merge upstream

This commit is contained in:
2025-06-30 20:39:14 +00:00
4 changed files with 380 additions and 24 deletions

View File

@ -0,0 +1,232 @@
package leenkx.logicnode;
import iron.math.Vec4;
import iron.system.Input;
import iron.object.Object;
import kha.System;
import kha.FastFloat;
class MouseLookNode extends LogicNode {
// Note: This implementation works in degrees internally and converts to radians only when applying rotations
// Sub-pixel interpolation is always enabled for optimal precision
// Features: Resolution-adaptive scaling and precise low-sensitivity support
public var property0: String; // Front axis
public var property1: Bool; // Center Mouse
public var property2: Bool; // Invert X
public var property3: Bool; // Invert Y
public var property4: Bool; // Cap Left/Right
public var property5: Bool; // Cap Up/Down
// New strategy toggles
public var property6: Bool; // Resolution-Adaptive Scaling
// Smoothing variables
var smoothX: FastFloat = 0.0;
var smoothY: FastFloat = 0.0;
// Capping limits (in degrees)
var maxHorizontal: FastFloat = 180.0; // 180 degrees
var maxVertical: FastFloat = 90.0; // 90 degrees
// Current accumulated rotations for capping
var currentHorizontal: FastFloat = 0.0;
var currentVertical: FastFloat = 0.0;
// Sub-pixel interpolation accumulators
var accumulatedHorizontalRotation: FastFloat = 0.0;
var accumulatedVerticalRotation: FastFloat = 0.0;
var minimumRotationThreshold: FastFloat = 0.01; // degrees (was 0.0001 radians)
// Frame rate independence removed - not applicable to mouse input
// Resolution adaptive scaling
var baseResolutionWidth: FastFloat = 1920.0;
var baseResolutionHeight: FastFloat = 1080.0;
public function new(tree: LogicTree) {
super(tree);
}
override function run(from: Int) {
var bodyObject: Object = inputs[1].get();
var headObject: Object = inputs[2].get();
var sensitivity: FastFloat = inputs[3].get();
var smoothing: FastFloat = inputs[4].get();
if (bodyObject == null) {
runOutput(0);
return;
}
var mouse = Input.getMouse();
// Handle mouse centering/locking
if (property1) {
if (mouse.started() && !mouse.locked) {
mouse.lock();
}
}
// Only process if mouse is active
if (!mouse.locked && !mouse.down()) {
runOutput(0);
return;
}
// Get mouse movement deltas
var deltaX: FastFloat = mouse.movementX;
var deltaY: FastFloat = mouse.movementY;
// Note: Sensitivity will be applied later to preserve precision for small movements
// Apply inversion
if (property2) deltaX = -deltaX;
if (property3) deltaY = -deltaY;
// Strategy 1: Resolution-Adaptive Scaling
var resolutionMultiplier: FastFloat = 1.0;
if (property6) {
var currentWidth = System.windowWidth();
var currentHeight = System.windowHeight();
resolutionMultiplier = (currentWidth / baseResolutionWidth) * (currentHeight / baseResolutionHeight);
resolutionMultiplier = Math.sqrt(resolutionMultiplier); // Take square root to avoid over-scaling
}
// Frame Rate Independence disabled for mouse input - mouse deltas are inherently frame-rate independent
// Apply smoothing
if (smoothing > 0.0) {
var smoothFactor = 1.0 - Math.min(smoothing, 0.99); // Prevent complete smoothing
smoothX = smoothX * smoothing + deltaX * smoothFactor;
smoothY = smoothY * smoothing + deltaY * smoothFactor;
deltaX = smoothX;
deltaY = smoothY;
}
// Determine rotation axes based on front axis setting
var horizontalAxis = new Vec4();
var verticalAxis = new Vec4();
switch (property0) {
case "X": // X is front
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
verticalAxis.set(0, 1, 0); // Y axis for vertical (pitch)
case "Y": // Y is front (default)
#if lnx_yaxisup
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
