee */ | ||
|  |     /* factorize row 1 */ | ||
|  |     dee[0] = btRecip(Z11); | ||
|  |     /* factorize row 2 */ | ||
|  |     sum = 0; | ||
|  |     q1 = Z21; | ||
|  |     q2 = q1 * dee[0]; | ||
|  |     Z21 = q2; | ||
|  |     sum += q1*q2; | ||
|  |     dee[1] = btRecip(Z22 - sum); | ||
|  |     /* done factorizing 2 x 2 block */ | ||
|  |     ell[nskip1] = Z21; | ||
|  |   } | ||
|  |   /* compute the (less than 2) rows at the bottom */ | ||
|  |   switch (n-i) { | ||
|  |     case 0: | ||
|  |     break; | ||
|  |      | ||
|  |     case 1: | ||
|  |     btSolveL1_1 (A,A+i*nskip1,i,nskip1); | ||
|  |     /* scale the elements in a 1 x i block at A(i,0), and also */ | ||
|  |     /* compute Z = the outer product matrix that we'll need. */ | ||
|  |     Z11 = 0; | ||
|  |     ell = A+i*nskip1; | ||
|  |     dee = d; | ||
|  |     for (j=i-6; j >= 0; j -= 6) { | ||
|  |       p1 = ell[0]; | ||
|  |       dd = dee[0]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[0] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       p1 = ell[1]; | ||
|  |       dd = dee[1]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[1] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       p1 = ell[2]; | ||
|  |       dd = dee[2]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[2] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       p1 = ell[3]; | ||
|  |       dd = dee[3]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[3] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       p1 = ell[4]; | ||
|  |       dd = dee[4]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[4] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       p1 = ell[5]; | ||
|  |       dd = dee[5]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[5] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       ell += 6; | ||
|  |       dee += 6; | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 6; | ||
|  |     for (; j > 0; j--) { | ||
|  |       p1 = ell[0]; | ||
|  |       dd = dee[0]; | ||
|  |       q1 = p1*dd; | ||
|  |       ell[0] = q1; | ||
|  |       m11 = p1*q1; | ||
|  |       Z11 += m11; | ||
|  |       ell++; | ||
|  |       dee++; | ||
|  |     } | ||
|  |     /* solve for diagonal 1 x 1 block at A(i,i) */ | ||
|  |     Z11 = ell[0] - Z11; | ||
|  |     dee = d + i; | ||
|  |     /* factorize 1 x 1 block Z,dee */ | ||
|  |     /* factorize row 1 */ | ||
|  |     dee[0] = btRecip(Z11); | ||
|  |     /* done factorizing 1 x 1 block */ | ||
|  |     break; | ||
|  |      | ||
|  |     //default: *((char*)0)=0;  /* this should never happen! */
 | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* solve L*X=B, with B containing 1 right hand sides.
 | ||
|  |  * L is an n*n lower triangular matrix with ones on the diagonal. | ||
|  |  * L is stored by rows and its leading dimension is lskip. | ||
|  |  * B is an n*1 matrix that contains the right hand sides. | ||
|  |  * B is stored by columns and its leading dimension is also lskip. | ||
|  |  * B is overwritten with X. | ||
|  |  * this processes blocks of 4*4. | ||
|  |  * if this is in the factorizer source file, n must be a multiple of 4. | ||
|  |  */ | ||
|  | 
 | ||
|  | void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1) | ||
|  | {   | ||
|  |   /* declare variables - Z matrix, p and q vectors, etc */ | ||
|  |   btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex; | ||
|  |   const btScalar *ell; | ||
|  |   int lskip2,lskip3,i,j; | ||
|  |   /* compute lskip values */ | ||
|  |   lskip2 = 2*lskip1; | ||
|  |   lskip3 = 3*lskip1; | ||
|  |   /* compute all 4 x 1 blocks of X */ | ||
|  |   for (i=0; i <= n-4; i+=4) { | ||
|  |     /* compute all 4 x 1 block of X, from rows i..i+4-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     Z21=0; | ||
|  |     Z31=0; | ||
|  |     Z41=0; | ||
|  |     ell = L + i*lskip1; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-12; j >= 0; j -= 12) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       p2=ell[lskip1]; | ||
|  |       p3=ell[lskip2]; | ||
|  |       p4=ell[lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[1]; | ||
|  |       q1=ex[1]; | ||
|  |       p2=ell[1+lskip1]; | ||
|  |       p3=ell[1+lskip2]; | ||
|  |       p4=ell[1+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[2]; | ||
|  |       q1=ex[2]; | ||
|  |       p2=ell[2+lskip1]; | ||
|  |       p3=ell[2+lskip2]; | ||
|  |       p4=ell[2+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[3]; | ||
|  |       q1=ex[3]; | ||
|  |       p2=ell[3+lskip1]; | ||
|  |       p3=ell[3+lskip2]; | ||
|  |       p4=ell[3+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[4]; | ||
|  |       q1=ex[4]; | ||
|  |       p2=ell[4+lskip1]; | ||
|  |       p3=ell[4+lskip2]; | ||
|  |       p4=ell[4+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[5]; | ||
|  |       q1=ex[5]; | ||
|  |       p2=ell[5+lskip1]; | ||
|  |       p3=ell[5+lskip2]; | ||
|  |       p4=ell[5+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[6]; | ||
|  |       q1=ex[6]; | ||
|  |       p2=ell[6+lskip1]; | ||
|  |       p3=ell[6+lskip2]; | ||
|  |       p4=ell[6+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[7]; | ||
|  |       q1=ex[7]; | ||
|  |       p2=ell[7+lskip1]; | ||
|  |       p3=ell[7+lskip2]; | ||
|  |       p4=ell[7+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[8]; | ||
|  |       q1=ex[8]; | ||
|  |       p2=ell[8+lskip1]; | ||
|  |       p3=ell[8+lskip2]; | ||
|  |       p4=ell[8+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[9]; | ||
|  |       q1=ex[9]; | ||
|  |       p2=ell[9+lskip1]; | ||
|  |       p3=ell[9+lskip2]; | ||
|  |       p4=ell[9+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[10]; | ||
|  |       q1=ex[10]; | ||
|  |       p2=ell[10+lskip1]; | ||
|  |       p3=ell[10+lskip2]; | ||
|  |       p4=ell[10+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[11]; | ||
|  |       q1=ex[11]; | ||
|  |       p2=ell[11+lskip1]; | ||
|  |       p3=ell[11+lskip2]; | ||
|  |       p4=ell[11+lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 12; | ||
|  |       ex += 12; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 12; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       p2=ell[lskip1]; | ||
|  |       p3=ell[lskip2]; | ||
|  |       p4=ell[lskip3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       Z21 += p2 * q1; | ||
|  |       Z31 += p3 * q1; | ||
|  |       Z41 += p4 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 1; | ||
|  |       ex += 1; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |     p1 = ell[lskip1]; | ||
|  |     Z21 = ex[1] - Z21 - p1*Z11; | ||
|  |     ex[1] = Z21; | ||
|  |     p1 = ell[lskip2]; | ||
|  |     p2 = ell[1+lskip2]; | ||
|  |     Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21; | ||
|  |     ex[2] = Z31; | ||
|  |     p1 = ell[lskip3]; | ||
|  |     p2 = ell[1+lskip3]; | ||
|  |     p3 = ell[2+lskip3]; | ||
|  |     Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31; | ||
|  |     ex[3] = Z41; | ||
|  |     /* end of outer loop */ | ||
|  |   } | ||
|  |   /* compute rows at end that are not a multiple of block size */ | ||
|  |   for (; i < n; i++) { | ||
|  |     /* compute all 1 x 1 block of X, from rows i..i+1-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     ell = L + i*lskip1; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-12; j >= 0; j -= 12) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[1]; | ||
|  |       q1=ex[1]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[2]; | ||
|  |       q1=ex[2]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[3]; | ||
|  |       q1=ex[3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[4]; | ||
|  |       q1=ex[4]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[5]; | ||
|  |       q1=ex[5]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[6]; | ||
|  |       q1=ex[6]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[7]; | ||
|  |       q1=ex[7]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[8]; | ||
|  |       q1=ex[8]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[9]; | ||
|  |       q1=ex[9]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[10]; | ||
|  |       q1=ex[10]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[11]; | ||
|  |       q1=ex[11]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 12; | ||
|  |       ex += 12; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 12; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       Z11 += p1 * q1; | ||
|  |       /* advance pointers */ | ||
|  |       ell += 1; | ||
|  |       ex += 1; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* solve L^T * x=b, with b containing 1 right hand side.
