forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1451 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1451 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //
 | ||
|  | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty.  In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //    claim that you wrote the original software. If you use this software
 | ||
|  | //    in a product, an acknowledgment in the product documentation would be
 | ||
|  | //    appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //    misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #define _USE_MATH_DEFINES
 | ||
|  | #include <string.h>
 | ||
|  | #include <float.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include <new>
 | ||
|  | #include "DetourCrowd.h"
 | ||
|  | #include "DetourNavMesh.h"
 | ||
|  | #include "DetourNavMeshQuery.h"
 | ||
|  | #include "DetourObstacleAvoidance.h"
 | ||
|  | #include "DetourCommon.h"
 | ||
|  | #include "DetourMath.h"
 | ||
|  | #include "DetourAssert.h"
 | ||
|  | #include "DetourAlloc.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | dtCrowd* dtAllocCrowd() | ||
|  | { | ||
|  | 	void* mem = dtAlloc(sizeof(dtCrowd), DT_ALLOC_PERM); | ||
|  | 	if (!mem) return 0; | ||
|  | 	return new(mem) dtCrowd; | ||
|  | } | ||
|  | 
 | ||
|  | void dtFreeCrowd(dtCrowd* ptr) | ||
|  | { | ||
|  | 	if (!ptr) return; | ||
|  | 	ptr->~dtCrowd(); | ||
|  | 	dtFree(ptr); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static const int MAX_ITERS_PER_UPDATE = 100; | ||
|  | 
 | ||
|  | static const int MAX_PATHQUEUE_NODES = 4096; | ||
|  | static const int MAX_COMMON_NODES = 512; | ||
|  | 
 | ||
|  | inline float tween(const float t, const float t0, const float t1) | ||
|  | { | ||
|  | 	return dtClamp((t-t0) / (t1-t0), 0.0f, 1.0f); | ||
|  | } | ||
|  | 
 | ||
|  | static void integrate(dtCrowdAgent* ag, const float dt) | ||
|  | { | ||
|  | 	// Fake dynamic constraint.
 | ||
|  | 	const float maxDelta = ag->params.maxAcceleration * dt; | ||
|  | 	float dv[3]; | ||
|  | 	dtVsub(dv, ag->nvel, ag->vel); | ||
|  | 	float ds = dtVlen(dv); | ||
|  | 	if (ds > maxDelta) | ||
|  | 		dtVscale(dv, dv, maxDelta/ds); | ||
|  | 	dtVadd(ag->vel, ag->vel, dv); | ||
|  | 	 | ||
|  | 	// Integrate
 | ||
|  | 	if (dtVlen(ag->vel) > 0.0001f) | ||
|  | 		dtVmad(ag->npos, ag->npos, ag->vel, dt); | ||
|  | 	else | ||
|  | 		dtVset(ag->vel,0,0,0); | ||
|  | } | ||
|  | 
 | ||
|  | static bool overOffmeshConnection(const dtCrowdAgent* ag, const float radius) | ||
|  | { | ||
|  | 	if (!ag->ncorners) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	const bool offMeshConnection = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false; | ||
|  | 	if (offMeshConnection) | ||
|  | 	{ | ||
|  | 		const float distSq = dtVdist2DSqr(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]); | ||
|  | 		if (distSq < radius*radius) | ||
|  | 			return true; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return false; | ||
|  | } | ||
|  | 
 | ||
|  | static float getDistanceToGoal(const dtCrowdAgent* ag, const float range) | ||
|  | { | ||
|  | 	if (!ag->ncorners) | ||
|  | 		return range; | ||
|  | 	 | ||
|  | 	const bool endOfPath = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_END) ? true : false; | ||
|  | 	if (endOfPath) | ||
|  | 		return dtMin(dtVdist2D(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]), range); | ||
|  | 	 | ||
|  | 	return range; | ||
|  | } | ||
|  | 
 | ||
|  | static void calcSmoothSteerDirection(const dtCrowdAgent* ag, float* dir) | ||
|  | { | ||
|  | 	if (!ag->ncorners) | ||
|  | 	{ | ||
|  | 		dtVset(dir, 0,0,0); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	const int ip0 = 0; | ||
|  | 	const int ip1 = dtMin(1, ag->ncorners-1); | ||
|  | 	const float* p0 = &ag->cornerVerts[ip0*3]; | ||
|  | 	const float* p1 = &ag->cornerVerts[ip1*3]; | ||
|  | 	 | ||
|  | 	float dir0[3], dir1[3]; | ||
|  | 	dtVsub(dir0, p0, ag->npos); | ||
|  | 	dtVsub(dir1, p1, ag->npos); | ||
|  | 	dir0[1] = 0; | ||
|  | 	dir1[1] = 0; | ||
|  | 	 | ||
|  | 	float len0 = dtVlen(dir0); | ||
|  | 	float len1 = dtVlen(dir1); | ||
|  | 	if (len1 > 0.001f) | ||
|  | 		dtVscale(dir1,dir1,1.0f/len1); | ||
|  | 	 | ||
|  | 	dir[0] = dir0[0] - dir1[0]*len0*0.5f; | ||
|  | 	dir[1] = 0; | ||
|  | 	dir[2] = dir0[2] - dir1[2]*len0*0.5f; | ||
|  | 	 | ||
|  | 	dtVnormalize(dir); | ||
|  | } | ||
|  | 
 | ||
|  | static void calcStraightSteerDirection(const dtCrowdAgent* ag, float* dir) | ||
|  | { | ||
|  | 	if (!ag->ncorners) | ||
|  | 	{ | ||
|  | 		dtVset(dir, 0,0,0); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	dtVsub(dir, &ag->cornerVerts[0], ag->npos); | ||
|  | 	dir[1] = 0; | ||
|  | 	dtVnormalize(dir); | ||
|  | } | ||
|  | 
 | ||
|  | static int addNeighbour(const int idx, const float dist, | ||
|  | 						dtCrowdNeighbour* neis, const int nneis, const int maxNeis) | ||
|  | { | ||
|  | 	// Insert neighbour based on the distance.
 | ||
|  | 	dtCrowdNeighbour* nei = 0; | ||
|  | 	if (!nneis) | ||
|  | 	{ | ||
|  | 		nei = &neis[nneis]; | ||
|  | 	} | ||
|  | 	else if (dist >= neis[nneis-1].dist) | ||
|  | 	{ | ||
|  | 		if (nneis >= maxNeis) | ||
|  | 			return nneis; | ||
|  | 		nei = &neis[nneis]; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		int i; | ||
|  | 		for (i = 0; i < nneis; ++i) | ||
|  | 			if (dist <= neis[i].dist) | ||
|  | 				break; | ||
|  | 		 | ||
|  | 		const int tgt = i+1; | ||
|  | 		const int n = dtMin(nneis-i, maxNeis-tgt); | ||
|  | 		 | ||
|  | 		dtAssert(tgt+n <= maxNeis); | ||
|  | 		 | ||
|  | 		if (n > 0) | ||
|  | 			memmove(&neis[tgt], &neis[i], sizeof(dtCrowdNeighbour)*n); | ||
|  | 		nei = &neis[i]; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	memset(nei, 0, sizeof(dtCrowdNeighbour)); | ||
|  | 	 | ||
|  | 	nei->idx = idx; | ||
|  | 	nei->dist = dist; | ||
|  | 	 | ||
|  | 	return dtMin(nneis+1, maxNeis); | ||
|  | } | ||
|  | 
 | ||
|  | static int getNeighbours(const float* pos, const float height, const float range, | ||
|  | 						 const dtCrowdAgent* skip, dtCrowdNeighbour* result, const int maxResult, | ||
|  | 						 dtCrowdAgent** agents, const int /*nagents*/, dtProximityGrid* grid) | ||
|  | { | ||
|  | 	int n = 0; | ||
|  | 	 | ||
|  | 	static const int MAX_NEIS = 32; | ||
|  | 	unsigned short ids[MAX_NEIS]; | ||
|  | 	int nids = grid->queryItems(pos[0]-range, pos[2]-range, | ||
|  | 								pos[0]+range, pos[2]+range, | ||
|  | 								ids, MAX_NEIS); | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nids; ++i) | ||
|  | 	{ | ||
|  | 		const dtCrowdAgent* ag = agents[ids[i]]; | ||
|  | 		 | ||
|  | 		if (ag == skip) continue; | ||
|  | 		 | ||
|  | 		// Check for overlap.