#else
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
#end
case "Z": // Z is front
horizontalAxis.set(0, 1, 0); // Y axis for horizontal (yaw)
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
}
// Base scaling
var baseScale: FastFloat = 1500.0;
var finalScale = baseScale;
// Apply resolution scaling
if (property6) {
finalScale *= resolutionMultiplier;
}
// Apply sensitivity scaling after all enhancement strategies to preserve precision
deltaX *= sensitivity;
deltaY *= sensitivity;
// Calculate rotation amounts (in degrees)
var horizontalRotation: FastFloat = (-deltaX / finalScale) * 180.0 / Math.PI;
var verticalRotation: FastFloat = (-deltaY / finalScale) * 180.0 / Math.PI;
// Note: Frame rate independence removed for mouse input as mouse deltas
// are already frame-rate independent by nature. Mouse input represents
// instantaneous user intent, not time-based movement.
// Strategy 2: Sub-Pixel Interpolation (always enabled)
accumulatedHorizontalRotation += horizontalRotation;
accumulatedVerticalRotation += verticalRotation;
// Only apply rotation if accumulated amount exceeds threshold
if (Math.abs(accumulatedHorizontalRotation) >= minimumRotationThreshold) {
horizontalRotation = accumulatedHorizontalRotation;
accumulatedHorizontalRotation = 0.0;
} else {
horizontalRotation = 0.0;
}
if (Math.abs(accumulatedVerticalRotation) >= minimumRotationThreshold) {
verticalRotation = accumulatedVerticalRotation;
accumulatedVerticalRotation = 0.0;
} else {
verticalRotation = 0.0;
}
// Apply capping constraints
if (property4) { // Cap Left/Right
currentHorizontal += horizontalRotation;
if (currentHorizontal > maxHorizontal) {
horizontalRotation -= (currentHorizontal - maxHorizontal);
currentHorizontal = maxHorizontal;
} else if (currentHorizontal < -maxHorizontal) {
horizontalRotation -= (currentHorizontal + maxHorizontal);
currentHorizontal = -maxHorizontal;
}
}
if (property5) { // Cap Up/Down
currentVertical += verticalRotation;
if (currentVertical > maxVertical) {
verticalRotation -= (currentVertical - maxVertical);
currentVertical = maxVertical;
} else if (currentVertical < -maxVertical) {
verticalRotation -= (currentVertical + maxVertical);
currentVertical = -maxVertical;
}
}
// Apply horizontal rotation to body (yaw)
if (Math.abs(horizontalRotation) > 0.01) { // 0.01 degrees threshold
bodyObject.transform.rotate(horizontalAxis, horizontalRotation * Math.PI / 180.0); // Convert degrees to radians
// Sync physics if needed
#if lnx_physics
var rigidBody = bodyObject.getTrait(leenkx.trait.physics.RigidBody);
if (rigidBody != null) rigidBody.syncTransform();
#end
}
// Apply vertical rotation to head (pitch) if head object is provided
if (headObject != null && Math.abs(verticalRotation) > 0.01) { // 0.01 degrees threshold
// For head rotation, use the head's local coordinate system
var headVerticalAxis = headObject.transform.world.right();
headObject.transform.rotate(headVerticalAxis, verticalRotation * Math.PI / 180.0); // Convert degrees to radians
// Sync physics if needed
#if lnx_physics
var headRigidBody = headObject.getTrait(leenkx.trait.physics.RigidBody);
if (headRigidBody != null) headRigidBody.syncTransform();
#end
} else if (headObject == null) {
// If no head object, apply vertical rotation to body as well
if (Math.abs(verticalRotation) > 0.01) { // 0.01 degrees threshold
bodyObject.transform.rotate(verticalAxis, verticalRotation * Math.PI / 180.0); // Convert degrees to radians
// Sync physics if needed
#if lnx_physics
var rigidBody = bodyObject.getTrait(leenkx.trait.physics.RigidBody);
if (rigidBody != null) rigidBody.syncTransform();
#end
}
}
runOutput(0);
}
}

