forked from LeenkxTeam/LNXSDK
merge upstream
This commit is contained in:
232
leenkx/Sources/leenkx/logicnode/MouseLookNode.hx
Normal file
232
leenkx/Sources/leenkx/logicnode/MouseLookNode.hx
Normal file
@ -0,0 +1,232 @@
|
||||
package leenkx.logicnode;
|
||||
|
||||
import iron.math.Vec4;
|
||||
import iron.system.Input;
|
||||
import iron.object.Object;
|
||||
import kha.System;
|
||||
import kha.FastFloat;
|
||||
|
||||
class MouseLookNode extends LogicNode {
|
||||
// Note: This implementation works in degrees internally and converts to radians only when applying rotations
|
||||
// Sub-pixel interpolation is always enabled for optimal precision
|
||||
// Features: Resolution-adaptive scaling and precise low-sensitivity support
|
||||
|
||||
public var property0: String; // Front axis
|
||||
public var property1: Bool; // Center Mouse
|
||||
public var property2: Bool; // Invert X
|
||||
public var property3: Bool; // Invert Y
|
||||
public var property4: Bool; // Cap Left/Right
|
||||
public var property5: Bool; // Cap Up/Down
|
||||
|
||||
// New strategy toggles
|
||||
public var property6: Bool; // Resolution-Adaptive Scaling
|
||||
|
||||
// Smoothing variables
|
||||
var smoothX: FastFloat = 0.0;
|
||||
var smoothY: FastFloat = 0.0;
|
||||
|
||||
// Capping limits (in degrees)
|
||||
var maxHorizontal: FastFloat = 180.0; // 180 degrees
|
||||
var maxVertical: FastFloat = 90.0; // 90 degrees
|
||||
|
||||
// Current accumulated rotations for capping
|
||||
var currentHorizontal: FastFloat = 0.0;
|
||||
var currentVertical: FastFloat = 0.0;
|
||||
|
||||
// Sub-pixel interpolation accumulators
|
||||
var accumulatedHorizontalRotation: FastFloat = 0.0;
|
||||
var accumulatedVerticalRotation: FastFloat = 0.0;
|
||||
var minimumRotationThreshold: FastFloat = 0.01; // degrees (was 0.0001 radians)
|
||||
|
||||
// Frame rate independence removed - not applicable to mouse input
|
||||
|
||||
// Resolution adaptive scaling
|
||||
var baseResolutionWidth: FastFloat = 1920.0;
|
||||
var baseResolutionHeight: FastFloat = 1080.0;
|
||||
|
||||
|
||||
|
||||
public function new(tree: LogicTree) {
|
||||
super(tree);
|
||||
}
|
||||
|
||||
override function run(from: Int) {
|
||||
var bodyObject: Object = inputs[1].get();
|
||||
var headObject: Object = inputs[2].get();
|
||||
var sensitivity: FastFloat = inputs[3].get();
|
||||
var smoothing: FastFloat = inputs[4].get();
|
||||
|
||||
if (bodyObject == null) {
|
||||
runOutput(0);
|
||||
return;
|
||||
}
|
||||
|
||||
var mouse = Input.getMouse();
|
||||
|
||||
// Handle mouse centering/locking
|
||||
if (property1) {
|
||||
if (mouse.started() && !mouse.locked) {
|
||||
mouse.lock();
|
||||
}
|
||||
}
|
||||
|
||||
// Only process if mouse is active
|
||||
if (!mouse.locked && !mouse.down()) {
|
||||
runOutput(0);
|
||||
return;
|
||||
}
|
||||
|
||||
// Get mouse movement deltas
|
||||