 | ||
|  | 		float diff[3]; | ||
|  | 		dtVsub(diff, pos, ag->npos); | ||
|  | 		if (dtMathFabsf(diff[1]) >= (height+ag->params.height)/2.0f) | ||
|  | 			continue; | ||
|  | 		diff[1] = 0; | ||
|  | 		const float distSqr = dtVlenSqr(diff); | ||
|  | 		if (distSqr > dtSqr(range)) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		n = addNeighbour(ids[i], distSqr, result, n, maxResult); | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | static int addToOptQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents) | ||
|  | { | ||
|  | 	// Insert neighbour based on greatest time.
 | ||
|  | 	int slot = 0; | ||
|  | 	if (!nagents) | ||
|  | 	{ | ||
|  | 		slot = nagents; | ||
|  | 	} | ||
|  | 	else if (newag->topologyOptTime <= agents[nagents-1]->topologyOptTime) | ||
|  | 	{ | ||
|  | 		if (nagents >= maxAgents) | ||
|  | 			return nagents; | ||
|  | 		slot = nagents; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		int i; | ||
|  | 		for (i = 0; i < nagents; ++i) | ||
|  | 			if (newag->topologyOptTime >= agents[i]->topologyOptTime) | ||
|  | 				break; | ||
|  | 		 | ||
|  | 		const int tgt = i+1; | ||
|  | 		const int n = dtMin(nagents-i, maxAgents-tgt); | ||
|  | 		 | ||
|  | 		dtAssert(tgt+n <= maxAgents); | ||
|  | 		 | ||
|  | 		if (n > 0) | ||
|  | 			memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n); | ||
|  | 		slot = i; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	agents[slot] = newag; | ||
|  | 	 | ||
|  | 	return dtMin(nagents+1, maxAgents); | ||
|  | } | ||
|  | 
 | ||
|  | static int addToPathQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents) | ||
|  | { | ||
|  | 	// Insert neighbour based on greatest time.
 | ||
|  | 	int slot = 0; | ||
|  | 	if (!nagents) | ||
|  | 	{ | ||
|  | 		slot = nagents; | ||
|  | 	} | ||
|  | 	else if (newag->targetReplanTime <= agents[nagents-1]->targetReplanTime) | ||
|  | 	{ | ||
|  | 		if (nagents >= maxAgents) | ||
|  | 			return nagents; | ||
|  | 		slot = nagents; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		int i; | ||
|  | 		for (i = 0; i < nagents; ++i) | ||
|  | 			if (newag->targetReplanTime >= agents[i]->targetReplanTime) | ||
|  | 				break; | ||
|  | 		 | ||
|  | 		const int tgt = i+1; | ||
|  | 		const int n = dtMin(nagents-i, maxAgents-tgt); | ||
|  | 		 | ||
|  | 		dtAssert(tgt+n <= maxAgents); | ||
|  | 		 | ||
|  | 		if (n > 0) | ||
|  | 			memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n); | ||
|  | 		slot = i; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	agents[slot] = newag; | ||
|  | 	 | ||
|  | 	return dtMin(nagents+1, maxAgents); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  | @class dtCrowd | ||
|  | @par | ||
|  | 
 | ||
|  | This is the core class of the @ref crowd module.  See the @ref crowd documentation for a summary | ||
|  | of the crowd features. | ||
|  | 
 | ||
|  | A common method for setting up the crowd is as follows: | ||
|  | 
 | ||
|  | -# Allocate the crowd using #dtAllocCrowd. | ||
|  | -# Initialize the crowd using #init(). | ||
|  | -# Set the avoidance configurations using #setObstacleAvoidanceParams(). | ||
|  | -# Add agents using #addAgent() and make an initial movement request using #requestMoveTarget(). | ||
|  | 
 | ||
|  | A common process for managing the crowd is as follows: | ||
|  | 
 | ||
|  | -# Call #update() to allow the crowd to manage its agents. | ||
|  | -# Retrieve agent information using #getActiveAgents(). | ||
|  | -# Make movement requests using #requestMoveTarget() when movement goal changes. | ||
|  | -# Repeat every frame. | ||
|  | 
 | ||
|  | Some agent configuration settings can be updated using #updateAgentParameters().  But the crowd owns the | ||
|  | agent position.  So it is not possible to update an active agent's position.  If agent position | ||
|  | must be fed back into the crowd, the agent must be removed and re-added. | ||
|  | 
 | ||
|  | Notes:  | ||
|  | 
 | ||
|  | - Path related information is available for newly added agents only after an #update() has been | ||
|  |   performed. | ||
|  | - Agent objects are kept in a pool and re-used.  So it is important when using agent objects to check the value of | ||
|  |   #dtCrowdAgent::active to determine if the agent is actually in use or not.
 | ||
|  | - This class is meant to provide 'local' movement. There is a limit of 256 polygons in the path corridor.   | ||
|  |   So it is not meant to provide automatic pathfinding services over long distances. | ||
|  | 
 | ||
|  | @see dtAllocCrowd(), dtFreeCrowd(), init(), dtCrowdAgent | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | dtCrowd::dtCrowd() : | ||
|  | 	m_maxAgents(0), | ||
|  | 	m_agents(0), | ||
|  | 	m_activeAgents(0), | ||
|  | 	m_agentAnims(0), | ||
|  | 	m_obstacleQuery(0), | ||
|  | 	m_grid(0), | ||
|  | 	m_pathResult(0), | ||
|  | 	m_maxPathResult(0), | ||
|  | 	m_maxAgentRadius(0), | ||
|  | 	m_velocitySampleCount(0), | ||
|  | 	m_navquery(0) | ||
|  | { | ||
|  | } | ||
|  | 
 | ||
|  | dtCrowd::~dtCrowd() | ||
|  | { | ||
|  | 	purge(); | ||
|  | } | ||
|  | 
 | ||
|  | void dtCrowd::purge() | ||
|  | { | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 		m_agents[i].~dtCrowdAgent(); | ||
|  | 	dtFree(m_agents); | ||
|  | 	m_agents = 0; | ||
|  | 	m_maxAgents = 0; | ||
|  | 	 | ||
|  | 	dtFree(m_activeAgents); | ||
|  | 	m_activeAgents = 0; | ||
|  | 
 | ||
|  | 	dtFree(m_agentAnims); | ||
|  | 	m_agentAnims = 0; | ||
|  | 	 | ||
|  | 	dtFree(m_pathResult); | ||
|  | 	m_pathResult = 0; | ||
|  | 	 | ||
|  | 	dtFreeProximityGrid(m_grid); | ||
|  | 	m_grid = 0; | ||
|  | 
 | ||
|  | 	dtFreeObstacleAvoidanceQuery(m_obstacleQuery); | ||
|  | 	m_obstacleQuery = 0; | ||
|  | 	 | ||
|  | 	dtFreeNavMeshQuery(m_navquery); | ||
|  | 	m_navquery = 0; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// May be called more than once to purge and re-initialize the crowd.
