forked from LeenkxTeam/LNXSDK
		
	
		
			
	
	
		
			1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //
 | ||
|  | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty.  In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //    claim that you wrote the original software. If you use this software
 | ||
|  | //    in a product, an acknowledgment in the product documentation would be
 | ||
|  | //    appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //    misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #define _USE_MATH_DEFINES
 | ||
|  | #include <math.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include "Recast.h"
 | ||
|  | #include "RecastAlloc.h"
 | ||
|  | #include "RecastAssert.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | static int getCornerHeight(int x, int y, int i, int dir, | ||
|  | 						   const rcCompactHeightfield& chf, | ||
|  | 						   bool& isBorderVertex) | ||
|  | { | ||
|  | 	const rcCompactSpan& s = chf.spans[i]; | ||
|  | 	int ch = (int)s.y; | ||
|  | 	int dirp = (dir+1) & 0x3; | ||
|  | 	 | ||
|  | 	unsigned int regs[4] = {0,0,0,0}; | ||
|  | 	 | ||
|  | 	// Combine region and area codes in order to prevent
 | ||
|  | 	// border vertices which are in between two areas to be removed.
 | ||
|  | 	regs[0] = chf.spans[i].reg | (chf.areas[i] << 16); | ||
|  | 	 | ||
|  | 	if (rcGetCon(s, dir) != RC_NOT_CONNECTED) | ||
|  | 	{ | ||
|  | 		const int ax = x + rcGetDirOffsetX(dir); | ||
|  | 		const int ay = y + rcGetDirOffsetY(dir); | ||
|  | 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); | ||
|  | 		const rcCompactSpan& as = chf.spans[ai]; | ||
|  | 		ch = rcMax(ch, (int)as.y); | ||
|  | 		regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16); | ||
|  | 		if (rcGetCon(as, dirp) != RC_NOT_CONNECTED) | ||
|  | 		{ | ||
|  | 			const int ax2 = ax + rcGetDirOffsetX(dirp); | ||
|  | 			const int ay2 = ay + rcGetDirOffsetY(dirp); | ||
|  | 			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp); | ||
|  | 			const rcCompactSpan& as2 = chf.spans[ai2]; | ||
|  | 			ch = rcMax(ch, (int)as2.y); | ||
|  | 			regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if (rcGetCon(s, dirp) != RC_NOT_CONNECTED) | ||
|  | 	{ | ||
|  | 		const int ax = x + rcGetDirOffsetX(dirp); | ||
|  | 		const int ay = y + rcGetDirOffsetY(dirp); | ||
|  | 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp); | ||
|  | 		const rcCompactSpan& as = chf.spans[ai]; | ||
|  | 		ch = rcMax(ch, (int)as.y); | ||
|  | 		regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16); | ||
|  | 		if (rcGetCon(as, dir) != RC_NOT_CONNECTED) | ||
|  | 		{ | ||
|  | 			const int ax2 = ax + rcGetDirOffsetX(dir); | ||
|  | 			const int ay2 = ay + rcGetDirOffsetY(dir); | ||
|  | 			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir); | ||
|  | 			const rcCompactSpan& as2 = chf.spans[ai2]; | ||
|  | 			ch = rcMax(ch, (int)as2.y); | ||
|  | 			regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Check if the vertex is special edge vertex, these vertices will be removed later.
 | ||
|  | 	for (int j = 0; j < 4; ++j) | ||
|  | 	{ | ||
|  | 		const int a = j; | ||
|  | 		const int b = (j+1) & 0x3; | ||
|  | 		const int c = (j+2) & 0x3; | ||
|  | 		const int d = (j+3) & 0x3; | ||
|  | 		 | ||
|  | 		// The vertex is a border vertex there are two same exterior cells in a row,
 | ||
|  | 		// followed by two interior cells and none of the regions are out of bounds.