var deltaX: FastFloat = mouse.movementX;
|
||||
var deltaY: FastFloat = mouse.movementY;
|
||||
|
||||
// Note: Sensitivity will be applied later to preserve precision for small movements
|
||||
|
||||
// Apply inversion
|
||||
if (property2) deltaX = -deltaX;
|
||||
if (property3) deltaY = -deltaY;
|
||||
|
||||
// Strategy 1: Resolution-Adaptive Scaling
|
||||
var resolutionMultiplier: FastFloat = 1.0;
|
||||
if (property6) {
|
||||
var currentWidth = System.windowWidth();
|
||||
var currentHeight = System.windowHeight();
|
||||
resolutionMultiplier = (currentWidth / baseResolutionWidth) * (currentHeight / baseResolutionHeight);
|
||||
resolutionMultiplier = Math.sqrt(resolutionMultiplier); // Take square root to avoid over-scaling
|
||||
}
|
||||
|
||||
// Frame Rate Independence disabled for mouse input - mouse deltas are inherently frame-rate independent
|
||||
|
||||
// Apply smoothing
|
||||
if (smoothing > 0.0) {
|
||||
var smoothFactor = 1.0 - Math.min(smoothing, 0.99); // Prevent complete smoothing
|
||||
smoothX = smoothX * smoothing + deltaX * smoothFactor;
|
||||
smoothY = smoothY * smoothing + deltaY * smoothFactor;
|
||||
deltaX = smoothX;
|
||||
deltaY = smoothY;
|
||||
}
|
||||
|
||||
// Determine rotation axes based on front axis setting
|
||||
var horizontalAxis = new Vec4();
|
||||
var verticalAxis = new Vec4();
|
||||
|
||||
switch (property0) {
|
||||
case "X": // X is front
|
||||
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
|
||||
verticalAxis.set(0, 1, 0); // Y axis for vertical (pitch)
|
||||
case "Y": // Y is front (default)
|
||||
#if lnx_yaxisup
|
||||
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
|
||||
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
|
||||
#else
|
||||
horizontalAxis.set(0, 0, 1); // Z axis for horizontal (yaw)
|
||||
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
|
||||
#end
|
||||
case "Z": // Z is front
|
||||
horizontalAxis.set(0, 1, 0); // Y axis for horizontal (yaw)
|
||||
verticalAxis.set(1, 0, 0); // X axis for vertical (pitch)
|
||||
}
|
||||
|
||||
// Base scaling
|
||||
var baseScale: FastFloat = 1500.0;
|
||||
var finalScale = baseScale;
|
||||
|
||||
// Apply resolution scaling
|
||||
if (property6) {
|
||||
finalScale *= resolutionMultiplier;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Apply sensitivity scaling after all enhancement strategies to preserve precision
|
||||
deltaX *= sensitivity;
|
||||
deltaY *= sensitivity;
|
||||
|
||||
// Calculate rotation amounts (in degrees)
|
||||
var horizontalRotation: FastFloat = (-deltaX / finalScale) * 180.0 / Math.PI;
|
||||
var verticalRotation: FastFloat = (-deltaY / finalScale) * 180.0 / Math.PI;
|
||||
|
||||
// Note: Frame rate independence removed for mouse input as mouse deltas
|
||||
// are already frame-rate independent by nature. Mouse input represents
|
||||
// instantaneous user intent, not time-based movement.