 | ||
|  | bool dtCrowd::init(const int maxAgents, const float maxAgentRadius, dtNavMesh* nav) | ||
|  | { | ||
|  | 	purge(); | ||
|  | 	 | ||
|  | 	m_maxAgents = maxAgents; | ||
|  | 	m_maxAgentRadius = maxAgentRadius; | ||
|  | 
 | ||
|  | 	// Larger than agent radius because it is also used for agent recovery.
 | ||
|  | 	dtVset(m_agentPlacementHalfExtents, m_maxAgentRadius*2.0f, m_maxAgentRadius*1.5f, m_maxAgentRadius*2.0f); | ||
|  | 	 | ||
|  | 	m_grid = dtAllocProximityGrid(); | ||
|  | 	if (!m_grid) | ||
|  | 		return false; | ||
|  | 	if (!m_grid->init(m_maxAgents*4, maxAgentRadius*3)) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	m_obstacleQuery = dtAllocObstacleAvoidanceQuery(); | ||
|  | 	if (!m_obstacleQuery) | ||
|  | 		return false; | ||
|  | 	if (!m_obstacleQuery->init(6, 8)) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 	// Init obstacle query params.
 | ||
|  | 	memset(m_obstacleQueryParams, 0, sizeof(m_obstacleQueryParams)); | ||
|  | 	for (int i = 0; i < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS; ++i) | ||
|  | 	{ | ||
|  | 		dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[i]; | ||
|  | 		params->velBias = 0.4f; | ||
|  | 		params->weightDesVel = 2.0f; | ||
|  | 		params->weightCurVel = 0.75f; | ||
|  | 		params->weightSide = 0.75f; | ||
|  | 		params->weightToi = 2.5f; | ||
|  | 		params->horizTime = 2.5f; | ||
|  | 		params->gridSize = 33; | ||
|  | 		params->adaptiveDivs = 7; | ||
|  | 		params->adaptiveRings = 2; | ||
|  | 		params->adaptiveDepth = 5; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Allocate temp buffer for merging paths.
 | ||
|  | 	m_maxPathResult = 256; | ||
|  | 	m_pathResult = (dtPolyRef*)dtAlloc(sizeof(dtPolyRef)*m_maxPathResult, DT_ALLOC_PERM); | ||
|  | 	if (!m_pathResult) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	if (!m_pathq.init(m_maxPathResult, MAX_PATHQUEUE_NODES, nav)) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	m_agents = (dtCrowdAgent*)dtAlloc(sizeof(dtCrowdAgent)*m_maxAgents, DT_ALLOC_PERM); | ||
|  | 	if (!m_agents) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	m_activeAgents = (dtCrowdAgent**)dtAlloc(sizeof(dtCrowdAgent*)*m_maxAgents, DT_ALLOC_PERM); | ||
|  | 	if (!m_activeAgents) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 	m_agentAnims = (dtCrowdAgentAnimation*)dtAlloc(sizeof(dtCrowdAgentAnimation)*m_maxAgents, DT_ALLOC_PERM); | ||
|  | 	if (!m_agentAnims) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		new(&m_agents[i]) dtCrowdAgent(); | ||
|  | 		m_agents[i].active = false; | ||
|  | 		if (!m_agents[i].corridor.init(m_maxPathResult)) | ||
|  | 			return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		m_agentAnims[i].active = false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// The navquery is mostly used for local searches, no need for large node pool.
 | ||
|  | 	m_navquery = dtAllocNavMeshQuery(); | ||
|  | 	if (!m_navquery) | ||
|  | 		return false; | ||
|  | 	if (dtStatusFailed(m_navquery->init(nav, MAX_COMMON_NODES))) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void dtCrowd::setObstacleAvoidanceParams(const int idx, const dtObstacleAvoidanceParams* params) | ||
|  | { | ||
|  | 	if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS) | ||
|  | 		memcpy(&m_obstacleQueryParams[idx], params, sizeof(dtObstacleAvoidanceParams)); | ||
|  | } | ||
|  | 
 | ||
|  | const dtObstacleAvoidanceParams* dtCrowd::getObstacleAvoidanceParams(const int idx) const | ||
|  | { | ||
|  | 	if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS) | ||
|  | 		return &m_obstacleQueryParams[idx]; | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | int dtCrowd::getAgentCount() const | ||
|  | { | ||
|  | 	return m_maxAgents; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | /// 
 | ||
|  | /// Agents in the pool may not be in use.  Check #dtCrowdAgent.active before using the returned object.
 | ||
|  | const dtCrowdAgent* dtCrowd::getAgent(const int idx) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return 0; | ||
|  | 	return &m_agents[idx]; | ||
|  | } | ||
|  | 
 | ||
|  | /// 
 | ||
|  | /// Agents in the pool may not be in use.  Check #dtCrowdAgent.active before using the returned object.
 | ||
|  | dtCrowdAgent* dtCrowd::getEditableAgent(const int idx) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return 0; | ||
|  | 	return &m_agents[idx]; | ||
|  | } | ||
|  | 
 | ||
|  | void dtCrowd::updateAgentParameters(const int idx, const dtCrowdAgentParams* params) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return; | ||
|  | 	memcpy(&m_agents[idx].params, params, sizeof(dtCrowdAgentParams)); | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// The agent's position will be constrained to the surface of the navigation mesh.
 | ||
|  | int dtCrowd::addAgent(const float* pos, const dtCrowdAgentParams* params) | ||
|  | { | ||
|  | 	// Find empty slot.
 | ||
|  | 	int idx = -1; | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		if (!m_agents[i].active) | ||
|  | 		{ | ||
|  | 			idx = i; | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if (idx == -1) | ||
|  | 		return -1; | ||
|  | 	 | ||
|  | 	dtCrowdAgent* ag = &m_agents[idx];		 | ||
|  | 
 | ||
|  | 	updateAgentParameters(idx, params); | ||
|  | 	 | ||
|  | 	// Find nearest position on navmesh and place the agent there.