 | ||
|  | 		const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b]; | ||
|  | 		const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0; | ||
|  | 		const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); | ||
|  | 		const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0; | ||
|  | 		if (twoSameExts && twoInts && intsSameArea && noZeros) | ||
|  | 		{ | ||
|  | 			isBorderVertex = true; | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return ch; | ||
|  | } | ||
|  | 
 | ||
|  | static void walkContour(int x, int y, int i, | ||
|  | 						rcCompactHeightfield& chf, | ||
|  | 						unsigned char* flags, rcIntArray& points) | ||
|  | { | ||
|  | 	// Choose the first non-connected edge
 | ||
|  | 	unsigned char dir = 0; | ||
|  | 	while ((flags[i] & (1 << dir)) == 0) | ||
|  | 		dir++; | ||
|  | 	 | ||
|  | 	unsigned char startDir = dir; | ||
|  | 	int starti = i; | ||
|  | 	 | ||
|  | 	const unsigned char area = chf.areas[i]; | ||
|  | 	 | ||
|  | 	int iter = 0; | ||
|  | 	while (++iter < 40000) | ||
|  | 	{ | ||
|  | 		if (flags[i] & (1 << dir)) | ||
|  | 		{ | ||
|  | 			// Choose the edge corner
 | ||
|  | 			bool isBorderVertex = false; | ||
|  | 			bool isAreaBorder = false; | ||
|  | 			int px = x; | ||
|  | 			int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex); | ||
|  | 			int pz = y; | ||
|  | 			switch(dir) | ||
|  | 			{ | ||
|  | 				case 0: pz++; break; | ||
|  | 				case 1: px++; pz++; break; | ||
|  | 				case 2: px++; break; | ||
|  | 			} | ||
|  | 			int r = 0; | ||
|  | 			const rcCompactSpan& s = chf.spans[i]; | ||
|  | 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED) | ||
|  | 			{ | ||
|  | 				const int ax = x + rcGetDirOffsetX(dir); | ||
|  | 				const int ay = y + rcGetDirOffsetY(dir); | ||
|  | 				const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); | ||
|  | 				r = (int)chf.spans[ai].reg; | ||
|  | 				if (area != chf.areas[ai]) | ||
|  | 					isAreaBorder = true; | ||
|  | 			} | ||
|  | 			if (isBorderVertex) | ||
|  | 				r |= RC_BORDER_VERTEX; | ||
|  | 			if (isAreaBorder) | ||
|  | 				r |= RC_AREA_BORDER; | ||
|  | 			points.push(px); | ||
|  | 			points.push(py); | ||
|  | 			points.push(pz); | ||
|  | 			points.push(r); | ||
|  | 			 | ||
|  | 			flags[i] &= ~(1 << dir); // Remove visited edges
 | ||
|  | 			dir = (dir+1) & 0x3;  // Rotate CW
 | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			int ni = -1; | ||
|  | 			const int nx = x + rcGetDirOffsetX(dir); | ||
|  | 			const int ny = y + rcGetDirOffsetY(dir); | ||
|  | 			const rcCompactSpan& s = chf.spans[i]; | ||
|  | 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED) | ||
|  | 			{ | ||
|  | 				const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; | ||
|  | 				ni = (int)nc.index + rcGetCon(s, dir); | ||
|  | 			} | ||
|  | 			if (ni == -1) | ||
|  | 			{ | ||
|  | 				// Should not happen.
 | ||
|  | 				return; | ||
|  | 			} | ||
|  | 			x = nx; | ||
|  | 			y = ny; | ||
|  | 			i = ni; | ||
|  | 			dir = (dir+3) & 0x3;	// Rotate CCW
 | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (starti == i && startDir == dir) | ||
|  | 		{ | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static float distancePtSeg(const int x, const int z, | ||
|  | 						   const int px, const int pz, | ||
|  | 						   const int qx, const int qz) | ||
|  | { | ||
|  | 	float pqx = (float)(qx - px); | ||
|  | 	float pqz = (float)(qz - pz); | ||
|  | 	float dx = (float)(x - px); | ||
|  | 	float dz = (float)(z - pz); | ||
|  | 	float d = pqx*pqx + pqz*pqz; | ||
|  | 	float t = pqx*dx + pqz*dz; | ||
|  | 	if (d > 0) | ||
|  | 		t /= d; | ||
|  | 	if (t < 0) | ||
|  | 		t = 0; | ||
|  | 	else if (t > 1) | ||
|  | 		t = 1; | ||
|  | 	 | ||
|  | 	dx = px + t*pqx - x; | ||
|  | 	dz = pz + t*pqz - z; | ||
|  | 	 | ||
|  | 	return dx*dx + dz*dz; | ||
|  | } | ||
|  | 
 | ||
|  | static void simplifyContour(rcIntArray& points, rcIntArray& simplified, | ||
|  | 							const float maxError, const int maxEdgeLen, const int buildFlags) | ||
|  | { | ||
|  | 	// Add initial points.
 | ||
|  | 	bool hasConnections = false; | ||
|  | 	for (int i = 0; i < points.size(); i += 4) | ||
|  | 	{ | ||
|  | 		if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0) | ||
|  | 		{ | ||
|  | 			hasConnections = true; | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if (hasConnections) | ||
|  | 	{ | ||
|  | 		// The contour has some portals to other regions.
 | ||
|  | 		// Add a new point to every location where the region changes.
 | ||
|  | 		for (int i = 0, ni = points.size()/4; i < ni; ++i) | ||
|  | 		{ | ||
|  | 			int ii = (i+1) % ni; | ||
|  | 			const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK); | ||
|  | 			const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER); | ||
|  | 			if (differentRegs || areaBorders) | ||
|  | 			{ | ||
|  | 				simplified.push(points[i*4+0]); | ||
|  | 				simplified.push(points[i*4+1]); | ||
|  | 				simplified.push(points[i*4+2]); | ||
|  | 				simplified.push(i); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if (simplified.size() == 0) | ||
|  | 	{ | ||
|  | 		// If there is no connections at all,
 | ||
|  | 		// create some initial points for the simplification process.
 | ||
|  | 		// Find lower-left and upper-right vertices of the contour.
 | ||
|  | 		int llx = points[0]; | ||
|  | 		int lly = points[1]; | ||
|  | 		int llz = points[2]; | ||
|  | 		int lli = 0; | ||
|  | 		int urx = points[0]; | ||
|  | 		int ury = points[1]; | ||
|  | 		int urz = points[2]; | ||
|  | 		int uri = 0; | ||
|  | 		for (int i = 0; i < points.size(); i += 4) | ||
|  | 		{ | ||
|  | 			int x = points[i+0]; | ||
|  | 			int y = points[i+1]; | ||
|  | 			int z = points[i+2]; | ||
|  | 			if (x < llx || (x == llx && z < llz)) | ||
|  | 			{ | ||
|  | 				llx = x; | ||
|  | 				lly = y; | ||
|  | 				llz = z; | ||
|  | 				lli = i/4; | ||
|  | 			} | ||
|  | 			if (x > urx || (x == urx && z > urz)) | ||
|  | 			{ | ||
|  | 				urx = x; | ||
|  | 				ury = y; | ||
|  | 				urz = z; | ||
|  | 				uri = i/4; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		simplified.push(llx); | ||
|  | 		simplified.push(lly); | ||
|  | 		simplified.push(llz); | ||
|  | 		simplified.push(lli); | ||
|  | 		 | ||
|  | 		simplified.push(urx); | ||
|  | 		simplified.push(ury); | ||
|  | 		simplified.push(urz); | ||
|  | 		simplified.push(uri); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Add points until all raw points are within
 | ||
|  | 	// error tolerance to the simplified shape.