 | ||
|  |  * L is an n*n lower triangular matrix with ones on the diagonal. | ||
|  |  * L is stored by rows and its leading dimension is lskip. | ||
|  |  * b is an n*1 matrix that contains the right hand side. | ||
|  |  * b is overwritten with x. | ||
|  |  * this processes blocks of 4. | ||
|  |  */ | ||
|  | 
 | ||
|  | void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1) | ||
|  | {   | ||
|  |   /* declare variables - Z matrix, p and q vectors, etc */ | ||
|  |   btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex; | ||
|  |   const btScalar *ell; | ||
|  |   int lskip2,i,j; | ||
|  | //  int lskip3;
 | ||
|  |   /* special handling for L and B because we're solving L1 *transpose* */ | ||
|  |   L = L + (n-1)*(lskip1+1); | ||
|  |   B = B + n-1; | ||
|  |   lskip1 = -lskip1; | ||
|  |   /* compute lskip values */ | ||
|  |   lskip2 = 2*lskip1; | ||
|  |   //lskip3 = 3*lskip1;
 | ||
|  |   /* compute all 4 x 1 blocks of X */ | ||
|  |   for (i=0; i <= n-4; i+=4) { | ||
|  |     /* compute all 4 x 1 block of X, from rows i..i+4-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     Z21=0; | ||
|  |     Z31=0; | ||
|  |     Z41=0; | ||
|  |     ell = L - i; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-4; j >= 0; j -= 4) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       p2=ell[-1]; | ||
|  |       p3=ell[-2]; | ||
|  |       p4=ell[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       m21 = p2 * q1; | ||
|  |       m31 = p3 * q1; | ||
|  |       m41 = p4 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z31 += m31; | ||
|  |       Z41 += m41; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-1]; | ||
|  |       p2=ell[-1]; | ||
|  |       p3=ell[-2]; | ||
|  |       p4=ell[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       m21 = p2 * q1; | ||
|  |       m31 = p3 * q1; | ||
|  |       m41 = p4 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z31 += m31; | ||
|  |       Z41 += m41; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-2]; | ||
|  |       p2=ell[-1]; | ||
|  |       p3=ell[-2]; | ||
|  |       p4=ell[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       m21 = p2 * q1; | ||
|  |       m31 = p3 * q1; | ||
|  |       m41 = p4 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z31 += m31; | ||
|  |       Z41 += m41; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-3]; | ||
|  |       p2=ell[-1]; | ||
|  |       p3=ell[-2]; | ||
|  |       p4=ell[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       m21 = p2 * q1; | ||
|  |       m31 = p3 * q1; | ||
|  |       m41 = p4 * q1; | ||
|  |       ell += lskip1; | ||
|  |       ex -= 4; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z31 += m31; | ||
|  |       Z41 += m41; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 4; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       p2=ell[-1]; | ||
|  |       p3=ell[-2]; | ||
|  |       p4=ell[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       m21 = p2 * q1; | ||
|  |       m31 = p3 * q1; | ||
|  |       m41 = p4 * q1; | ||
|  |       ell += lskip1; | ||
|  |       ex -= 1; | ||
|  |       Z11 += m11; | ||
|  |       Z21 += m21; | ||
|  |       Z31 += m31; | ||
|  |       Z41 += m41; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |     p1 = ell[-1]; | ||
|  |     Z21 = ex[-1] - Z21 - p1*Z11; | ||
|  |     ex[-1] = Z21; | ||
|  |     p1 = ell[-2]; | ||
|  |     p2 = ell[-2+lskip1]; | ||
|  |     Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21; | ||
|  |     ex[-2] = Z31; | ||
|  |     p1 = ell[-3]; | ||
|  |     p2 = ell[-3+lskip1]; | ||
|  |     p3 = ell[-3+lskip2]; | ||
|  |     Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31; | ||
|  |     ex[-3] = Z41; | ||
|  |     /* end of outer loop */ | ||
|  |   } | ||
|  |   /* compute rows at end that are not a multiple of block size */ | ||
|  |   for (; i < n; i++) { | ||
|  |     /* compute all 1 x 1 block of X, from rows i..i+1-1 */ | ||
|  |     /* set the Z matrix to 0 */ | ||
|  |     Z11=0; | ||
|  |     ell = L - i; | ||
|  |     ex = B; | ||
|  |     /* the inner loop that computes outer products and adds them to Z */ | ||
|  |     for (j=i-4; j >= 0; j -= 4) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-1]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-2]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       ell += lskip1; | ||
|  |       Z11 += m11; | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[-3]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       ell += lskip1; | ||
|  |       ex -= 4; | ||
|  |       Z11 += m11; | ||
|  |       /* end of inner loop */ | ||
|  |     } | ||
|  |     /* compute left-over iterations */ | ||
|  |     j += 4; | ||
|  |     for (; j > 0; j--) { | ||
|  |       /* load p and q values */ | ||
|  |       p1=ell[0]; | ||
|  |       q1=ex[0]; | ||
|  |       /* compute outer product and add it to the Z matrix */ | ||
|  |       m11 = p1 * q1; | ||
|  |       ell += lskip1; | ||
|  |       ex -= 1; | ||
|  |       Z11 += m11; | ||
|  |     } | ||
|  |     /* finish computing the X(i) block */ | ||
|  |     Z11 = ex[0] - Z11; | ||
|  |     ex[0] = Z11; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btVectorScale (btScalar *a, const btScalar *d, int n) | ||
|  | { | ||
|  |   btAssert (a && d && n >= 0); | ||
|  |   for (int i=0; i<n; i++) { | ||
|  |     a[i] *= d[i]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip) | ||
|  | { | ||
|  |   btAssert (L && d && b && n > 0 && nskip >= n); | ||
|  |   btSolveL1 (L,b,n,nskip); | ||
|  |   btVectorScale (b,d,n); | ||
|  |   btSolveL1T (L,b,n,nskip); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //***************************************************************************
 | ||
|  | 
 | ||
|  | // swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
 | ||
|  | // A is nskip. this only references and swaps the lower triangle.