 | ||
|  | 	float nearest[3]; | ||
|  | 	dtPolyRef ref = 0; | ||
|  | 	dtVcopy(nearest, pos); | ||
|  | 	dtStatus status = m_navquery->findNearestPoly(pos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ref, nearest); | ||
|  | 	if (dtStatusFailed(status)) | ||
|  | 	{ | ||
|  | 		dtVcopy(nearest, pos); | ||
|  | 		ref = 0; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	ag->corridor.reset(ref, nearest); | ||
|  | 	ag->boundary.reset(); | ||
|  | 	ag->partial = false; | ||
|  | 
 | ||
|  | 	ag->topologyOptTime = 0; | ||
|  | 	ag->targetReplanTime = 0; | ||
|  | 	ag->nneis = 0; | ||
|  | 	 | ||
|  | 	dtVset(ag->dvel, 0,0,0); | ||
|  | 	dtVset(ag->nvel, 0,0,0); | ||
|  | 	dtVset(ag->vel, 0,0,0); | ||
|  | 	dtVcopy(ag->npos, nearest); | ||
|  | 	 | ||
|  | 	ag->desiredSpeed = 0; | ||
|  | 
 | ||
|  | 	if (ref) | ||
|  | 		ag->state = DT_CROWDAGENT_STATE_WALKING; | ||
|  | 	else | ||
|  | 		ag->state = DT_CROWDAGENT_STATE_INVALID; | ||
|  | 	 | ||
|  | 	ag->targetState = DT_CROWDAGENT_TARGET_NONE; | ||
|  | 	 | ||
|  | 	ag->active = true; | ||
|  | 
 | ||
|  | 	return idx; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// The agent is deactivated and will no longer be processed.  Its #dtCrowdAgent object
 | ||
|  | /// is not removed from the pool.  It is marked as inactive so that it is available for reuse.
 | ||
|  | void dtCrowd::removeAgent(const int idx) | ||
|  | { | ||
|  | 	if (idx >= 0 && idx < m_maxAgents) | ||
|  | 	{ | ||
|  | 		m_agents[idx].active = false; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | bool dtCrowd::requestMoveTargetReplan(const int idx, dtPolyRef ref, const float* pos) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	dtCrowdAgent* ag = &m_agents[idx]; | ||
|  | 	 | ||
|  | 	// Initialize request.
 | ||
|  | 	ag->targetRef = ref; | ||
|  | 	dtVcopy(ag->targetPos, pos); | ||
|  | 	ag->targetPathqRef = DT_PATHQ_INVALID; | ||
|  | 	ag->targetReplan = true; | ||
|  | 	if (ag->targetRef) | ||
|  | 		ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING; | ||
|  | 	else | ||
|  | 		ag->targetState = DT_CROWDAGENT_TARGET_FAILED; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | /// 
 | ||
|  | /// This method is used when a new target is set.
 | ||
|  | /// 
 | ||
|  | /// The position will be constrained to the surface of the navigation mesh.
 | ||
|  | ///
 | ||
|  | /// The request will be processed during the next #update().
 | ||
|  | bool dtCrowd::requestMoveTarget(const int idx, dtPolyRef ref, const float* pos) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return false; | ||
|  | 	if (!ref) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 	dtCrowdAgent* ag = &m_agents[idx]; | ||
|  | 	 | ||
|  | 	// Initialize request.
 | ||
|  | 	ag->targetRef = ref; | ||
|  | 	dtVcopy(ag->targetPos, pos); | ||
|  | 	ag->targetPathqRef = DT_PATHQ_INVALID; | ||
|  | 	ag->targetReplan = false; | ||
|  | 	if (ag->targetRef) | ||
|  | 		ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING; | ||
|  | 	else | ||
|  | 		ag->targetState = DT_CROWDAGENT_TARGET_FAILED; | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool dtCrowd::requestMoveVelocity(const int idx, const float* vel) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	dtCrowdAgent* ag = &m_agents[idx]; | ||
|  | 	 | ||
|  | 	// Initialize request.
 | ||
|  | 	ag->targetRef = 0; | ||
|  | 	dtVcopy(ag->targetPos, vel); | ||
|  | 	ag->targetPathqRef = DT_PATHQ_INVALID; | ||
|  | 	ag->targetReplan = false; | ||
|  | 	ag->targetState = DT_CROWDAGENT_TARGET_VELOCITY; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool dtCrowd::resetMoveTarget(const int idx) | ||
|  | { | ||
|  | 	if (idx < 0 || idx >= m_maxAgents) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	dtCrowdAgent* ag = &m_agents[idx]; | ||
|  | 	 | ||
|  | 	// Initialize request.
 | ||
|  | 	ag->targetRef = 0; | ||
|  | 	dtVset(ag->targetPos, 0,0,0); | ||
|  | 	dtVset(ag->dvel, 0,0,0); | ||
|  | 	ag->targetPathqRef = DT_PATHQ_INVALID; | ||
|  | 	ag->targetReplan = false; | ||
|  | 	ag->targetState = DT_CROWDAGENT_TARGET_NONE; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | int dtCrowd::getActiveAgents(dtCrowdAgent** agents, const int maxAgents) | ||
|  | { | ||
|  | 	int n = 0; | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		if (!m_agents[i].active) continue; | ||
|  | 		if (n < maxAgents) | ||
|  | 			agents[n++] = &m_agents[i]; | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void dtCrowd::updateMoveRequest(const float /*dt*/) | ||
|  | { | ||
|  | 	const int PATH_MAX_AGENTS = 8; | ||
|  | 	dtCrowdAgent* queue[PATH_MAX_AGENTS]; | ||
|  | 	int nqueue = 0; | ||
|  | 	 | ||
|  | 	// Fire off new requests.
 | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = &m_agents[i]; | ||
|  | 		if (!ag->active) | ||
|  | 			continue; | ||
|  | 		if (ag->state == DT_CROWDAGENT_STATE_INVALID) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING) | ||
|  | 		{ | ||
|  | 			const dtPolyRef* path = ag->corridor.getPath(); | ||
|  | 			const int npath = ag->corridor.getPathCount(); | ||
|  | 			dtAssert(npath); | ||
|  | 
 | ||
|  | 			static const int MAX_RES = 32; | ||
|  | 			float reqPos[3]; | ||
|  | 			dtPolyRef reqPath[MAX_RES];	// The path to the request location
 | ||
|  | 			int reqPathCount = 0; | ||
|  | 
 | ||
|  | 			// Quick search towards the goal.
 | ||
|  | 			static const int MAX_ITER = 20; | ||
|  | 			m_navquery->initSlicedFindPath(path[0], ag->targetRef, ag->npos, ag->targetPos, &m_filters[ag->params.queryFilterType]); | ||
|  | 			m_navquery->updateSlicedFindPath(MAX_ITER, 0); | ||
|  | 			dtStatus status = 0; | ||
|  | 			if (ag->targetReplan) // && npath > 10)
 | ||
|  | 			{ | ||
|  | 				// Try to use existing steady path during replan if possible.
 | ||
|  | 				status = m_navquery->finalizeSlicedFindPathPartial(path, npath, reqPath, &reqPathCount, MAX_RES); | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// Try to move towards target when goal changes.
 | ||
|  | 				status = m_navquery->finalizeSlicedFindPath(reqPath, &reqPathCount, MAX_RES); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			if (!dtStatusFailed(status) && reqPathCount > 0) | ||
|  | 			{ | ||
|  | 				// In progress or succeed.
 | ||
|  | 				if (reqPath[reqPathCount-1] != ag->targetRef) | ||
|  | 				{ | ||
|  | 					// Partial path, constrain target position inside the last polygon.