 | ||
|  | 	const int pn = points.size()/4; | ||
|  | 	for (int i = 0; i < simplified.size()/4; ) | ||
|  | 	{ | ||
|  | 		int ii = (i+1) % (simplified.size()/4); | ||
|  | 		 | ||
|  | 		int ax = simplified[i*4+0]; | ||
|  | 		int az = simplified[i*4+2]; | ||
|  | 		int ai = simplified[i*4+3]; | ||
|  | 
 | ||
|  | 		int bx = simplified[ii*4+0]; | ||
|  | 		int bz = simplified[ii*4+2]; | ||
|  | 		int bi = simplified[ii*4+3]; | ||
|  | 
 | ||
|  | 		// Find maximum deviation from the segment.
 | ||
|  | 		float maxd = 0; | ||
|  | 		int maxi = -1; | ||
|  | 		int ci, cinc, endi; | ||
|  | 
 | ||
|  | 		// Traverse the segment in lexilogical order so that the
 | ||
|  | 		// max deviation is calculated similarly when traversing
 | ||
|  | 		// opposite segments.
 | ||
|  | 		if (bx > ax || (bx == ax && bz > az)) | ||
|  | 		{ | ||
|  | 			cinc = 1; | ||
|  | 			ci = (ai+cinc) % pn; | ||
|  | 			endi = bi; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			cinc = pn-1; | ||
|  | 			ci = (bi+cinc) % pn; | ||
|  | 			endi = ai; | ||
|  | 			rcSwap(ax, bx); | ||
|  | 			rcSwap(az, bz); | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// Tessellate only outer edges or edges between areas.
 | ||
|  | 		if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 || | ||
|  | 			(points[ci*4+3] & RC_AREA_BORDER)) | ||
|  | 		{ | ||
|  | 			while (ci != endi) | ||
|  | 			{ | ||
|  | 				float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz); | ||
|  | 				if (d > maxd) | ||
|  | 				{ | ||
|  | 					maxd = d; | ||
|  | 					maxi = ci; | ||
|  | 				} | ||
|  | 				ci = (ci+cinc) % pn; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		 | ||
|  | 		// If the max deviation is larger than accepted error,
 | ||
|  | 		// add new point, else continue to next segment.
 | ||
|  | 		if (maxi != -1 && maxd > (maxError*maxError)) | ||
|  | 		{ | ||
|  | 			// Add space for the new point.
 | ||
|  | 			simplified.resize(simplified.size()+4); | ||
|  | 			const int n = simplified.size()/4; | ||
|  | 			for (int j = n-1; j > i; --j) | ||
|  | 			{ | ||
|  | 				simplified[j*4+0] = simplified[(j-1)*4+0]; | ||
|  | 				simplified[j*4+1] = simplified[(j-1)*4+1]; | ||
|  | 				simplified[j*4+2] = simplified[(j-1)*4+2]; | ||
|  | 				simplified[j*4+3] = simplified[(j-1)*4+3]; | ||
|  | 			} | ||
|  | 			// Add the point.
 | ||
|  | 			simplified[(i+1)*4+0] = points[maxi*4+0]; | ||
|  | 			simplified[(i+1)*4+1] = points[maxi*4+1]; | ||
|  | 			simplified[(i+1)*4+2] = points[maxi*4+2]; | ||
|  | 			simplified[(i+1)*4+3] = maxi; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			++i; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Split too long edges.
 | ||
|  | 	if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0) | ||
|  | 	{ | ||
|  | 		for (int i = 0; i < simplified.size()/4; ) | ||
|  | 		{ | ||
|  | 			const int ii = (i+1) % (simplified.size()/4); | ||
|  | 			 | ||
|  | 			const int ax = simplified[i*4+0]; | ||
|  | 			const int az = simplified[i*4+2]; | ||
|  | 			const int ai = simplified[i*4+3]; | ||
|  | 			 | ||
|  | 			const int bx = simplified[ii*4+0]; | ||
|  | 			const int bz = simplified[ii*4+2]; | ||
|  | 			const int bi = simplified[ii*4+3]; | ||
|  | 			 | ||
|  | 			// Find maximum deviation from the segment.
 | ||
|  | 			int maxi = -1; | ||
|  | 			int ci = (ai+1) % pn; | ||
|  | 			 | ||
|  | 			// Tessellate only outer edges or edges between areas.
 | ||
|  | 			bool tess = false; | ||
|  | 			// Wall edges.
 | ||
|  | 			if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0) | ||
|  | 				tess = true; | ||
|  | 			// Edges between areas.