 | ||
|  | // if `do_fast_row_swaps' is nonzero and row pointers are being used, then
 | ||
|  | // rows will be swapped by exchanging row pointers. otherwise the data will
 | ||
|  | // be copied.
 | ||
|  | 
 | ||
|  | static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip,  | ||
|  |   int do_fast_row_swaps) | ||
|  | { | ||
|  |   btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && | ||
|  |     nskip >= n && i1 < i2); | ||
|  | 
 | ||
|  | # ifdef BTROWPTRS
 | ||
|  |   btScalar *A_i1 = A[i1]; | ||
|  |   btScalar *A_i2 = A[i2]; | ||
|  |   for (int i=i1+1; i<i2; ++i) { | ||
|  |     btScalar *A_i_i1 = A[i] + i1; | ||
|  |     A_i1[i] = *A_i_i1; | ||
|  |     *A_i_i1 = A_i2[i]; | ||
|  |   } | ||
|  |   A_i1[i2] = A_i1[i1]; | ||
|  |   A_i1[i1] = A_i2[i1]; | ||
|  |   A_i2[i1] = A_i2[i2]; | ||
|  |   // swap rows, by swapping row pointers
 | ||
|  |   if (do_fast_row_swaps) { | ||
|  |     A[i1] = A_i2; | ||
|  |     A[i2] = A_i1; | ||
|  |   } | ||
|  |   else { | ||
|  |     // Only swap till i2 column to match A plain storage variant.
 | ||
|  |     for (int k = 0; k <= i2; ++k) { | ||
|  |       btScalar tmp = A_i1[k]; | ||
|  |       A_i1[k] = A_i2[k]; | ||
|  |       A_i2[k] = tmp; | ||
|  |     } | ||
|  |   } | ||
|  |   // swap columns the hard way
 | ||
|  |   for (int j=i2+1; j<n; ++j) { | ||
|  |     btScalar *A_j = A[j]; | ||
|  |     btScalar tmp = A_j[i1]; | ||
|  |     A_j[i1] = A_j[i2]; | ||
|  |     A_j[i2] = tmp; | ||
|  |   } | ||
|  | # else
 | ||
|  |   btScalar *A_i1 = A+i1*nskip; | ||
|  |   btScalar *A_i2 = A+i2*nskip; | ||
|  |   for (int k = 0; k < i1; ++k) { | ||
|  |     btScalar tmp = A_i1[k]; | ||
|  |     A_i1[k] = A_i2[k]; | ||
|  |     A_i2[k] = tmp; | ||
|  |   } | ||
|  |   btScalar *A_i = A_i1 + nskip; | ||
|  |   for (int i=i1+1; i<i2; A_i+=nskip, ++i) { | ||
|  |     btScalar tmp = A_i2[i]; | ||
|  |     A_i2[i] = A_i[i1]; | ||
|  |     A_i[i1] = tmp; | ||
|  |   } | ||
|  |   { | ||
|  |     btScalar tmp = A_i1[i1]; | ||
|  |     A_i1[i1] = A_i2[i2]; | ||
|  |     A_i2[i2] = tmp; | ||
|  |   } | ||
|  |   btScalar *A_j = A_i2 + nskip; | ||
|  |   for (int j=i2+1; j<n; A_j+=nskip, ++j) { | ||
|  |     btScalar tmp = A_j[i1]; | ||
|  |     A_j[i1] = A_j[i2]; | ||
|  |     A_j[i2] = tmp; | ||
|  |   } | ||
|  | # endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // swap two indexes in the n*n LCP problem. i1 must be <= i2.
 | ||
|  | 
 | ||
|  | static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo, | ||
|  |                          btScalar *hi, int *p, bool *state, int *findex, | ||
|  |                          int n, int i1, int i2, int nskip, | ||
|  |                          int do_fast_row_swaps) | ||
|  | { | ||
|  |   btScalar tmpr; | ||
|  |   int tmpi; | ||
|  |   bool tmpb; | ||
|  |   btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2); | ||
|  |   if (i1==i2) return; | ||
|  |    | ||
|  |   btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps); | ||
|  |    | ||
|  |   tmpr = x[i1]; | ||
|  |   x[i1] = x[i2]; | ||
|  |   x[i2] = tmpr; | ||
|  |    | ||
|  |   tmpr = b[i1]; | ||
|  |   b[i1] = b[i2]; | ||
|  |   b[i2] = tmpr; | ||
|  |    | ||
|  |   tmpr = w[i1]; | ||
|  |   w[i1] = w[i2]; | ||
|  |   w[i2] = tmpr; | ||
|  |    | ||
|  |   tmpr = lo[i1]; | ||
|  |   lo[i1] = lo[i2]; | ||
|  |   lo[i2] = tmpr; | ||
|  | 
 | ||
|  |   tmpr = hi[i1]; | ||
|  |   hi[i1] = hi[i2]; | ||
|  |   hi[i2] = tmpr; | ||
|  | 
 | ||
|  |   tmpi = p[i1]; | ||
|  |   p[i1] = p[i2]; | ||
|  |   p[i2] = tmpi; | ||
|  | 
 | ||
|  |   tmpb = state[i1]; | ||
|  |   state[i1] = state[i2]; | ||
|  |   state[i2] = tmpb; | ||
|  | 
 | ||
|  |   if (findex) { | ||
|  |     tmpi = findex[i1]; | ||
|  |     findex[i1] = findex[i2]; | ||
|  |     findex[i2] = tmpi; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //***************************************************************************
 | ||
|  | // btLCP manipulator object. this represents an n*n LCP problem.
 | ||
|  | //
 | ||
|  | // two index sets C and N are kept. each set holds a subset of
 | ||
|  | // the variable indexes 0..n-1. an index can only be in one set.
 | ||
|  | // initially both sets are empty.
 | ||
|  | //
 | ||
|  | // the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
 | ||
|  | 
 | ||
|  | //***************************************************************************
 | ||
|  | // fast implementation of btLCP. see the above definition of btLCP for
 | ||
|  | // interface comments.
 | ||
|  | //
 | ||
|  | // `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
 | ||
|  | // permuted as the other vectors/matrices are permuted.
 | ||
|  | //
 | ||
|  | // A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
 | ||
|  | // contiguous indexes. the don't-care indexes follow N.
 | ||
|  | //
 | ||
|  | // an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
 | ||
|  | // added or removed from the set C the factorization is updated.
 | ||
|  | // thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
 | ||
|  | // the leading dimension of the matrix L is always `nskip'.
 | ||
|  | //
 | ||
|  | // at the start there may be other indexes that are unbounded but are not
 | ||
|  | // included in `nub'. btLCP will permute the matrix so that absolutely all
 | ||
|  | // unbounded vectors are at the start. thus there may be some initial
 | ||
|  | // permutation.
 | ||
|  | //
 | ||
|  | // the algorithms here assume certain patterns, particularly with respect to
 | ||
|  | // index transfer.