 | ||
|  | 					status = m_navquery->closestPointOnPoly(reqPath[reqPathCount-1], ag->targetPos, reqPos, 0); | ||
|  | 					if (dtStatusFailed(status)) | ||
|  | 						reqPathCount = 0; | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					dtVcopy(reqPos, ag->targetPos); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				reqPathCount = 0; | ||
|  | 			} | ||
|  | 				 | ||
|  | 			if (!reqPathCount) | ||
|  | 			{ | ||
|  | 				// Could not find path, start the request from current location.
 | ||
|  | 				dtVcopy(reqPos, ag->npos); | ||
|  | 				reqPath[0] = path[0]; | ||
|  | 				reqPathCount = 1; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			ag->corridor.setCorridor(reqPos, reqPath, reqPathCount); | ||
|  | 			ag->boundary.reset(); | ||
|  | 			ag->partial = false; | ||
|  | 
 | ||
|  | 			if (reqPath[reqPathCount-1] == ag->targetRef) | ||
|  | 			{ | ||
|  | 				ag->targetState = DT_CROWDAGENT_TARGET_VALID; | ||
|  | 				ag->targetReplanTime = 0.0; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// The path is longer or potentially unreachable, full plan.
 | ||
|  | 				ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE) | ||
|  | 		{ | ||
|  | 			nqueue = addToPathQueue(ag, queue, nqueue, PATH_MAX_AGENTS); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (int i = 0; i < nqueue; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = queue[i]; | ||
|  | 		ag->targetPathqRef = m_pathq.request(ag->corridor.getLastPoly(), ag->targetRef, | ||
|  | 											 ag->corridor.getTarget(), ag->targetPos, &m_filters[ag->params.queryFilterType]); | ||
|  | 		if (ag->targetPathqRef != DT_PATHQ_INVALID) | ||
|  | 			ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_PATH; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	 | ||
|  | 	// Update requests.
 | ||
|  | 	m_pathq.update(MAX_ITERS_PER_UPDATE); | ||
|  | 
 | ||
|  | 	dtStatus status; | ||
|  | 
 | ||
|  | 	// Process path results.
 | ||
|  | 	for (int i = 0; i < m_maxAgents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = &m_agents[i]; | ||
|  | 		if (!ag->active) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH) | ||
|  | 		{ | ||
|  | 			// Poll path queue.
 | ||
|  | 			status = m_pathq.getRequestStatus(ag->targetPathqRef); | ||
|  | 			if (dtStatusFailed(status)) | ||
|  | 			{ | ||
|  | 				// Path find failed, retry if the target location is still valid.
 | ||
|  | 				ag->targetPathqRef = DT_PATHQ_INVALID; | ||
|  | 				if (ag->targetRef) | ||
|  | 					ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING; | ||
|  | 				else | ||
|  | 					ag->targetState = DT_CROWDAGENT_TARGET_FAILED; | ||
|  | 				ag->targetReplanTime = 0.0; | ||
|  | 			} | ||
|  | 			else if (dtStatusSucceed(status)) | ||
|  | 			{ | ||
|  | 				const dtPolyRef* path = ag->corridor.getPath(); | ||
|  | 				const int npath = ag->corridor.getPathCount(); | ||
|  | 				dtAssert(npath); | ||
|  | 				 | ||
|  | 				// Apply results.
 | ||
|  | 				float targetPos[3]; | ||
|  | 				dtVcopy(targetPos, ag->targetPos); | ||
|  | 				 | ||
|  | 				dtPolyRef* res = m_pathResult; | ||
|  | 				bool valid = true; | ||
|  | 				int nres = 0; | ||
|  | 				status = m_pathq.getPathResult(ag->targetPathqRef, res, &nres, m_maxPathResult); | ||
|  | 				if (dtStatusFailed(status) || !nres) | ||
|  | 					valid = false; | ||
|  | 
 | ||
|  | 				if (dtStatusDetail(status, DT_PARTIAL_RESULT)) | ||
|  | 					ag->partial = true; | ||
|  | 				else | ||
|  | 					ag->partial = false; | ||
|  | 
 | ||
|  | 				// Merge result and existing path.
 | ||
|  | 				// The agent might have moved whilst the request is
 | ||
|  | 				// being processed, so the path may have changed.
 | ||
|  | 				// We assume that the end of the path is at the same location
 | ||
|  | 				// where the request was issued.
 | ||
|  | 				 | ||
|  | 				// The last ref in the old path should be the same as
 | ||
|  | 				// the location where the request was issued..
 | ||
|  | 				if (valid && path[npath-1] != res[0]) | ||
|  | 					valid = false; | ||
|  | 				 | ||
|  | 				if (valid) | ||
|  | 				{ | ||
|  | 					// Put the old path infront of the old path.
 | ||
|  | 					if (npath > 1) | ||
|  | 					{ | ||
|  | 						// Make space for the old path.
 | ||
|  | 						if ((npath-1)+nres > m_maxPathResult) | ||
|  | 							nres = m_maxPathResult - (npath-1); | ||
|  | 						 | ||
|  | 						memmove(res+npath-1, res, sizeof(dtPolyRef)*nres); | ||
|  | 						// Copy old path in the beginning.
 | ||
|  | 						memcpy(res, path, sizeof(dtPolyRef)*(npath-1)); | ||
|  | 						nres += npath-1; | ||
|  | 						 | ||
|  | 						// Remove trackbacks
 | ||
|  | 						for (int j = 0; j < nres; ++j) | ||
|  | 						{ | ||
|  | 							if (j-1 >= 0 && j+1 < nres) | ||
|  | 							{ | ||
|  | 								if (res[j-1] == res[j+1]) | ||
|  | 								{ | ||
|  | 									memmove(res+(j-1), res+(j+1), sizeof(dtPolyRef)*(nres-(j+1))); | ||
|  | 									nres -= 2; | ||
|  | 									j -= 2; | ||
|  | 								} | ||
|  | 							} | ||
|  | 						} | ||
|  | 						 | ||
|  | 					} | ||
|  | 					 | ||
|  | 					// Check for partial path.
 | ||
|  | 					if (res[nres-1] != ag->targetRef) | ||
|  | 					{ | ||
|  | 						// Partial path, constrain target position inside the last polygon.
 | ||
|  | 						float nearest[3]; | ||
|  | 						status = m_navquery->closestPointOnPoly(res[nres-1], targetPos, nearest, 0); | ||
|  | 						if (dtStatusSucceed(status)) | ||
|  | 							dtVcopy(targetPos, nearest); | ||
|  | 						else | ||
|  | 							valid = false; | ||
|  | 					} | ||
|  | 				} | ||
|  | 				 | ||
|  | 				if (valid) | ||
|  | 				{ | ||
|  | 					// Set current corridor.
 | ||
|  | 					ag->corridor.setCorridor(targetPos, res, nres); | ||
|  | 					// Force to update boundary.
 | ||
|  | 					ag->boundary.reset(); | ||
|  | 					ag->targetState = DT_CROWDAGENT_TARGET_VALID; | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					// Something went wrong.