 | ||
|  | 			if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER)) | ||
|  | 				tess = true; | ||
|  | 			 | ||
|  | 			if (tess) | ||
|  | 			{ | ||
|  | 				int dx = bx - ax; | ||
|  | 				int dz = bz - az; | ||
|  | 				if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) | ||
|  | 				{ | ||
|  | 					// Round based on the segments in lexilogical order so that the
 | ||
|  | 					// max tesselation is consistent regardles in which direction
 | ||
|  | 					// segments are traversed.
 | ||
|  | 					const int n = bi < ai ? (bi+pn - ai) : (bi - ai); | ||
|  | 					if (n > 1) | ||
|  | 					{ | ||
|  | 						if (bx > ax || (bx == ax && bz > az)) | ||
|  | 							maxi = (ai + n/2) % pn; | ||
|  | 						else | ||
|  | 							maxi = (ai + (n+1)/2) % pn; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			 | ||
|  | 			// If the max deviation is larger than accepted error,
 | ||
|  | 			// add new point, else continue to next segment.
 | ||
|  | 			if (maxi != -1) | ||
|  | 			{ | ||
|  | 				// Add space for the new point.
 | ||
|  | 				simplified.resize(simplified.size()+4); | ||
|  | 				const int n = simplified.size()/4; | ||
|  | 				for (int j = n-1; j > i; --j) | ||
|  | 				{ | ||
|  | 					simplified[j*4+0] = simplified[(j-1)*4+0]; | ||
|  | 					simplified[j*4+1] = simplified[(j-1)*4+1]; | ||
|  | 					simplified[j*4+2] = simplified[(j-1)*4+2]; | ||
|  | 					simplified[j*4+3] = simplified[(j-1)*4+3]; | ||
|  | 				} | ||
|  | 				// Add the point.
 | ||
|  | 				simplified[(i+1)*4+0] = points[maxi*4+0]; | ||
|  | 				simplified[(i+1)*4+1] = points[maxi*4+1]; | ||
|  | 				simplified[(i+1)*4+2] = points[maxi*4+2]; | ||
|  | 				simplified[(i+1)*4+3] = maxi; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				++i; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for (int i = 0; i < simplified.size()/4; ++i) | ||
|  | 	{ | ||
|  | 		// The edge vertex flag is take from the current raw point,
 | ||
|  | 		// and the neighbour region is take from the next raw point.
 | ||
|  | 		const int ai = (simplified[i*4+3]+1) % pn; | ||
|  | 		const int bi = simplified[i*4+3]; | ||
|  | 		simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX); | ||
|  | 	} | ||
|  | 	 | ||
|  | } | ||
|  | 
 | ||
|  | static int calcAreaOfPolygon2D(const int* verts, const int nverts) | ||
|  | { | ||
|  | 	int area = 0; | ||
|  | 	for (int i = 0, j = nverts-1; i < nverts; j=i++) | ||
|  | 	{ | ||
|  | 		const int* vi = &verts[i*4]; | ||
|  | 		const int* vj = &verts[j*4]; | ||
|  | 		area += vi[0] * vj[2] - vj[0] * vi[2]; | ||
|  | 	} | ||
|  | 	return (area+1) / 2; | ||
|  | } | ||
|  | 
 | ||
|  | // TODO: these are the same as in RecastMesh.cpp, consider using the same.
 | ||
|  | // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
 | ||
|  | inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } | ||
|  | inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } | ||
|  | 
 | ||
|  | inline int area2(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); | ||
|  | } | ||
|  | 
 | ||
|  | //	Exclusive or: true iff exactly one argument is true.
 | ||
|  | //	The arguments are negated to ensure that they are 0/1
 | ||
|  | //	values.  Then the bitwise Xor operator may apply.
 | ||
|  | //	(This idea is due to Michael Baldwin.)
 | ||
|  | inline bool xorb(bool x, bool y) | ||
|  | { | ||
|  | 	return !x ^ !y; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff c is strictly to the left of the directed
 | ||
|  | // line through a to b.
 | ||
|  | inline bool left(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) < 0; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool leftOn(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) <= 0; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool collinear(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	return area2(a, b, c) == 0; | ||
|  | } | ||
|  | 
 | ||
|  | //	Returns true iff ab properly intersects cd: they share
 | ||
|  | //	a point interior to both segments.  The properness of the
 | ||
|  | //	intersection is ensured by using strict leftness.
 | ||
|  | static bool intersectProp(const int* a, const int* b, const int* c, const int* d) | ||
|  | { | ||
|  | 	// Eliminate improper cases.
 | ||
|  | 	if (collinear(a,b,c) || collinear(a,b,d) || | ||
|  | 		collinear(c,d,a) || collinear(c,d,b)) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns T iff (a,b,c) are collinear and point c lies
 | ||
|  | // on the closed segement ab.
 | ||
|  | static bool between(const int* a, const int* b, const int* c) | ||
|  | { | ||
|  | 	if (!collinear(a, b, c)) | ||
|  | 		return false; | ||
|  | 	// If ab not vertical, check betweenness on x; else on y.
 | ||
|  | 	if (a[0] != b[0]) | ||
|  | 		return	((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); | ||
|  | 	else | ||
|  | 		return	((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff segments ab and cd intersect, properly or improperly.