 | ||
|  | 
 | ||
|  | #ifdef btLCP_FAST
 | ||
|  | 
 | ||
|  | struct btLCP  | ||
|  | { | ||
|  | 	const int m_n; | ||
|  | 	const int m_nskip; | ||
|  | 	int m_nub; | ||
|  | 	int m_nC, m_nN;				// size of each index set
 | ||
|  | 	BTATYPE const m_A;				// A rows
 | ||
|  | 	btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi;	// permuted LCP problem data
 | ||
|  | 	btScalar *const m_L, *const m_d;				// L*D*L' factorization of set C
 | ||
|  | 	btScalar *const m_Dell, *const m_ell, *const m_tmp; | ||
|  | 	bool *const m_state; | ||
|  | 	int *const m_findex, *const m_p, *const m_C; | ||
|  | 
 | ||
|  | 	btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w, | ||
|  | 		btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d, | ||
|  | 		btScalar *_Dell, btScalar *_ell, btScalar *_tmp, | ||
|  | 		bool *_state, int *_findex, int *p, int *c, btScalar **Arows); | ||
|  | 	int getNub() const { return m_nub; } | ||
|  | 	void transfer_i_to_C (int i); | ||
|  | 	void transfer_i_to_N (int i) { m_nN++; }			// because we can assume C and N span 1:i-1
 | ||
|  | 	void transfer_i_from_N_to_C (int i); | ||
|  | 	void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch); | ||
|  | 	int numC() const { return m_nC; } | ||
|  | 	int numN() const { return m_nN; } | ||
|  | 	int indexC (int i) const { return i; } | ||
|  | 	int indexN (int i) const { return i+m_nC; } | ||
|  | 	btScalar Aii (int i) const  { return BTAROW(i)[i]; } | ||
|  | 	btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); } | ||
|  | 	btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); } | ||
|  | 	void pN_equals_ANC_times_qC (btScalar *p, btScalar *q); | ||
|  | 	void pN_plusequals_ANi (btScalar *p, int i, int sign=1); | ||
|  | 	void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q); | ||
|  | 	void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q); | ||
|  | 	void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0); | ||
|  | 	void unpermute(); | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w, | ||
|  |             btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d, | ||
|  |             btScalar *_Dell, btScalar *_ell, btScalar *_tmp, | ||
|  |             bool *_state, int *_findex, int *p, int *c, btScalar **Arows): | ||
|  |   m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0), | ||
|  | # ifdef BTROWPTRS
 | ||
|  |   m_A(Arows), | ||
|  | #else
 | ||
|  |   m_A(_Adata), | ||
|  | #endif
 | ||
|  |   m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi), | ||
|  |   m_L(l), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp), | ||
|  |   m_state(_state), m_findex(_findex), m_p(p), m_C(c) | ||
|  | { | ||
|  |   { | ||
|  |     btSetZero (m_x,m_n); | ||
|  |   } | ||
|  | 
 | ||
|  |   { | ||
|  | # ifdef BTROWPTRS
 | ||
|  |     // make matrix row pointers
 | ||
|  |     btScalar *aptr = _Adata; | ||
|  |     BTATYPE A = m_A; | ||
|  |     const int n = m_n, nskip = m_nskip; | ||
|  |     for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr; | ||
|  | # endif
 | ||
|  |   } | ||
|  | 
 | ||
|  |   { | ||
|  |     int *p = m_p; | ||
|  |     const int n = m_n; | ||
|  |     for (int k=0; k<n; ++k) p[k]=k;		// initially unpermuted
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |   // for testing, we can do some random swaps in the area i > nub
 | ||
|  |   { | ||
|  |     const int n = m_n; | ||
|  |     const int nub = m_nub; | ||
|  |     if (nub < n) { | ||
|  |     for (int k=0; k<100; k++) { | ||
|  |       int i1,i2; | ||
|  |       do { | ||
|  |         i1 = dRandInt(n-nub)+nub; | ||
|  |         i2 = dRandInt(n-nub)+nub; | ||
|  |       } | ||
|  |       while (i1 > i2);  | ||
|  |       //printf ("--> %d %d\n",i1,i2);
 | ||
|  |       btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0); | ||
|  |     } | ||
|  |   } | ||
|  |   */ | ||
|  | 
 | ||
|  |   // permute the problem so that *all* the unbounded variables are at the
 | ||
|  |   // start, i.e. look for unbounded variables not included in `nub'. we can
 | ||
|  |   // potentially push up `nub' this way and get a bigger initial factorization.
 | ||
|  |   // note that when we swap rows/cols here we must not just swap row pointers,
 | ||
|  |   // as the initial factorization relies on the data being all in one chunk.
 | ||
|  |   // variables that have findex >= 0 are *not* considered to be unbounded even
 | ||
|  |   // if lo=-inf and hi=inf - this is because these limits may change during the
 | ||
|  |   // solution process.
 | ||
|  | 
 | ||
|  |   { | ||
|  |     int *findex = m_findex; | ||
|  |     btScalar *lo = m_lo, *hi = m_hi; | ||
|  |     const int n = m_n; | ||
|  |     for (int k = m_nub; k<n; ++k) { | ||
|  |       if (findex && findex[k] >= 0) continue; | ||
|  |       if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) { | ||
|  |         btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0); | ||
|  |         m_nub++; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // if there are unbounded variables at the start, factorize A up to that
 | ||
|  |   // point and solve for x. this puts all indexes 0..nub-1 into C.
 | ||
|  |   if (m_nub > 0) { | ||
|  |     const int nub = m_nub; | ||
|  |     { | ||
|  |       btScalar *Lrow = m_L; | ||
|  |       const int nskip = m_nskip; | ||
|  |       for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar)); | ||
|  |     } | ||
|  |     btFactorLDLT (m_L,m_d,nub,m_nskip); | ||
|  |     memcpy (m_x,m_b,nub*sizeof(btScalar)); | ||
|  |     btSolveLDLT (m_L,m_d,m_x,nub,m_nskip); | ||
|  |     btSetZero (m_w,nub); | ||
|  |     { | ||
|  |       int *C = m_C; | ||
|  |       for (int k=0; k<nub; ++k) C[k] = k; | ||
|  |     } | ||
|  |     m_nC = nub; | ||
|  |   } | ||
|  | 
 | ||
|  |   // permute the indexes > nub such that all findex variables are at the end
 | ||
|  |   if (m_findex) { | ||
|  |     const int nub = m_nub; | ||
|  |     int *findex = m_findex; | ||
|  |     int num_at_end = 0; | ||
|  |     for (int k=m_n-1; k >= nub; k--) { | ||
|  |       if (findex[k] >= 0) { | ||
|  |         btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1); | ||
|  |         num_at_end++; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // print info about indexes
 | ||
|  |   /*
 | ||