|
||||
|
||||
// Strategy 2: Sub-Pixel Interpolation (always enabled)
|
||||
accumulatedHorizontalRotation += horizontalRotation;
|
||||
accumulatedVerticalRotation += verticalRotation;
|
||||
|
||||
// Only apply rotation if accumulated amount exceeds threshold
|
||||
if (Math.abs(accumulatedHorizontalRotation) >= minimumRotationThreshold) {
|
||||
horizontalRotation = accumulatedHorizontalRotation;
|
||||
accumulatedHorizontalRotation = 0.0;
|
||||
} else {
|
||||
horizontalRotation = 0.0;
|
||||
}
|
||||
|
||||
if (Math.abs(accumulatedVerticalRotation) >= minimumRotationThreshold) {
|
||||
verticalRotation = accumulatedVerticalRotation;
|
||||
accumulatedVerticalRotation = 0.0;
|
||||
} else {
|
||||
verticalRotation = 0.0;
|
||||
}
|
||||
|
||||
// Apply capping constraints
|
||||
if (property4) { // Cap Left/Right
|
||||
currentHorizontal += horizontalRotation;
|
||||
if (currentHorizontal > maxHorizontal) {
|
||||
horizontalRotation -= (currentHorizontal - maxHorizontal);
|
||||
currentHorizontal = maxHorizontal;
|
||||
} else if (currentHorizontal < -maxHorizontal) {
|
||||
horizontalRotation -= (currentHorizontal + maxHorizontal);
|
||||
currentHorizontal = -maxHorizontal;
|
||||
}
|
||||
}
|
||||
|
||||
if (property5) { // Cap Up/Down
|
||||
currentVertical += verticalRotation;
|
||||
if (currentVertical > maxVertical) {
|
||||
verticalRotation -= (currentVertical - maxVertical);
|
||||
currentVertical = maxVertical;
|
||||
} else if (currentVertical < -maxVertical) {
|
||||
verticalRotation -= (currentVertical + maxVertical);
|
||||
currentVertical = -maxVertical;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply horizontal rotation to body (yaw)
|
||||
if (Math.abs(horizontalRotation) > 0.01) { // 0.01 degrees threshold
|
||||
bodyObject.transform.rotate(horizontalAxis, horizontalRotation * Math.PI / 180.0); // Convert degrees to radians
|
||||
|
||||
// Sync physics if needed
|
||||
#if lnx_physics
|
||||
var rigidBody = bodyObject.getTrait(leenkx.trait.physics.RigidBody);
|
||||
if (rigidBody != null) rigidBody.syncTransform();
|
||||
#end
|
||||
}
|
||||
|
||||
// Apply vertical rotation to head (pitch) if head object is provided
|
||||
if (headObject != null && Math.abs(verticalRotation) > 0.01) { // 0.01 degrees threshold
|
||||
// For head rotation, use the head's local coordinate system
|
||||
var headVerticalAxis = headObject.transform.world.right();
|
||||
headObject.transform.rotate(headVerticalAxis, verticalRotation * Math.PI / 180.0); // Convert degrees to radians
|
||||
|
||||
// Sync physics if needed
|
||||
#if lnx_physics
|
||||
var headRigidBody = headObject.getTrait(leenkx.trait.physics.RigidBody);
|
||||
if (headRigidBody != null) headRigidBody.syncTransform();
|
||||
#end
|
||||
} else if (headObject == null) {
|
||||
// If no head object, apply vertical rotation to body as well
|
||||
if (Math.abs(verticalRotation) > 0.01) { // 0.01 degrees threshold
|
||||
bodyObject.transform.rotate(verticalAxis, verticalRotation * Math.PI / 180.0); // Convert degrees to radians
|
||||
|
||||
// Sync physics if needed
|
||||
#if lnx_physics
|
||||
var rigidBody = bodyObject.getTrait(leenkx.trait.physics.RigidBody);
|
||||
if (rigidBody != null) rigidBody.syncTransform();
|
||||
#end
|
||||
}
|
||||
}
|
||||
|
||||
runOutput(0);
|
||||
}
|
||||
}
|
21
leenkx/Sources/leenkx/logicnode/SetLightShadowNode.hx
Normal file
21
leenkx/Sources/leenkx/logicnode/SetLightShadowNode.hx
Normal file
@ -0,0 +1,21 @@
|
||||
package leenkx.logicnode;
|
||||
|
||||
import iron.object.LightObject;
|
||||
|
||||
class SetLightShadowNode extends LogicNode {
|
||||
|
||||
public function new(tree: LogicTree) {
|
||||
super(tree);
|
||||
}
|
||||
|
||||
override function run(from: Int) {
|
||||
var light: LightObject = inputs[1].get();
|
||||
var shadow: Bool = inputs[2].get();
|
||||
|
||||
if (light == null) return;
|
||||