 | ||
|  | static bool intersect(const int* a, const int* b, const int* c, const int* d) | ||
|  | { | ||
|  | 	if (intersectProp(a, b, c, d)) | ||
|  | 		return true; | ||
|  | 	else if (between(a, b, c) || between(a, b, d) || | ||
|  | 			 between(c, d, a) || between(c, d, b)) | ||
|  | 		return true; | ||
|  | 	else | ||
|  | 		return false; | ||
|  | } | ||
|  | 
 | ||
|  | static bool vequal(const int* a, const int* b) | ||
|  | { | ||
|  | 	return a[0] == b[0] && a[2] == b[2]; | ||
|  | } | ||
|  | 
 | ||
|  | static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts) | ||
|  | { | ||
|  | 	// For each edge (k,k+1) of P
 | ||
|  | 	for (int k = 0; k < n; k++) | ||
|  | 	{ | ||
|  | 		int k1 = next(k, n); | ||
|  | 		// Skip edges incident to i.
 | ||
|  | 		if (i == k || i == k1) | ||
|  | 			continue; | ||
|  | 		const int* p0 = &verts[k * 4]; | ||
|  | 		const int* p1 = &verts[k1 * 4]; | ||
|  | 		if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		if (intersect(d0, d1, p0, p1)) | ||
|  | 			return true; | ||
|  | 	} | ||
|  | 	return false; | ||
|  | } | ||
|  | 
 | ||
|  | static bool	inCone(int i, int n, const int* verts, const int* pj) | ||
|  | { | ||
|  | 	const int* pi = &verts[i * 4]; | ||
|  | 	const int* pi1 = &verts[next(i, n) * 4]; | ||
|  | 	const int* pin1 = &verts[prev(i, n) * 4]; | ||
|  | 	 | ||
|  | 	// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
 | ||
|  | 	if (leftOn(pin1, pi, pi1)) | ||
|  | 		return left(pi, pj, pin1) && left(pj, pi, pi1); | ||
|  | 	// Assume (i-1,i,i+1) not collinear.
 | ||
|  | 	// else P[i] is reflex.
 | ||
|  | 	return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void removeDegenerateSegments(rcIntArray& simplified) | ||
|  | { | ||
|  | 	// Remove adjacent vertices which are equal on xz-plane,
 | ||
|  | 	// or else the triangulator will get confused.
 | ||
|  | 	int npts = simplified.size()/4; | ||
|  | 	for (int i = 0; i < npts; ++i) | ||
|  | 	{ | ||
|  | 		int ni = next(i, npts); | ||
|  | 		 | ||
|  | 		if (vequal(&simplified[i*4], &simplified[ni*4])) | ||
|  | 		{ | ||
|  | 			// Degenerate segment, remove.
 | ||
|  | 			for (int j = i; j < simplified.size()/4-1; ++j) | ||
|  | 			{ | ||
|  | 				simplified[j*4+0] = simplified[(j+1)*4+0]; | ||
|  | 				simplified[j*4+1] = simplified[(j+1)*4+1]; | ||
|  | 				simplified[j*4+2] = simplified[(j+1)*4+2]; | ||
|  | 				simplified[j*4+3] = simplified[(j+1)*4+3]; | ||
|  | 			} | ||
|  | 			simplified.resize(simplified.size()-4); | ||
|  | 			npts--; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) | ||
|  | { | ||
|  | 	const int maxVerts = ca.nverts + cb.nverts + 2; | ||
|  | 	int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM); | ||
|  | 	if (!verts) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	int nv = 0; | ||
|  | 	 | ||
|  | 	// Copy contour A.
 | ||
|  | 	for (int i = 0; i <= ca.nverts; ++i) | ||
|  | 	{ | ||
|  | 		int* dst = &verts[nv*4]; | ||
|  | 		const int* src = &ca.verts[((ia+i)%ca.nverts)*4]; | ||
|  | 		dst[0] = src[0]; | ||
|  | 		dst[1] = src[1]; | ||
|  | 		dst[2] = src[2]; | ||
|  | 		dst[3] = src[3]; | ||
|  | 		nv++; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Copy contour B
 | ||
|  | 	for (int i = 0; i <= cb.nverts; ++i) | ||
|  | 	{ | ||
|  | 		int* dst = &verts[nv*4]; | ||
|  | 		const int* src = &cb.verts[((ib+i)%cb.nverts)*4]; | ||
|  | 		dst[0] = src[0]; | ||
|  | 		dst[1] = src[1]; | ||
|  | 		dst[2] = src[2]; | ||
|  | 		dst[3] = src[3]; | ||
|  | 		nv++; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	rcFree(ca.verts); | ||
|  | 	ca.verts = verts; | ||
|  | 	ca.nverts = nv; | ||
|  | 	 | ||
|  | 	rcFree(cb.verts); | ||
|  | 	cb.verts = 0; | ||
|  | 	cb.nverts = 0; | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | struct rcContourHole | ||
|  | { | ||
|  | 	rcContour* contour; | ||
|  | 	int minx, minz, leftmost; | ||
|  | }; | ||
|  | 
 | ||
|  | struct rcContourRegion | ||
|  | { | ||
|  | 	rcContour* outline; | ||
|  | 	rcContourHole* holes; | ||
|  | 	int nholes; | ||
|  | }; | ||
|  | 
 | ||
|  | struct rcPotentialDiagonal | ||
|  | { | ||
|  | 	int vert; | ||
|  | 	int dist; | ||
|  | }; | ||
|  | 
 | ||
|  | // Finds the lowest leftmost vertex of a contour.