 | ||
|  | 					ag->targetState = DT_CROWDAGENT_TARGET_FAILED; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				ag->targetReplanTime = 0.0; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void dtCrowd::updateTopologyOptimization(dtCrowdAgent** agents, const int nagents, const float dt) | ||
|  | { | ||
|  | 	if (!nagents) | ||
|  | 		return; | ||
|  | 	 | ||
|  | 	const float OPT_TIME_THR = 0.5f; // seconds
 | ||
|  | 	const int OPT_MAX_AGENTS = 1; | ||
|  | 	dtCrowdAgent* queue[OPT_MAX_AGENTS]; | ||
|  | 	int nqueue = 0; | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 		if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_TOPO) == 0) | ||
|  | 			continue; | ||
|  | 		ag->topologyOptTime += dt; | ||
|  | 		if (ag->topologyOptTime >= OPT_TIME_THR) | ||
|  | 			nqueue = addToOptQueue(ag, queue, nqueue, OPT_MAX_AGENTS); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (int i = 0; i < nqueue; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = queue[i]; | ||
|  | 		ag->corridor.optimizePathTopology(m_navquery, &m_filters[ag->params.queryFilterType]); | ||
|  | 		ag->topologyOptTime = 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void dtCrowd::checkPathValidity(dtCrowdAgent** agents, const int nagents, const float dt) | ||
|  | { | ||
|  | 	static const int CHECK_LOOKAHEAD = 10; | ||
|  | 	static const float TARGET_REPLAN_DELAY = 1.0; // seconds
 | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		 | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 			 | ||
|  | 		ag->targetReplanTime += dt; | ||
|  | 
 | ||
|  | 		bool replan = false; | ||
|  | 
 | ||
|  | 		// First check that the current location is valid.
 | ||
|  | 		const int idx = getAgentIndex(ag); | ||
|  | 		float agentPos[3]; | ||
|  | 		dtPolyRef agentRef = ag->corridor.getFirstPoly(); | ||
|  | 		dtVcopy(agentPos, ag->npos); | ||
|  | 		if (!m_navquery->isValidPolyRef(agentRef, &m_filters[ag->params.queryFilterType])) | ||
|  | 		{ | ||
|  | 			// Current location is not valid, try to reposition.
 | ||
|  | 			// TODO: this can snap agents, how to handle that?
 | ||
|  | 			float nearest[3]; | ||
|  | 			dtVcopy(nearest, agentPos); | ||
|  | 			agentRef = 0; | ||
|  | 			m_navquery->findNearestPoly(ag->npos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &agentRef, nearest); | ||
|  | 			dtVcopy(agentPos, nearest); | ||
|  | 
 | ||
|  | 			if (!agentRef) | ||
|  | 			{ | ||
|  | 				// Could not find location in navmesh, set state to invalid.
 | ||
|  | 				ag->corridor.reset(0, agentPos); | ||
|  | 				ag->partial = false; | ||
|  | 				ag->boundary.reset(); | ||
|  | 				ag->state = DT_CROWDAGENT_STATE_INVALID; | ||
|  | 				continue; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			// Make sure the first polygon is valid, but leave other valid
 | ||
|  | 			// polygons in the path so that replanner can adjust the path better.
 | ||
|  | 			ag->corridor.fixPathStart(agentRef, agentPos); | ||
|  | //			ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
 | ||
|  | 			ag->boundary.reset(); | ||
|  | 			dtVcopy(ag->npos, agentPos); | ||
|  | 
 | ||
|  | 			replan = true; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// If the agent does not have move target or is controlled by velocity, no need to recover the target nor replan.
 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		// Try to recover move request position.
 | ||
|  | 		if (ag->targetState != DT_CROWDAGENT_TARGET_NONE && ag->targetState != DT_CROWDAGENT_TARGET_FAILED) | ||
|  | 		{ | ||
|  | 			if (!m_navquery->isValidPolyRef(ag->targetRef, &m_filters[ag->params.queryFilterType])) | ||
|  | 			{ | ||
|  | 				// Current target is not valid, try to reposition.
 | ||
|  | 				float nearest[3]; | ||
|  | 				dtVcopy(nearest, ag->targetPos); | ||
|  | 				ag->targetRef = 0; | ||
|  | 				m_navquery->findNearestPoly(ag->targetPos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ag->targetRef, nearest); | ||
|  | 				dtVcopy(ag->targetPos, nearest); | ||
|  | 				replan = true; | ||
|  | 			} | ||
|  | 			if (!ag->targetRef) | ||
|  | 			{ | ||
|  | 				// Failed to reposition target, fail moverequest.
 | ||
|  | 				ag->corridor.reset(agentRef, agentPos); | ||
|  | 				ag->partial = false; | ||
|  | 				ag->targetState = DT_CROWDAGENT_TARGET_NONE; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// If nearby corridor is not valid, replan.
 | ||
|  | 		if (!ag->corridor.isValid(CHECK_LOOKAHEAD, m_navquery, &m_filters[ag->params.queryFilterType])) | ||
|  | 		{ | ||
|  | 			// Fix current path.
 | ||
|  | //			ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
 | ||
|  | //			ag->boundary.reset();
 | ||
|  | 			replan = true; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// If the end of the path is near and it is not the requested location, replan.
 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_VALID) | ||
|  | 		{ | ||
|  | 			if (ag->targetReplanTime > TARGET_REPLAN_DELAY && | ||
|  | 				ag->corridor.getPathCount() < CHECK_LOOKAHEAD && | ||
|  | 				ag->corridor.getLastPoly() != ag->targetRef) | ||
|  | 				replan = true; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Try to replan path to goal.
 | ||
|  | 		if (replan) | ||
|  | 		{ | ||
|  | 			if (ag->targetState != DT_CROWDAGENT_TARGET_NONE) | ||
|  | 			{ | ||
|  | 				requestMoveTargetReplan(idx, ag->targetRef, ag->targetPos); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 	 | ||
|  | void dtCrowd::update(const float dt, dtCrowdAgentDebugInfo* debug) | ||
|  | { | ||
|  | 	m_velocitySampleCount = 0; | ||
|  | 	 | ||
|  | 	const int debugIdx = debug ? debug->idx : -1; | ||
|  | 	 | ||
|  | 	dtCrowdAgent** agents = m_activeAgents; | ||
|  | 	int nagents = getActiveAgents(agents, m_maxAgents); | ||
|  | 
 | ||
|  | 	// Check that all agents still have valid paths.
 | ||
|  | 	checkPathValidity(agents, nagents, dt); | ||
|  | 	 | ||
|  | 	// Update async move request and path finder.
 | ||
|  | 	updateMoveRequest(dt); | ||
|  | 
 | ||
|  | 	// Optimize path topology.
 | ||
|  | 	updateTopologyOptimization(agents, nagents, dt); | ||
|  | 	 | ||
|  | 	// Register agents to proximity grid.
 | ||
|  | 	m_grid->clear(); | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		const float* p = ag->npos; | ||
|  | 		const float r = ag->params.radius; | ||
|  | 		m_grid->addItem((unsigned short)i, p[0]-r, p[2]-r, p[0]+r, p[2]+r); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Get nearby navmesh segments and agents to collide with.