|  |   { | ||
|  |     const int n = m_n; | ||
|  |     const int nub = m_nub; | ||
|  |     for (int k=0; k<n; k++) { | ||
|  |       if (k<nub) printf ("C"); | ||
|  |       else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c"); | ||
|  |       else printf ("."); | ||
|  |     } | ||
|  |     printf ("\n"); | ||
|  |   } | ||
|  |   */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::transfer_i_to_C (int i) | ||
|  | { | ||
|  |   { | ||
|  |     if (m_nC > 0) { | ||
|  |       // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
 | ||
|  |       { | ||
|  |         const int nC = m_nC; | ||
|  |         btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell; | ||
|  |         for (int j=0; j<nC; ++j) Ltgt[j] = ell[j]; | ||
|  |       } | ||
|  |       const int nC = m_nC; | ||
|  |       m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC)); | ||
|  |     } | ||
|  |     else { | ||
|  |       m_d[0] = btRecip (BTAROW(i)[i]); | ||
|  |     } | ||
|  | 
 | ||
|  |     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1); | ||
|  | 
 | ||
|  |     const int nC = m_nC; | ||
|  |     m_C[nC] = nC; | ||
|  |     m_nC = nC + 1; // nC value is outdated after this line
 | ||
|  |   } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::transfer_i_from_N_to_C (int i) | ||
|  | { | ||
|  |   { | ||
|  |     if (m_nC > 0) { | ||
|  |       { | ||
|  |         btScalar *const aptr = BTAROW(i); | ||
|  |         btScalar *Dell = m_Dell; | ||
|  |         const int *C = m_C; | ||
|  | #   ifdef BTNUB_OPTIMIZATIONS
 | ||
|  |         // if nub>0, initial part of aptr unpermuted
 | ||
|  |         const int nub = m_nub; | ||
|  |         int j=0; | ||
|  |         for ( ; j<nub; ++j) Dell[j] = aptr[j]; | ||
|  |         const int nC = m_nC; | ||
|  |         for ( ; j<nC; ++j) Dell[j] = aptr[C[j]]; | ||
|  | #   else
 | ||
|  |         const int nC = m_nC; | ||
|  |         for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]]; | ||
|  | #   endif
 | ||
|  |       } | ||
|  |       btSolveL1 (m_L,m_Dell,m_nC,m_nskip); | ||
|  |       { | ||
|  |         const int nC = m_nC; | ||
|  |         btScalar *const Ltgt = m_L + nC*m_nskip; | ||
|  |         btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d; | ||
|  |         for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j]; | ||
|  |       } | ||
|  |       const int nC = m_nC; | ||
|  |       m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC)); | ||
|  |     } | ||
|  |     else { | ||
|  |       m_d[0] = btRecip (BTAROW(i)[i]); | ||
|  |     } | ||
|  | 
 | ||
|  |     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1); | ||
|  | 
 | ||
|  |     const int nC = m_nC; | ||
|  |     m_C[nC] = nC; | ||
|  |     m_nN--; | ||
|  |     m_nC = nC + 1; // nC value is outdated after this line
 | ||
|  |   } | ||
|  | 
 | ||
|  |   // @@@ TO DO LATER
 | ||
|  |   // if we just finish here then we'll go back and re-solve for
 | ||
|  |   // delta_x. but actually we can be more efficient and incrementally
 | ||
|  |   // update delta_x here. but if we do this, we wont have ell and Dell
 | ||
|  |   // to use in updating the factorization later.
 | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void btRemoveRowCol (btScalar *A, int n, int nskip, int r) | ||
|  | { | ||
|  |   btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n); | ||
|  |   if (r >= n-1) return; | ||
|  |   if (r > 0) { | ||
|  |     { | ||
|  |       const size_t move_size = (n-r-1)*sizeof(btScalar); | ||
|  |       btScalar *Adst = A + r; | ||
|  |       for (int i=0; i<r; Adst+=nskip,++i) { | ||
|  |         btScalar *Asrc = Adst + 1; | ||
|  |         memmove (Adst,Asrc,move_size); | ||
|  |       } | ||
|  |     } | ||
|  |     { | ||
|  |       const size_t cpy_size = r*sizeof(btScalar); | ||
|  |       btScalar *Adst = A + r * nskip; | ||
|  |       for (int i=r; i<(n-1); ++i) { | ||
|  |         btScalar *Asrc = Adst + nskip; | ||
|  |         memcpy (Adst,Asrc,cpy_size); | ||
|  |         Adst = Asrc; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   { | ||
|  |     const size_t cpy_size = (n-r-1)*sizeof(btScalar); | ||
|  |     btScalar *Adst = A + r * (nskip + 1); | ||
|  |     for (int i=r; i<(n-1); ++i) { | ||
|  |       btScalar *Asrc = Adst + (nskip + 1); | ||
|  |       memcpy (Adst,Asrc,cpy_size); | ||
|  |       Adst = Asrc - 1; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch) | ||
|  | { | ||
|  |   btAssert (L && d && a && n > 0 && nskip >= n); | ||
|  | 
 | ||
|  |   if (n < 2) return; | ||
|  |   scratch.resize(2*nskip); | ||
|  |   btScalar *W1 = &scratch[0]; | ||
|  |    | ||
|  |   btScalar *W2 = W1 + nskip; | ||
|  | 
 | ||
|  |   W1[0] = btScalar(0.0); | ||
|  |   W2[0] = btScalar(0.0); | ||
|  |   for (int j=1; j<n; ++j) { | ||
|  |     W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12); | ||
|  |   } | ||
|  |   btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12); | ||
|  |   btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12); | ||
|  | 
 | ||
|  |   btScalar alpha1 = btScalar(1.0); | ||
|  |   btScalar alpha2 = btScalar(1.0); | ||
|  | 
 | ||
|  |   { | ||
|  |     btScalar dee = d[0]; | ||
|  |     btScalar alphanew = alpha1 + (W11*W11)*dee; | ||
|  |     btAssert(alphanew != btScalar(0.0)); | ||
|  |     dee /= alphanew; | ||
|  |     btScalar gamma1 = W11 * dee; | ||
|  |     dee *= alpha1; | ||
|  |     alpha1 = alphanew; | ||
|  |     alphanew = alpha2 - (W21*W21)*dee; | ||
|  |     dee /= alphanew; | ||
|  |     //btScalar gamma2 = W21 * dee;
 | ||
|  |     alpha2 = alphanew; | ||
|  |     btScalar k1 = btScalar(1.0) - W21*gamma1; | ||
|  |     btScalar k2 = W21*gamma1*W11 - W21; | ||
|  |     btScalar *ll = L + nskip; | ||
|  |     for (int p=1; p<n; ll+=nskip, ++p) { | ||
|  |       btScalar Wp = W1[p]; | ||
|  |       btScalar ell = *ll; | ||
|  |       W1[p] =    Wp - W11*ell; | ||
|  |       W2[p] = k1*Wp +  k2*ell; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   btScalar *ll = L + (nskip + 1); | ||
|  |   for (int j=1; j<n; ll+=nskip+1, ++j) { | ||
|  |     btScalar k1 = W1[j]; | ||
|  |     btScalar k2 = W2[j]; | ||
|  | 
 | ||
|  |     btScalar dee = d[j]; | ||
|  |     btScalar alphanew = alpha1 + (k1*k1)*dee; | ||