 | ||
|  | static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) | ||
|  | { | ||
|  | 	*minx = contour->verts[0]; | ||
|  | 	*minz = contour->verts[2]; | ||
|  | 	*leftmost = 0; | ||
|  | 	for (int i = 1; i < contour->nverts; i++) | ||
|  | 	{ | ||
|  | 		const int x = contour->verts[i*4+0]; | ||
|  | 		const int z = contour->verts[i*4+2]; | ||
|  | 		if (x < *minx || (x == *minx && z < *minz)) | ||
|  | 		{ | ||
|  | 			*minx = x; | ||
|  | 			*minz = z; | ||
|  | 			*leftmost = i; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static int compareHoles(const void* va, const void* vb) | ||
|  | { | ||
|  | 	const rcContourHole* a = (const rcContourHole*)va; | ||
|  | 	const rcContourHole* b = (const rcContourHole*)vb; | ||
|  | 	if (a->minx == b->minx) | ||
|  | 	{ | ||
|  | 		if (a->minz < b->minz) | ||
|  | 			return -1; | ||
|  | 		if (a->minz > b->minz) | ||
|  | 			return 1; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		if (a->minx < b->minx) | ||
|  | 			return -1; | ||
|  | 		if (a->minx > b->minx) | ||
|  | 			return 1; | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int compareDiagDist(const void* va, const void* vb) | ||
|  | { | ||
|  | 	const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; | ||
|  | 	const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; | ||
|  | 	if (a->dist < b->dist) | ||
|  | 		return -1; | ||
|  | 	if (a->dist > b->dist) | ||
|  | 		return 1; | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) | ||
|  | { | ||
|  | 	// Sort holes from left to right.
 | ||
|  | 	for (int i = 0; i < region.nholes; i++) | ||
|  | 		findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); | ||
|  | 	 | ||
|  | 	qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); | ||
|  | 	 | ||
|  | 	int maxVerts = region.outline->nverts; | ||
|  | 	for (int i = 0; i < region.nholes; i++) | ||
|  | 		maxVerts += region.holes[i].contour->nverts; | ||
|  | 	 | ||
|  | 	rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP)); | ||
|  | 	if (!diags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	rcContour* outline = region.outline; | ||
|  | 	 | ||
|  | 	// Merge holes into the outline one by one.
 | ||
|  | 	for (int i = 0; i < region.nholes; i++) | ||
|  | 	{ | ||
|  | 		rcContour* hole = region.holes[i].contour; | ||
|  | 		 | ||
|  | 		int index = -1; | ||
|  | 		int bestVertex = region.holes[i].leftmost; | ||
|  | 		for (int iter = 0; iter < hole->nverts; iter++) | ||
|  | 		{ | ||
|  | 			// Find potential diagonals.
 | ||
|  | 			// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
 | ||
|  | 			// ..o j-1
 | ||
|  | 			//   |
 | ||
|  | 			//   |   * best
 | ||
|  | 			//   |
 | ||
|  | 			// j o-----o j+1
 | ||
|  | 			//         :
 | ||
|  | 			int ndiags = 0; | ||
|  | 			const int* corner = &hole->verts[bestVertex*4]; | ||
|  | 			for (int j = 0; j < outline->nverts; j++) | ||
|  | 			{ | ||
|  | 				if (inCone(j, outline->nverts, outline->verts, corner)) | ||
|  | 				{ | ||
|  | 					int dx = outline->verts[j*4+0] - corner[0]; | ||
|  | 					int dz = outline->verts[j*4+2] - corner[2]; | ||
|  | 					diags[ndiags].vert = j; | ||
|  | 					diags[ndiags].dist = dx*dx + dz*dz; | ||
|  | 					ndiags++; | ||
|  | 				} | ||
|  | 			} | ||
|  | 			// Sort potential diagonals by distance, we want to make the connection as short as possible.
 | ||
|  | 			qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); | ||
|  | 			 | ||
|  | 			// Find a diagonal that is not intersecting the outline not the remaining holes.
 | ||
|  | 			index = -1; | ||
|  | 			for (int j = 0; j < ndiags; j++) | ||
|  | 			{ | ||
|  | 				const int* pt = &outline->verts[diags[j].vert*4]; | ||
|  | 				bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts); | ||
|  | 				for (int k = i; k < region.nholes && !intersect; k++) | ||
|  | 					intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); | ||
|  | 				if (!intersect) | ||
|  | 				{ | ||
|  | 					index = diags[j].vert; | ||
|  | 					break; | ||
|  | 				} | ||
|  | 			} | ||
|  | 			// If found non-intersecting diagonal, stop looking.
 | ||
|  | 			if (index != -1) | ||
|  | 				break; | ||
|  | 			// All the potential diagonals for the current vertex were intersecting, try next vertex.
 | ||
|  | 			bestVertex = (bestVertex + 1) % hole->nverts; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (index == -1) | ||
|  | 		{ | ||
|  | 			ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole); | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 		if (!mergeContours(*region.outline, *hole, index, bestVertex)) | ||
|  | 		{ | ||
|  | 			ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole); | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
 | ||
|  | /// parameters control how closely the simplified contours will match the raw contours.
 | ||
|  | ///
 | ||
|  | /// Simplified contours are generated such that the vertices for portals between areas match up.
 | ||
|  | /// (They are considered mandatory vertices.)
 | ||
|  | ///
 | ||
|  | /// Setting @p maxEdgeLength to zero will disabled the edge length feature.
 | ||
|  | ///
 | ||
|  | /// See the #rcConfig documentation for more information on the configuration parameters.