View File

@ -12,6 +12,7 @@ class SetLookAtRotationNode extends LogicNode {
public var property2: String; // Use vector for source (true/false)
public var property3: String; // Damping value (backward compatibility, now input socket)
public var property4: String; // Disable rotation on aligning axis (true/false)
public var property5: String; // Use local space (true/false)
// Store the calculated rotation for output
var calculatedRotation: Quat = null;
@ -51,8 +52,8 @@ class SetLookAtRotationNode extends LogicNode {
return;
}
// Get source object's position
objectLoc = objectToUse.transform.loc;
// Get source object's WORLD position (important for child objects)
objectLoc = new Vec4(objectToUse.transform.worldx(), objectToUse.transform.worldy(), objectToUse.transform.worldz());
}
// Determine if we're using a vector or an object as target
@ -74,8 +75,8 @@ class SetLookAtRotationNode extends LogicNode {
return;
}
// Get target object's position
targetLoc = targetObject.transform.loc;
// Get target object's WORLD position (important for child objects)
targetLoc = new Vec4(targetObject.transform.worldx(), targetObject.transform.worldy(), targetObject.transform.worldz());
}
// Calculate direction to target
@ -122,6 +123,28 @@ class SetLookAtRotationNode extends LogicNode {
calculatedRotation.fromEulerOrdered(eulerAngles, "XYZ");
}
// Convert world rotation to local rotation if local space is enabled and object has a parent
var targetRotation = new Quat();
if (property5 == "true" && objectToUse.parent != null) {
// Get parent's world rotation
var parentWorldLoc = new Vec4();
var parentWorldRot = new Quat();
var parentWorldScale = new Vec4();
objectToUse.parent.transform.world.decompose(parentWorldLoc, parentWorldRot, parentWorldScale);
// Convert world rotation to local space by removing parent's rotation influence
// local_rotation = inverse(parent_world_rotation) * world_rotation
var invParentRot = new Quat().setFrom(parentWorldRot);
invParentRot.x = -invParentRot.x;
invParentRot.y = -invParentRot.y;
invParentRot.z = -invParentRot.z;
targetRotation.multquats(invParentRot, calculatedRotation);
} else {
// No local space conversion needed, use world rotation directly
targetRotation.setFrom(calculatedRotation);
}
// Apply rotation with damping
var dampingValue: Float = 0.0;
@ -141,17 +164,17 @@ class SetLookAtRotationNode extends LogicNode {
// Higher damping = slower rotation (smaller step)
var step = Math.max(0.001, (1.0 - dampingValue) * 0.2); // 0.001 to 0.2 range
// Get current rotation as quaternion
var currentRot = new Quat().setFrom(objectToUse.transform.rot);
// Get current local rotation as quaternion
var currentLocalRot = new Quat().setFrom(objectToUse.transform.rot);
// Calculate the difference between current and target rotation
var diffQuat = new Quat();
// q1 * inverse(q2) gives the rotation from q2 to q1
var invCurrent = new Quat().setFrom(currentRot);
var invCurrent = new Quat().setFrom(currentLocalRot);
invCurrent.x = -invCurrent.x;
invCurrent.y = -invCurrent.y;
invCurrent.z = -invCurrent.z;
diffQuat.multquats(calculatedRotation, invCurrent);
diffQuat.multquats(targetRotation, invCurrent);
// Convert to axis-angle representation
var axis = new Vec4();
@ -163,15 +186,15 @@ class SetLookAtRotationNode extends LogicNode {
// Create partial rotation quaternion
var partialRot = new Quat().fromAxisAngle(axis, partialAngle);
// Apply this partial rotation to current
var newRot = new Quat();
newRot.multquats(partialRot, currentRot);
// Apply this partial rotation to current local rotation
var newLocalRot = new Quat();
newLocalRot.multquats(partialRot, currentLocalRot);
// Apply the new rotation
objectToUse.transform.rot.setFrom(newRot);
// Apply the new local rotation
objectToUse.transform.rot.setFrom(newLocalRot);
} else {
// No damping, apply instant rotation
objectToUse.transform.rot.setFrom(calculatedRotation);
objectToUse.transform.rot.setFrom(targetRotation);
}
objectToUse.transform.buildMatrix();
@ -179,12 +202,5 @@ class SetLookAtRotationNode extends LogicNode {
runOutput(0);
}
// Getter method for output sockets
override function get(from: Int): Dynamic {
// Output index 1 is the rotation socket (global rotation)
if (from == 1) {
return calculatedRotation;
}
return null;
}
// No output sockets needed - this node only performs actions
}