|  |     btAssert(alphanew != btScalar(0.0)); | ||
|  |     dee /= alphanew; | ||
|  |     btScalar gamma1 = k1 * dee; | ||
|  |     dee *= alpha1; | ||
|  |     alpha1 = alphanew; | ||
|  |     alphanew = alpha2 - (k2*k2)*dee; | ||
|  |     dee /= alphanew; | ||
|  |     btScalar gamma2 = k2 * dee; | ||
|  |     dee *= alpha2; | ||
|  |     d[j] = dee; | ||
|  |     alpha2 = alphanew; | ||
|  | 
 | ||
|  |     btScalar *l = ll + nskip; | ||
|  |     for (int p=j+1; p<n; l+=nskip, ++p) { | ||
|  |       btScalar ell = *l; | ||
|  |       btScalar Wp = W1[p] - k1 * ell; | ||
|  |       ell += gamma1 * Wp; | ||
|  |       W1[p] = Wp; | ||
|  |       Wp = W2[p] - k2 * ell; | ||
|  |       ell -= gamma2 * Wp; | ||
|  |       W2[p] = Wp; | ||
|  |       *l = ell; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #define _BTGETA(i,j) (A[i][j])
 | ||
|  | //#define _GETA(i,j) (A[(i)*nskip+(j)])
 | ||
|  | #define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
 | ||
|  | 
 | ||
|  | inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip) | ||
|  | { | ||
|  |   return nskip * 2 * sizeof(btScalar); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d, | ||
|  |     int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch) | ||
|  | { | ||
|  |   btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 && | ||
|  | 	   n1 >= n2 && nskip >= n1); | ||
|  |   #ifdef BT_DEBUG
 | ||
|  | 	for (int i=0; i<n2; ++i)  | ||
|  | 		btAssert(p[i] >= 0 && p[i] < n1); | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |   if (r==n2-1) { | ||
|  |     return;		// deleting last row/col is easy
 | ||
|  |   } | ||
|  |   else { | ||
|  |     size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip); | ||
|  |     btAssert(LDLTAddTL_size % sizeof(btScalar) == 0); | ||
|  | 	scratch.resize(nskip * 2+n2); | ||
|  |     btScalar *tmp = &scratch[0]; | ||
|  |     if (r==0) { | ||
|  |       btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size); | ||
|  |       const int p_0 = p[0]; | ||
|  |       for (int i=0; i<n2; ++i) { | ||
|  |         a[i] = -BTGETA(p[i],p_0); | ||
|  |       } | ||
|  |       a[0] += btScalar(1.0); | ||
|  |       btLDLTAddTL (L,d,a,n2,nskip,scratch); | ||
|  |     } | ||
|  |     else { | ||
|  |       btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size); | ||
|  |       { | ||
|  |         btScalar *Lcurr = L + r*nskip; | ||
|  |         for (int i=0; i<r; ++Lcurr, ++i) { | ||
|  |           btAssert(d[i] != btScalar(0.0)); | ||
|  |           t[i] = *Lcurr / d[i]; | ||
|  |         } | ||
|  |       } | ||
|  |       btScalar *a = t + r; | ||
|  |       { | ||
|  |         btScalar *Lcurr = L + r*nskip; | ||
|  |         const int *pp_r = p + r, p_r = *pp_r; | ||
|  |         const int n2_minus_r = n2-r; | ||
|  |         for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) { | ||
|  |           a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r); | ||
|  |         } | ||
|  |       } | ||
|  |       a[0] += btScalar(1.0); | ||
|  |       btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // snip out row/column r from L and d
 | ||
|  |   btRemoveRowCol (L,n2,nskip,r); | ||
|  |   if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch) | ||
|  | { | ||
|  |   { | ||
|  |     int *C = m_C; | ||
|  |     // remove a row/column from the factorization, and adjust the
 | ||
|  |     // indexes (black magic!)
 | ||
|  |     int last_idx = -1; | ||
|  |     const int nC = m_nC; | ||
|  |     int j = 0; | ||
|  |     for ( ; j<nC; ++j) { | ||
|  |       if (C[j]==nC-1) { | ||
|  |         last_idx = j; | ||
|  |       } | ||
|  |       if (C[j]==i) { | ||
|  |         btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch); | ||
|  |         int k; | ||
|  |         if (last_idx == -1) { | ||
|  |           for (k=j+1 ; k<nC; ++k) { | ||
|  |             if (C[k]==nC-1) { | ||
|  |               break; | ||
|  |             } | ||
|  |           } | ||
|  |           btAssert (k < nC); | ||
|  |         } | ||
|  |         else { | ||
|  |           k = last_idx; | ||
|  |         } | ||
|  |         C[k] = C[j]; | ||
|  |         if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int)); | ||
|  |         break; | ||
|  |       } | ||
|  |     } | ||
|  |     btAssert (j < nC); | ||
|  | 
 | ||
|  |     btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1); | ||
|  | 
 | ||
|  |     m_nN++; | ||
|  |     m_nC = nC - 1; // nC value is outdated after this line
 | ||
|  |   } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q) | ||
|  | { | ||
|  |   // we could try to make this matrix-vector multiplication faster using
 | ||
|  |   // outer product matrix tricks, e.g. with the dMultidotX() functions.
 | ||
|  |   // but i tried it and it actually made things slower on random 100x100
 | ||
|  |   // problems because of the overhead involved. so we'll stick with the
 | ||
|  |   // simple method for now.
 | ||
|  |   const int nC = m_nC; | ||
|  |   btScalar *ptgt = p + nC; | ||
|  |   const int nN = m_nN; | ||
|  |   for (int i=0; i<nN; ++i) { | ||
|  |     ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign) | ||
|  | { | ||
|  |   const int nC = m_nC; | ||
|  |   btScalar *aptr = BTAROW(i) + nC; | ||
|  |   btScalar *ptgt = p + nC; | ||
|  |   if (sign > 0) { | ||
|  |     const int nN = m_nN; | ||
|  |     for (int j=0; j<nN; ++j) ptgt[j] += aptr[j]; | ||
|  |   } | ||
|  |   else { | ||
|  |     const int nN = m_nN; | ||
|  |     for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q) | ||
|  | { | ||
|  |   const int nC = m_nC; | ||
|  |   for (int i=0; i<nC; ++i) { | ||
|  |     p[i] += s*q[i]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q) | ||
|  | { | ||
|  |   const int nC = m_nC; | ||
|  |   btScalar *ptgt = p + nC, *qsrc = q + nC; | ||
|  |   const int nN = m_nN; | ||
|  |   for (int i=0; i<nN; ++i) { | ||
|  |     ptgt[i] += s*qsrc[i]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer) | ||
|  | { | ||
|  |   // the `Dell' and `ell' that are computed here are saved. if index i is
 | ||
|  |   // later added to the factorization then they can be reused.
 | ||
|  |   //
 | ||
|  |   // @@@ question: do we need to solve for entire delta_x??? yes, but
 | ||
|  |   //     only if an x goes below 0 during the step.