 | ||
|  | ///
 | ||
|  | /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
 | ||
|  | bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, | ||
|  | 					 const float maxError, const int maxEdgeLen, | ||
|  | 					 rcContourSet& cset, const int buildFlags) | ||
|  | { | ||
|  | 	rcAssert(ctx); | ||
|  | 	 | ||
|  | 	const int w = chf.width; | ||
|  | 	const int h = chf.height; | ||
|  | 	const int borderSize = chf.borderSize; | ||
|  | 	 | ||
|  | 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS); | ||
|  | 	 | ||
|  | 	rcVcopy(cset.bmin, chf.bmin); | ||
|  | 	rcVcopy(cset.bmax, chf.bmax); | ||
|  | 	if (borderSize > 0) | ||
|  | 	{ | ||
|  | 		// If the heightfield was build with bordersize, remove the offset.
 | ||
|  | 		const float pad = borderSize*chf.cs; | ||
|  | 		cset.bmin[0] += pad; | ||
|  | 		cset.bmin[2] += pad; | ||
|  | 		cset.bmax[0] -= pad; | ||
|  | 		cset.bmax[2] -= pad; | ||
|  | 	} | ||
|  | 	cset.cs = chf.cs; | ||
|  | 	cset.ch = chf.ch; | ||
|  | 	cset.width = chf.width - chf.borderSize*2; | ||
|  | 	cset.height = chf.height - chf.borderSize*2; | ||
|  | 	cset.borderSize = chf.borderSize; | ||
|  | 	cset.maxError = maxError; | ||
|  | 	 | ||
|  | 	int maxContours = rcMax((int)chf.maxRegions, 8); | ||
|  | 	cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); | ||
|  | 	if (!cset.conts) | ||
|  | 		return false; | ||
|  | 	cset.nconts = 0; | ||
|  | 	 | ||
|  | 	rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); | ||
|  | 	if (!flags) | ||
|  | 	{ | ||
|  | 		ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount); | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); | ||
|  | 	 | ||
|  | 	// Mark boundaries.
 | ||
|  | 	for (int y = 0; y < h; ++y) | ||
|  | 	{ | ||
|  | 		for (int x = 0; x < w; ++x) | ||
|  | 		{ | ||
|  | 			const rcCompactCell& c = chf.cells[x+y*w]; | ||
|  | 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) | ||
|  | 			{ | ||
|  | 				unsigned char res = 0; | ||
|  | 				const rcCompactSpan& s = chf.spans[i]; | ||
|  | 				if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG)) | ||
|  | 				{ | ||
|  | 					flags[i] = 0; | ||
|  | 					continue; | ||
|  | 				} | ||
|  | 				for (int dir = 0; dir < 4; ++dir) | ||
|  | 				{ | ||
|  | 					unsigned short r = 0; | ||
|  | 					if (rcGetCon(s, dir) != RC_NOT_CONNECTED) | ||
|  | 					{ | ||
|  | 						const int ax = x + rcGetDirOffsetX(dir); | ||
|  | 						const int ay = y + rcGetDirOffsetY(dir); | ||
|  | 						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); | ||
|  | 						r = chf.spans[ai].reg; | ||
|  | 					} | ||
|  | 					if (r == chf.spans[i].reg) | ||
|  | 						res |= (1 << dir); | ||
|  | 				} | ||
|  | 				flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
 | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); | ||
|  | 	 | ||
|  | 	rcIntArray verts(256); | ||
|  | 	rcIntArray simplified(64); | ||
|  | 	 | ||
|  | 	for (int y = 0; y < h; ++y) | ||
|  | 	{ | ||
|  | 		for (int x = 0; x < w; ++x) | ||
|  | 		{ | ||
|  | 			const rcCompactCell& c = chf.cells[x+y*w]; | ||
|  | 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) | ||
|  | 			{ | ||
|  | 				if (flags[i] == 0 || flags[i] == 0xf) | ||
|  | 				{ | ||
|  | 					flags[i] = 0; | ||
|  | 					continue; | ||
|  | 				} | ||
|  | 				const unsigned short reg = chf.spans[i].reg; | ||
|  | 				if (!reg || (reg & RC_BORDER_REG)) | ||
|  | 					continue; | ||
|  | 				const unsigned char area = chf.areas[i]; | ||
|  | 				 | ||
|  | 				verts.clear(); | ||
|  | 				simplified.clear(); | ||
|  | 				 | ||
|  | 				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); | ||
|  | 				walkContour(x, y, i, chf, flags, verts); | ||
|  | 				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); | ||
|  | 				 | ||
|  | 				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); | ||
|  | 				simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); | ||
|  | 				removeDegenerateSegments(simplified); | ||
|  | 				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); | ||
|  | 				 | ||
|  | 				 | ||
|  | 				// Store region->contour remap info.
 | ||
|  | 				// Create contour.
 | ||
|  | 				if (simplified.size()/4 >= 3) | ||
|  | 				{ | ||
|  | 					if (cset.nconts >= maxContours) | ||
|  | 					{ | ||
|  | 						// Allocate more contours.
 | ||
|  | 						// This happens when a region has holes.
 | ||
|  | 						const int oldMax = maxContours; | ||
|  | 						maxContours *= 2; | ||
|  | 						rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); | ||
|  | 						for (int j = 0; j < cset.nconts; ++j) | ||
|  | 						{ | ||
|  | 							newConts[j] = cset.conts[j]; | ||
|  | 							// Reset source pointers to prevent data deletion.