View File

@ -0,0 +1,101 @@
from lnx.logicnode.lnx_nodes import *
class MouseLookNode(LnxLogicTreeNode):
"""Controls object rotation based on mouse movement for FPS-style camera control.
Features:
- Sub-pixel interpolation (always enabled) for optimal precision and smooth low-sensitivity movement
- Resolution-adaptive scaling for consistent feel across different screen resolutions
"""
bl_idname = 'LNMouseLookNode'
bl_label = 'Mouse Look'
lnx_section = 'mouse'
lnx_version = 1
# Front axis property
property0: HaxeEnumProperty(
'property0',
items=[('X', 'X Axis', 'X Axis as front'),
('Y', 'Y Axis', 'Y Axis as front'),
('Z', 'Z Axis', 'Z Axis as front')],
name='Front', default='Y')
# Hide Locked property
property1: HaxeBoolProperty(
'property1',
name='Hide Locked',
description='Automatically center and lock the mouse cursor',
default=True)
# Invert X property
property2: HaxeBoolProperty(
'property2',
name='Invert X',
description='Invert horizontal mouse movement',
default=False)
# Invert Y property
property3: HaxeBoolProperty(
'property3',
name='Invert Y',
description='Invert vertical mouse movement',
default=False)
# Cap Left/Right property
property4: HaxeBoolProperty(
'property4',
name='Cap Left / Right',
description='Limit horizontal rotation',
default=False)
# Cap Up/Down property
property5: HaxeBoolProperty(
'property5',
name='Cap Up / Down',
description='Limit vertical rotation',
default=True)
# Strategy toggles
property6: HaxeBoolProperty(
'property6',
name='Resolution Adaptive',
description='Scale sensitivity based on screen resolution',
default=False)
def lnx_init(self, context):
self.add_input('LnxNodeSocketAction', 'In')
self.add_input('LnxNodeSocketObject', 'Body')
self.add_input('LnxNodeSocketObject', 'Head')
self.add_input('LnxFloatSocket', 'Sensitivity', default_value=0.5)
self.add_input('LnxFloatSocket', 'Smoothing', default_value=0.0)
self.add_output('LnxNodeSocketAction', 'Out')
def draw_buttons(self, context, layout):
layout.prop(self, 'property0', text='Front')
layout.prop(self, 'property1', text='Hide Locked')
# Invert XY section
col = layout.column(align=True)
col.label(text="Invert XY:")
row = col.row(align=True)
row.prop(self, 'property2', text='X', toggle=True)
row.prop(self, 'property3', text='Y', toggle=True)
# Cap rotations section
col = layout.column(align=True)
col.prop(self, 'property4', text='Cap Left / Right')
col.prop(self, 'property5', text='Cap Up / Down')
# Separator
layout.separator()
# Enhancement strategies section
col = layout.column(align=True)
col.label(text="Enhancement Strategies:")
col.prop(self, 'property6', text='Resolution Adaptive')

View File

@ -29,6 +29,8 @@ class SetLookAtRotationNode(LnxLogicTreeNode):
update=lambda self, context: self.update_sockets(context)
)
damping: bpy.props.FloatProperty(
name='Damping',
description='Amount of damping for rotation (0.0 = instant, 1.0 = no movement)',
@ -74,6 +76,12 @@ class SetLookAtRotationNode(LnxLogicTreeNode):
('false', 'False', 'False')],
name='Disable Rotation on Aligning Axis', default='false')
property5: HaxeEnumProperty(
'property5',
items = [('true', 'True', 'True'),
('false', 'False', 'False')],
name='Use Local Space', default='false')
def lnx_init(self, context):
# Add inputs in standard order
self.inputs.new('LnxNodeSocketAction', 'In')
@ -90,8 +98,6 @@ class SetLookAtRotationNode(LnxLogicTreeNode):
# Add outputs
self.add_output('LnxNodeSocketAction', 'Out')
# Add rotation output socket
self.add_output('LnxRotationSocket', 'Rotation')
def draw_buttons(self, context, layout):
# 1. Axis Selector
@ -114,6 +120,7 @@ class SetLookAtRotationNode(LnxLogicTreeNode):
self.property2 = 'true' if self.use_source_vector else 'false'
self.property3 = str(self.damping) # Keep for backward compatibility
self.property4 = 'true' if self.disable_rotation_on_align_axis else 'false'
self.property5 = 'true' # Always use local space functionality
# Store current object references before changing sockets
self.save_object_references()