 | ||
|  | 
 | ||
|  |   if (m_nC > 0) { | ||
|  |     { | ||
|  |       btScalar *Dell = m_Dell; | ||
|  |       int *C = m_C; | ||
|  |       btScalar *aptr = BTAROW(i); | ||
|  | #   ifdef BTNUB_OPTIMIZATIONS
 | ||
|  |       // if nub>0, initial part of aptr[] is guaranteed unpermuted
 | ||
|  |       const int nub = m_nub; | ||
|  |       int j=0; | ||
|  |       for ( ; j<nub; ++j) Dell[j] = aptr[j]; | ||
|  |       const int nC = m_nC; | ||
|  |       for ( ; j<nC; ++j) Dell[j] = aptr[C[j]]; | ||
|  | #   else
 | ||
|  |       const int nC = m_nC; | ||
|  |       for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]]; | ||
|  | #   endif
 | ||
|  |     } | ||
|  |     btSolveL1 (m_L,m_Dell,m_nC,m_nskip); | ||
|  |     { | ||
|  |       btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d; | ||
|  |       const int nC = m_nC; | ||
|  |       for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j]; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (!only_transfer) { | ||
|  |       btScalar *tmp = m_tmp, *ell = m_ell; | ||
|  |       { | ||
|  |         const int nC = m_nC; | ||
|  |         for (int j=0; j<nC; ++j) tmp[j] = ell[j]; | ||
|  |       } | ||
|  |       btSolveL1T (m_L,tmp,m_nC,m_nskip); | ||
|  |       if (dir > 0) { | ||
|  |         int *C = m_C; | ||
|  |         btScalar *tmp = m_tmp; | ||
|  |         const int nC = m_nC; | ||
|  |         for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j]; | ||
|  |       } else { | ||
|  |         int *C = m_C; | ||
|  |         btScalar *tmp = m_tmp; | ||
|  |         const int nC = m_nC; | ||
|  |         for (int j=0; j<nC; ++j) a[C[j]] = tmp[j]; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btLCP::unpermute() | ||
|  | { | ||
|  |   // now we have to un-permute x and w
 | ||
|  |   { | ||
|  |     memcpy (m_tmp,m_x,m_n*sizeof(btScalar)); | ||
|  |     btScalar *x = m_x, *tmp = m_tmp; | ||
|  |     const int *p = m_p; | ||
|  |     const int n = m_n; | ||
|  |     for (int j=0; j<n; ++j) x[p[j]] = tmp[j]; | ||
|  |   } | ||
|  |   { | ||
|  |     memcpy (m_tmp,m_w,m_n*sizeof(btScalar)); | ||
|  |     btScalar *w = m_w, *tmp = m_tmp; | ||
|  |     const int *p = m_p; | ||
|  |     const int n = m_n; | ||
|  |     for (int j=0; j<n; ++j) w[p[j]] = tmp[j]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | #endif // btLCP_FAST
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //***************************************************************************
 | ||
|  | // an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
 | ||
|  | 
 | ||
|  | bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b, | ||
|  |                 btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem) | ||
|  | { | ||
|  | 	s_error = false; | ||
|  | 
 | ||
|  | //	printf("btSolveDantzigLCP n=%d\n",n);
 | ||
|  |   btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n); | ||
|  |   btAssert(outer_w); | ||
|  | 
 | ||
|  | #ifdef BT_DEBUG
 | ||
|  |   { | ||
|  |     // check restrictions on lo and hi
 | ||
|  |     for (int k=0; k<n; ++k)  | ||
|  | 		btAssert (lo[k] <= 0 && hi[k] >= 0); | ||
|  |   } | ||
|  | # endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // if all the variables are unbounded then we can just factor, solve,
 | ||
|  |   // and return
 | ||
|  |   if (nub >= n)  | ||
|  |   { | ||
|  |     | ||
|  | 
 | ||
|  |     int nskip = (n); | ||
|  |     btFactorLDLT (A, outer_w, n, nskip); | ||
|  |     btSolveLDLT (A, outer_w, b, n, nskip); | ||
|  |     memcpy (x, b, n*sizeof(btScalar)); | ||
|  | 
 | ||
|  |     return !s_error; | ||
|  |   } | ||
|  | 
 | ||
|  |   const int nskip = (n); | ||
|  |   scratchMem.L.resize(n*nskip); | ||
|  | 
 | ||
|  |   scratchMem.d.resize(n); | ||
|  | 
 | ||
|  |   btScalar *w = outer_w; | ||
|  |   scratchMem.delta_w.resize(n); | ||
|  |   scratchMem.delta_x.resize(n); | ||
|  |   scratchMem.Dell.resize(n); | ||
|  |   scratchMem.ell.resize(n); | ||
|  |   scratchMem.Arows.resize(n); | ||
|  |   scratchMem.p.resize(n); | ||
|  |   scratchMem.C.resize(n); | ||
|  | 
 | ||
|  |   // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
 | ||
|  |   scratchMem.state.resize(n); | ||
|  | 
 | ||
|  | 
 | ||
|  |   // create LCP object. note that tmp is set to delta_w to save space, this
 | ||
|  |   // optimization relies on knowledge of how tmp is used, so be careful!
 | ||
|  |   btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]); | ||
|  |   int adj_nub = lcp.getNub(); | ||
|  | 
 | ||
|  |   // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
 | ||
|  |   // LCP conditions then i is added to the appropriate index set. otherwise
 | ||
|  |   // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
 | ||
|  |   // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
 | ||
|  |   // while driving x(i) we maintain the LCP conditions on the other variables
 | ||
|  |   // 0..i-1. we do this by watching out for other x(i),w(i) values going
 | ||
|  |   // outside the valid region, and then switching them between index sets
 | ||
|  |   // when that happens.
 | ||
|  | 
 | ||
|  |   bool hit_first_friction_index = false; | ||
|  |   for (int i=adj_nub; i<n; ++i)  | ||
|  |   { | ||
|  |     s_error = false; | ||
|  |     // the index i is the driving index and indexes i+1..n-1 are "dont care",
 | ||
|  |     // i.e. when we make changes to the system those x's will be zero and we
 | ||
|  |     // don't care what happens to those w's. in other words, we only consider
 | ||
|  |     // an (i+1)*(i+1) sub-problem of A*x=b+w.
 | ||
|  | 
 | ||
|  |     // if we've hit the first friction index, we have to compute the lo and
 | ||
|  |     // hi values based on the values of x already computed. we have been
 | ||
|  |     // permuting the indexes, so the values stored in the findex vector are
 | ||
|  |     // no longer valid. thus we have to temporarily unpermute the x vector. 
 | ||
|  |     // for the purposes of this computation, 0*infinity = 0 ... so if the
 | ||
|  |     // contact constraint's normal force is 0, there should be no tangential
 | ||
|  |     // force applied.
 | ||
|  | 
 | ||
|  |     if (!hit_first_friction_index && findex && findex[i] >= 0) { | ||
|  |       // un-permute x into delta_w, which is not being used at the moment
 | ||
|  |       for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j]; | ||
|  | 
 | ||
|  |       // set lo and hi values
 | ||
|  |       for (int k=i; k<n; ++k) { | ||
|  |         btScalar wfk = scratchMem.delta_w[findex[k]]; | ||
|  |         if (wfk == 0) { | ||
|  |           hi[k] = 0; | ||
|  |           lo[k] = 0; | ||
|  |         } | ||
|  |         else { | ||
|  |           hi[k] = btFabs (hi[k] * wfk); | ||
|  |           lo[k] = -hi[k]; | ||
|  |         } | ||
|  |       } | ||
|  |       hit_first_friction_index = true; | ||
|  |     } | ||
|  | 
 | ||
|  |     // thus far we have not even been computing the w values for indexes
 | ||
|  |     // greater than i, so compute w[i] now.
 | ||
|  |     w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i]; | ||
|  | 
 | ||
|  |     // if lo=hi=0 (which can happen for tangential friction when normals are
 | ||
|  |     // 0) then the index will be assigned to set N with some state. however,
 | ||
|  |     // set C's line has zero size, so the index will always remain in set N.
 | ||
|  |     // with the "normal" switching logic, if w changed sign then the index
 | ||
|  |     // would have to switch to set C and then back to set N with an inverted
 | ||
|  |     // state. this is pointless, and also computationally expensive. to
 | ||
|  |     // prevent this from happening, we use the rule that indexes with lo=hi=0
 | ||
|  |     // will never be checked for set changes. this means that the state for
 | ||
|  |     // these indexes may be incorrect, but that doesn't matter.