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		// Update the collision boundary after certain distance has been passed or
 | ||
|  | 		// if it has become invalid.
 | ||
|  | 		const float updateThr = ag->params.collisionQueryRange*0.25f; | ||
|  | 		if (dtVdist2DSqr(ag->npos, ag->boundary.getCenter()) > dtSqr(updateThr) || | ||
|  | 			!ag->boundary.isValid(m_navquery, &m_filters[ag->params.queryFilterType])) | ||
|  | 		{ | ||
|  | 			ag->boundary.update(ag->corridor.getFirstPoly(), ag->npos, ag->params.collisionQueryRange, | ||
|  | 								m_navquery, &m_filters[ag->params.queryFilterType]); | ||
|  | 		} | ||
|  | 		// Query neighbour agents
 | ||
|  | 		ag->nneis = getNeighbours(ag->npos, ag->params.height, ag->params.collisionQueryRange, | ||
|  | 								  ag, ag->neis, DT_CROWDAGENT_MAX_NEIGHBOURS, | ||
|  | 								  agents, nagents, m_grid); | ||
|  | 		for (int j = 0; j < ag->nneis; j++) | ||
|  | 			ag->neis[j].idx = getAgentIndex(agents[ag->neis[j].idx]); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Find next corner to steer to.
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		 | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		// Find corners for steering
 | ||
|  | 		ag->ncorners = ag->corridor.findCorners(ag->cornerVerts, ag->cornerFlags, ag->cornerPolys, | ||
|  | 												DT_CROWDAGENT_MAX_CORNERS, m_navquery, &m_filters[ag->params.queryFilterType]); | ||
|  | 		 | ||
|  | 		// Check to see if the corner after the next corner is directly visible,
 | ||
|  | 		// and short cut to there.
 | ||
|  | 		if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_VIS) && ag->ncorners > 0) | ||
|  | 		{ | ||
|  | 			const float* target = &ag->cornerVerts[dtMin(1,ag->ncorners-1)*3]; | ||
|  | 			ag->corridor.optimizePathVisibility(target, ag->params.pathOptimizationRange, m_navquery, &m_filters[ag->params.queryFilterType]); | ||
|  | 			 | ||
|  | 			// Copy data for debug purposes.
 | ||
|  | 			if (debugIdx == i) | ||
|  | 			{ | ||
|  | 				dtVcopy(debug->optStart, ag->corridor.getPos()); | ||
|  | 				dtVcopy(debug->optEnd, target); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// Copy data for debug purposes.
 | ||
|  | 			if (debugIdx == i) | ||
|  | 			{ | ||
|  | 				dtVset(debug->optStart, 0,0,0); | ||
|  | 				dtVset(debug->optEnd, 0,0,0); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Trigger off-mesh connections (depends on corners).
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		 | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		// Check 
 | ||
|  | 		const float triggerRadius = ag->params.radius*2.25f; | ||
|  | 		if (overOffmeshConnection(ag, triggerRadius)) | ||
|  | 		{ | ||
|  | 			// Prepare to off-mesh connection.
 | ||
|  | 			const int idx = (int)(ag - m_agents); | ||
|  | 			dtCrowdAgentAnimation* anim = &m_agentAnims[idx]; | ||
|  | 			 | ||
|  | 			// Adjust the path over the off-mesh connection.
 | ||
|  | 			dtPolyRef refs[2]; | ||
|  | 			if (ag->corridor.moveOverOffmeshConnection(ag->cornerPolys[ag->ncorners-1], refs, | ||
|  | 													   anim->startPos, anim->endPos, m_navquery)) | ||
|  | 			{ | ||
|  | 				dtVcopy(anim->initPos, ag->npos); | ||
|  | 				anim->polyRef = refs[1]; | ||
|  | 				anim->active = true; | ||
|  | 				anim->t = 0.0f; | ||
|  | 				anim->tmax = (dtVdist2D(anim->startPos, anim->endPos) / ag->params.maxSpeed) * 0.5f; | ||
|  | 				 | ||
|  | 				ag->state = DT_CROWDAGENT_STATE_OFFMESH; | ||
|  | 				ag->ncorners = 0; | ||
|  | 				ag->nneis = 0; | ||
|  | 				continue; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// Path validity check will ensure that bad/blocked connections will be replanned.
 | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 		 | ||
|  | 	// Calculate steering.
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 
 | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		float dvel[3] = {0,0,0}; | ||
|  | 
 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 		{ | ||
|  | 			dtVcopy(dvel, ag->targetPos); | ||
|  | 			ag->desiredSpeed = dtVlen(ag->targetPos); | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// Calculate steering direction.
 | ||
|  | 			if (ag->params.updateFlags & DT_CROWD_ANTICIPATE_TURNS) | ||
|  | 				calcSmoothSteerDirection(ag, dvel); | ||
|  | 			else | ||
|  | 				calcStraightSteerDirection(ag, dvel); | ||
|  | 			 | ||
|  | 			// Calculate speed scale, which tells the agent to slowdown at the end of the path.
 | ||
|  | 			const float slowDownRadius = ag->params.radius*2;	// TODO: make less hacky.
 | ||
|  | 			const float speedScale = getDistanceToGoal(ag, slowDownRadius) / slowDownRadius; | ||
|  | 				 | ||
|  | 			ag->desiredSpeed = ag->params.maxSpeed; | ||
|  | 			dtVscale(dvel, dvel, ag->desiredSpeed * speedScale); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Separation
 | ||
|  | 		if (ag->params.updateFlags & DT_CROWD_SEPARATION) | ||
|  | 		{ | ||
|  | 			const float separationDist = ag->params.collisionQueryRange;  | ||
|  | 			const float invSeparationDist = 1.0f / separationDist;  | ||
|  | 			const float separationWeight = ag->params.separationWeight; | ||
|  | 			 | ||
|  | 			float w = 0; | ||
|  | 			float disp[3] = {0,0,0}; | ||
|  | 			 | ||
|  | 			for (int j = 0; j < ag->nneis; ++j) | ||
|  | 			{ | ||
|  | 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx]; | ||
|  | 				 | ||
|  | 				float diff[3]; | ||
|  | 				dtVsub(diff, ag->npos, nei->npos); | ||
|  | 				diff[1] = 0; | ||
|  | 				 | ||
|  | 				const float distSqr = dtVlenSqr(diff); | ||
|  | 				if (distSqr < 0.00001f) | ||
|  | 					continue; | ||
|  | 				if (distSqr > dtSqr(separationDist)) | ||
|  | 					continue; | ||
|  | 				const float dist = dtMathSqrtf(distSqr); | ||
|  | 				const float weight = separationWeight * (1.0f - dtSqr(dist*invSeparationDist)); | ||
|  | 				 | ||
|  | 				dtVmad(disp, disp, diff, weight/dist); | ||
|  | 				w += 1.0f; | ||
|  | 			} | ||
|  | 			 | ||
|  | 			if (w > 0.0001f) | ||
|  | 			{ | ||
|  | 				// Adjust desired velocity.
 | ||
|  | 				dtVmad(dvel, dvel, disp, 1.0f/w); | ||
|  | 				// Clamp desired velocity to desired speed.
 | ||
|  | 				const float speedSqr = dtVlenSqr(dvel); | ||
|  | 				const float desiredSqr = dtSqr(ag->desiredSpeed); | ||
|  | 				if (speedSqr > desiredSqr) | ||
|  | 					dtVscale(dvel, dvel, desiredSqr/speedSqr); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// Set the desired velocity.
 | ||
|  | 		dtVcopy(ag->dvel, dvel); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Velocity planning.	