 | ||
|  | 							cset.conts[j].verts = 0; | ||
|  | 							cset.conts[j].rverts = 0; | ||
|  | 						} | ||
|  | 						rcFree(cset.conts); | ||
|  | 						cset.conts = newConts; | ||
|  | 						 | ||
|  | 						ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); | ||
|  | 					} | ||
|  | 					 | ||
|  | 					rcContour* cont = &cset.conts[cset.nconts++]; | ||
|  | 					 | ||
|  | 					cont->nverts = simplified.size()/4; | ||
|  | 					cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); | ||
|  | 					if (!cont->verts) | ||
|  | 					{ | ||
|  | 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts); | ||
|  | 						return false; | ||
|  | 					} | ||
|  | 					memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); | ||
|  | 					if (borderSize > 0) | ||
|  | 					{ | ||
|  | 						// If the heightfield was build with bordersize, remove the offset.
 | ||
|  | 						for (int j = 0; j < cont->nverts; ++j) | ||
|  | 						{ | ||
|  | 							int* v = &cont->verts[j*4]; | ||
|  | 							v[0] -= borderSize; | ||
|  | 							v[2] -= borderSize; | ||
|  | 						} | ||
|  | 					} | ||
|  | 					 | ||
|  | 					cont->nrverts = verts.size()/4; | ||
|  | 					cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); | ||
|  | 					if (!cont->rverts) | ||
|  | 					{ | ||
|  | 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts); | ||
|  | 						return false; | ||
|  | 					} | ||
|  | 					memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); | ||
|  | 					if (borderSize > 0) | ||
|  | 					{ | ||
|  | 						// If the heightfield was build with bordersize, remove the offset.
 | ||
|  | 						for (int j = 0; j < cont->nrverts; ++j) | ||
|  | 						{ | ||
|  | 							int* v = &cont->rverts[j*4]; | ||
|  | 							v[0] -= borderSize; | ||
|  | 							v[2] -= borderSize; | ||
|  | 						} | ||
|  | 					} | ||
|  | 					 | ||
|  | 					cont->reg = reg; | ||
|  | 					cont->area = area; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Merge holes if needed.
 | ||
|  | 	if (cset.nconts > 0) | ||
|  | 	{ | ||
|  | 		// Calculate winding of all polygons.
 | ||
|  | 		rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP)); | ||
|  | 		if (!winding) | ||
|  | 		{ | ||
|  | 			ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 		int nholes = 0; | ||
|  | 		for (int i = 0; i < cset.nconts; ++i) | ||
|  | 		{ | ||
|  | 			rcContour& cont = cset.conts[i]; | ||
|  | 			// If the contour is wound backwards, it is a hole.
 | ||
|  | 			winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; | ||
|  | 			if (winding[i] < 0) | ||
|  | 				nholes++; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (nholes > 0) | ||
|  | 		{ | ||
|  | 			// Collect outline contour and holes contours per region.
 | ||
|  | 			// We assume that there is one outline and multiple holes.
 | ||
|  | 			const int nregions = chf.maxRegions+1; | ||
|  | 			rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP)); | ||
|  | 			if (!regions) | ||
|  | 			{ | ||
|  | 				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 			memset(regions, 0, sizeof(rcContourRegion)*nregions); | ||
|  | 			 | ||
|  | 			rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP)); | ||
|  | 			if (!holes) | ||
|  | 			{ | ||
|  | 				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 			memset(holes, 0, sizeof(rcContourHole)*cset.nconts); | ||
|  | 			 | ||
|  | 			for (int i = 0; i < cset.nconts; ++i) | ||
|  | 			{ | ||
|  | 				rcContour& cont = cset.conts[i]; | ||
|  | 				// Positively would contours are outlines, negative holes.
 | ||
|  | 				if (winding[i] > 0) | ||
|  | 				{ | ||
|  | 					if (regions[cont.reg].outline) | ||
|  | 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); | ||
|  | 					regions[cont.reg].outline = &cont; | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					regions[cont.reg].nholes++; | ||
|  | 				} | ||
|  | 			} | ||
|  | 			int index = 0; | ||
|  | 			for (int i = 0; i < nregions; i++) | ||
|  | 			{ | ||
|  | 				if (regions[i].nholes > 0) | ||
|  | 				{ | ||
|  | 					regions[i].holes = &holes[index]; | ||
|  | 					index += regions[i].nholes; | ||
|  | 					regions[i].nholes = 0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 			for (int i = 0; i < cset.nconts; ++i) | ||
|  | 			{ | ||
|  | 				rcContour& cont = cset.conts[i]; | ||
|  | 				rcContourRegion& reg = regions[cont.reg]; | ||
|  | 				if (winding[i] < 0) | ||
|  | 					reg.holes[reg.nholes++].contour = &cont; | ||
|  | 			} | ||
|  | 			 | ||
|  | 			// Finally merge each regions holes into the outline.
 | ||
|  | 			for (int i = 0; i < nregions; i++) | ||
|  | 			{ | ||
|  | 				rcContourRegion& reg = regions[i]; | ||
|  | 				if (!reg.nholes) continue; | ||
|  | 				 | ||
|  | 				if (reg.outline) | ||
|  | 				{ | ||
|  | 					mergeRegionHoles(ctx, reg); | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					// The region does not have an outline.
 | ||
|  | 					// This can happen if the contour becaomes selfoverlapping because of
 | ||
|  | 					// too aggressive simplification settings.
 | ||
|  | 					ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i); | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return true; | ||
|  | } |