 | ||
|  | 
 | ||
|  |     // see if x(i),w(i) is in a valid region
 | ||
|  |     if (lo[i]==0 && w[i] >= 0) { | ||
|  |       lcp.transfer_i_to_N (i); | ||
|  |       scratchMem.state[i] = false; | ||
|  |     } | ||
|  |     else if (hi[i]==0 && w[i] <= 0) { | ||
|  |       lcp.transfer_i_to_N (i); | ||
|  |       scratchMem.state[i] = true; | ||
|  |     } | ||
|  |     else if (w[i]==0) { | ||
|  |       // this is a degenerate case. by the time we get to this test we know
 | ||
|  |       // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
 | ||
|  |       // and similarly that hi > 0. this means that the line segment
 | ||
|  |       // corresponding to set C is at least finite in extent, and we are on it.
 | ||
|  |       // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
 | ||
|  |       lcp.solve1 (&scratchMem.delta_x[0],i,0,1); | ||
|  | 
 | ||
|  |       lcp.transfer_i_to_C (i); | ||
|  |     } | ||
|  |     else { | ||
|  |       // we must push x(i) and w(i)
 | ||
|  |       for (;;) { | ||
|  |         int dir; | ||
|  |         btScalar dirf; | ||
|  |         // find direction to push on x(i)
 | ||
|  |         if (w[i] <= 0) { | ||
|  |           dir = 1; | ||
|  |           dirf = btScalar(1.0); | ||
|  |         } | ||
|  |         else { | ||
|  |           dir = -1; | ||
|  |           dirf = btScalar(-1.0); | ||
|  |         } | ||
|  | 
 | ||
|  |         // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
 | ||
|  |         lcp.solve1 (&scratchMem.delta_x[0],i,dir); | ||
|  | 
 | ||
|  |         // note that delta_x[i] = dirf, but we wont bother to set it
 | ||
|  | 
 | ||
|  |         // compute: delta_w = A*delta_x ... note we only care about
 | ||
|  |         // delta_w(N) and delta_w(i), the rest is ignored
 | ||
|  |         lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]); | ||
|  |         lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir); | ||
|  |         scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf; | ||
|  | 
 | ||
|  |         // find largest step we can take (size=s), either to drive x(i),w(i)
 | ||
|  |         // to the valid LCP region or to drive an already-valid variable
 | ||
|  |         // outside the valid region.
 | ||
|  | 
 | ||
|  |         int cmd = 1;		// index switching command
 | ||
|  |         int si = 0;		// si = index to switch if cmd>3
 | ||
|  |         btScalar s = -w[i]/scratchMem.delta_w[i]; | ||
|  |         if (dir > 0) { | ||
|  |           if (hi[i] < BT_INFINITY) { | ||
|  |             btScalar s2 = (hi[i]-x[i])*dirf;	// was (hi[i]-x[i])/dirf	// step to x(i)=hi(i)
 | ||
|  |             if (s2 < s) { | ||
|  |               s = s2; | ||
|  |               cmd = 3; | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  |         else { | ||
|  |           if (lo[i] > -BT_INFINITY) { | ||
|  |             btScalar s2 = (lo[i]-x[i])*dirf;	// was (lo[i]-x[i])/dirf	// step to x(i)=lo(i)
 | ||
|  |             if (s2 < s) { | ||
|  |               s = s2; | ||
|  |               cmd = 2; | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         { | ||
|  |           const int numN = lcp.numN(); | ||
|  |           for (int k=0; k < numN; ++k) { | ||
|  |             const int indexN_k = lcp.indexN(k); | ||
|  |             if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) { | ||
|  |                 // don't bother checking if lo=hi=0
 | ||
|  |                 if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue; | ||
|  |                 btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k]; | ||
|  |                 if (s2 < s) { | ||
|  |                   s = s2; | ||
|  |                   cmd = 4; | ||
|  |                   si = indexN_k; | ||
|  |                 } | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         { | ||
|  |           const int numC = lcp.numC(); | ||
|  |           for (int k=adj_nub; k < numC; ++k) { | ||
|  |             const int indexC_k = lcp.indexC(k); | ||
|  |             if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) { | ||
|  |               btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k]; | ||
|  |               if (s2 < s) { | ||
|  |                 s = s2; | ||
|  |                 cmd = 5; | ||
|  |                 si = indexC_k; | ||
|  |               } | ||
|  |             } | ||
|  |             if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) { | ||
|  |               btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k]; | ||
|  |               if (s2 < s) { | ||
|  |                 s = s2; | ||
|  |                 cmd = 6; | ||
|  |                 si = indexC_k; | ||
|  |               } | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
 | ||
|  |         //			     "C->NL","C->NH"};
 | ||
|  |         //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
 | ||
|  | 
 | ||
|  |         // if s <= 0 then we've got a problem. if we just keep going then
 | ||
|  |         // we're going to get stuck in an infinite loop. instead, just cross
 | ||
|  |         // our fingers and exit with the current solution.
 | ||
|  |         if (s <= btScalar(0.0))  | ||
|  | 		{ | ||
|  | //          printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
 | ||
|  |           if (i < n) { | ||
|  |             btSetZero (x+i,n-i); | ||
|  |             btSetZero (w+i,n-i); | ||
|  |           } | ||
|  |           s_error = true; | ||
|  |           break; | ||
|  |         } | ||
|  | 
 | ||
|  |         // apply x = x + s * delta_x
 | ||
|  |         lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]); | ||
|  |         x[i] += s * dirf; | ||
|  | 
 | ||
|  |         // apply w = w + s * delta_w
 | ||
|  |         lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]); | ||
|  |         w[i] += s * scratchMem.delta_w[i]; | ||
|  | 
 | ||
|  | //        void *tmpbuf;
 | ||
|  |         // switch indexes between sets if necessary
 | ||
|  |         switch (cmd) { | ||
|  |         case 1:		// done
 | ||
|  |           w[i] = 0; | ||
|  |           lcp.transfer_i_to_C (i); | ||
|  |           break; | ||
|  |         case 2:		// done
 | ||
|  |           x[i] = lo[i]; | ||
|  |           scratchMem.state[i] = false; | ||
|  |           lcp.transfer_i_to_N (i); | ||
|  |           break; | ||
|  |         case 3:		// done
 | ||
|  |           x[i] = hi[i]; | ||
|  |           scratchMem.state[i] = true; | ||
|  |           lcp.transfer_i_to_N (i); | ||
|  |           break; | ||
|  |         case 4:		// keep going
 | ||
|  |           w[si] = 0; | ||
|  |           lcp.transfer_i_from_N_to_C (si); | ||
|  |           break; | ||
|  |         case 5:		// keep going
 | ||
|  |           x[si] = lo[si]; | ||
|  |           scratchMem.state[si] = false; | ||
|  | 		  lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch); | ||
|  |           break; | ||
|  |         case 6:		// keep going
 | ||
|  |           x[si] = hi[si]; | ||
|  |           scratchMem.state[si] = true; | ||
|  |           lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch); | ||
|  |           break; | ||
|  |         } | ||
|  | 
 | ||
|  |         if (cmd <= 3) break; | ||
|  |       } // for (;;)
 | ||
|  |     } // else
 | ||
|  | 
 | ||
|  |     if (s_error)  | ||
|  | 	{ | ||
|  |       break; | ||
|  |     } | ||
|  |   } // for (int i=adj_nub; i<n; ++i)
 | ||
|  | 
 | ||
|  |   lcp.unpermute(); | ||
|  | 
 | ||
|  | 
 | ||
|  |   return !s_error; | ||
|  | } | ||
|  | 
 |