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		 | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		if (ag->params.updateFlags & DT_CROWD_OBSTACLE_AVOIDANCE) | ||
|  | 		{ | ||
|  | 			m_obstacleQuery->reset(); | ||
|  | 			 | ||
|  | 			// Add neighbours as obstacles.
 | ||
|  | 			for (int j = 0; j < ag->nneis; ++j) | ||
|  | 			{ | ||
|  | 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx]; | ||
|  | 				m_obstacleQuery->addCircle(nei->npos, nei->params.radius, nei->vel, nei->dvel); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			// Append neighbour segments as obstacles.
 | ||
|  | 			for (int j = 0; j < ag->boundary.getSegmentCount(); ++j) | ||
|  | 			{ | ||
|  | 				const float* s = ag->boundary.getSegment(j); | ||
|  | 				if (dtTriArea2D(ag->npos, s, s+3) < 0.0f) | ||
|  | 					continue; | ||
|  | 				m_obstacleQuery->addSegment(s, s+3); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			dtObstacleAvoidanceDebugData* vod = 0; | ||
|  | 			if (debugIdx == i)  | ||
|  | 				vod = debug->vod; | ||
|  | 			 | ||
|  | 			// Sample new safe velocity.
 | ||
|  | 			bool adaptive = true; | ||
|  | 			int ns = 0; | ||
|  | 
 | ||
|  | 			const dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[ag->params.obstacleAvoidanceType]; | ||
|  | 				 | ||
|  | 			if (adaptive) | ||
|  | 			{ | ||
|  | 				ns = m_obstacleQuery->sampleVelocityAdaptive(ag->npos, ag->params.radius, ag->desiredSpeed, | ||
|  | 															 ag->vel, ag->dvel, ag->nvel, params, vod); | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				ns = m_obstacleQuery->sampleVelocityGrid(ag->npos, ag->params.radius, ag->desiredSpeed, | ||
|  | 														 ag->vel, ag->dvel, ag->nvel, params, vod); | ||
|  | 			} | ||
|  | 			m_velocitySampleCount += ns; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// If not using velocity planning, new velocity is directly the desired velocity.
 | ||
|  | 			dtVcopy(ag->nvel, ag->dvel); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Integrate.
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		integrate(ag, dt); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Handle collisions.
 | ||
|  | 	static const float COLLISION_RESOLVE_FACTOR = 0.7f; | ||
|  | 	 | ||
|  | 	for (int iter = 0; iter < 4; ++iter) | ||
|  | 	{ | ||
|  | 		for (int i = 0; i < nagents; ++i) | ||
|  | 		{ | ||
|  | 			dtCrowdAgent* ag = agents[i]; | ||
|  | 			const int idx0 = getAgentIndex(ag); | ||
|  | 			 | ||
|  | 			if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 				continue; | ||
|  | 
 | ||
|  | 			dtVset(ag->disp, 0,0,0); | ||
|  | 			 | ||
|  | 			float w = 0; | ||
|  | 
 | ||
|  | 			for (int j = 0; j < ag->nneis; ++j) | ||
|  | 			{ | ||
|  | 				const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx]; | ||
|  | 				const int idx1 = getAgentIndex(nei); | ||
|  | 
 | ||
|  | 				float diff[3]; | ||
|  | 				dtVsub(diff, ag->npos, nei->npos); | ||
|  | 				diff[1] = 0; | ||
|  | 				 | ||
|  | 				float dist = dtVlenSqr(diff); | ||
|  | 				if (dist > dtSqr(ag->params.radius + nei->params.radius)) | ||
|  | 					continue; | ||
|  | 				dist = dtMathSqrtf(dist); | ||
|  | 				float pen = (ag->params.radius + nei->params.radius) - dist; | ||
|  | 				if (dist < 0.0001f) | ||
|  | 				{ | ||
|  | 					// Agents on top of each other, try to choose diverging separation directions.
 | ||
|  | 					if (idx0 > idx1) | ||
|  | 						dtVset(diff, -ag->dvel[2],0,ag->dvel[0]); | ||
|  | 					else | ||
|  | 						dtVset(diff, ag->dvel[2],0,-ag->dvel[0]); | ||
|  | 					pen = 0.01f; | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					pen = (1.0f/dist) * (pen*0.5f) * COLLISION_RESOLVE_FACTOR; | ||
|  | 				} | ||
|  | 				 | ||
|  | 				dtVmad(ag->disp, ag->disp, diff, pen);			 | ||
|  | 				 | ||
|  | 				w += 1.0f; | ||
|  | 			} | ||
|  | 			 | ||
|  | 			if (w > 0.0001f) | ||
|  | 			{ | ||
|  | 				const float iw = 1.0f / w; | ||
|  | 				dtVscale(ag->disp, ag->disp, iw); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		for (int i = 0; i < nagents; ++i) | ||
|  | 		{ | ||
|  | 			dtCrowdAgent* ag = agents[i]; | ||
|  | 			if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			dtVadd(ag->npos, ag->npos, ag->disp); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		if (ag->state != DT_CROWDAGENT_STATE_WALKING) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		// Move along navmesh.
 | ||
|  | 		ag->corridor.movePosition(ag->npos, m_navquery, &m_filters[ag->params.queryFilterType]); | ||
|  | 		// Get valid constrained position back.
 | ||
|  | 		dtVcopy(ag->npos, ag->corridor.getPos()); | ||
|  | 
 | ||
|  | 		// If not using path, truncate the corridor to just one poly.
 | ||
|  | 		if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) | ||
|  | 		{ | ||
|  | 			ag->corridor.reset(ag->corridor.getFirstPoly(), ag->npos); | ||
|  | 			ag->partial = false; | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Update agents using off-mesh connection.
 | ||
|  | 	for (int i = 0; i < nagents; ++i) | ||
|  | 	{ | ||
|  | 		dtCrowdAgent* ag = agents[i]; | ||
|  | 		const int idx = (int)(ag - m_agents); | ||
|  | 		dtCrowdAgentAnimation* anim = &m_agentAnims[idx]; | ||
|  | 		if (!anim->active) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 
 | ||
|  | 		anim->t += dt; | ||
|  | 		if (anim->t > anim->tmax) | ||
|  | 		{ | ||
|  | 			// Reset animation
 | ||
|  | 			anim->active = false; | ||
|  | 			// Prepare agent for walking.
 | ||
|  | 			ag->state = DT_CROWDAGENT_STATE_WALKING; | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// Update position
 | ||
|  | 		const float ta = anim->tmax*0.15f; | ||
|  | 		const float tb = anim->tmax; | ||
|  | 		if (anim->t < ta) | ||
|  | 		{ | ||
|  | 			const float u = tween(anim->t, 0.0, ta); | ||
|  | 			dtVlerp(ag->npos, anim->initPos, anim->startPos, u); | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			const float u = tween(anim->t, ta, tb); | ||
|  | 			dtVlerp(ag->npos, anim->startPos, anim->endPos, u); | ||
|  | 		} | ||
|  | 			 | ||
|  | 		// Update velocity.
 | ||
|  | 		dtVset(ag->vel, 0,0,0); | ||
|  | 		dtVset(ag->dvel, 0,0,0); | ||
|  | 	} | ||
|  | 	 | ||
|  | } |