|
||||
light.data.raw.cast_shadow = shadow;
|
||||
|
||||
runOutput(0);
|
||||
}
|
||||
}
|
@ -12,6 +12,7 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
public var property2: String; // Use vector for source (true/false)
|
||||
public var property3: String; // Damping value (backward compatibility, now input socket)
|
||||
public var property4: String; // Disable rotation on aligning axis (true/false)
|
||||
public var property5: String; // Use local space (true/false)
|
||||
|
||||
// Store the calculated rotation for output
|
||||
var calculatedRotation: Quat = null;
|
||||
@ -51,8 +52,8 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get source object's position
|
||||
objectLoc = objectToUse.transform.loc;
|
||||
// Get source object's WORLD position (important for child objects)
|
||||
objectLoc = new Vec4(objectToUse.transform.worldx(), objectToUse.transform.worldy(), objectToUse.transform.worldz());
|
||||
}
|
||||
|
||||
// Determine if we're using a vector or an object as target
|
||||
@ -74,8 +75,8 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get target object's position
|
||||
targetLoc = targetObject.transform.loc;
|
||||
// Get target object's WORLD position (important for child objects)
|
||||
targetLoc = new Vec4(targetObject.transform.worldx(), targetObject.transform.worldy(), targetObject.transform.worldz());
|
||||
}
|
||||
|
||||
// Calculate direction to target
|
||||
@ -122,6 +123,28 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
calculatedRotation.fromEulerOrdered(eulerAngles, "XYZ");
|
||||
}
|
||||
|
||||
// Convert world rotation to local rotation if local space is enabled and object has a parent
|
||||
var targetRotation = new Quat();
|
||||
if (property5 == "true" && objectToUse.parent != null) {
|
||||
// Get parent's world rotation
|
||||
var parentWorldLoc = new Vec4();
|
||||
var parentWorldRot = new Quat();
|
||||
var parentWorldScale = new Vec4();
|
||||
objectToUse.parent.transform.world.decompose(parentWorldLoc, parentWorldRot, parentWorldScale);
|
||||
|
||||
// Convert world rotation to local space by removing parent's rotation influence
|
||||
// local_rotation = inverse(parent_world_rotation) * world_rotation
|
||||
var invParentRot = new Quat().setFrom(parentWorldRot);
|
||||
invParentRot.x = -invParentRot.x;
|
||||
invParentRot.y = -invParentRot.y;
|
||||
invParentRot.z = -invParentRot.z;
|
||||
|
||||
targetRotation.multquats(invParentRot, calculatedRotation);
|
||||
} else {
|
||||
// No local space conversion needed, use world rotation directly
|
||||
targetRotation.setFrom(calculatedRotation);
|
||||
}
|
||||
|
||||
// Apply rotation with damping
|
||||
var dampingValue: Float = 0.0;
|
||||
|
||||
@ -141,17 +164,17 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
// Higher damping = slower rotation (smaller step)
|
||||
var step = Math.max(0.001, (1.0 - dampingValue) * 0.2); // 0.001 to 0.2 range
|
||||
|
||||
// Get current rotation as quaternion
|
||||
var currentRot = new Quat().setFrom(objectToUse.transform.rot);
|
||||
// Get current local rotation as quaternion
|
||||
var currentLocalRot = new Quat().setFrom(objectToUse.transform.rot);
|
||||
|
||||
// Calculate the difference between current and target rotation
|
||||
var diffQuat = new Quat();
|
||||
// q1 * inverse(q2) gives the rotation from q2 to q1
|
||||
var invCurrent = new Quat().setFrom(currentRot);
|
||||
var invCurrent = new Quat().setFrom(currentLocalRot);
|
||||
invCurrent.x = -invCurrent.x;
|
||||
invCurrent.y = -invCurrent.y;
|
||||
invCurrent.z = -invCurrent.z;
|
||||
diffQuat.multquats(calculatedRotation, invCurrent);
|
||||
diffQuat.multquats(targetRotation, invCurrent);
|
||||
|
||||
// Convert to axis-angle representation
|
||||
var axis = new Vec4();
|
||||
@ -163,15 +186,15 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
// Create partial rotation quaternion
|
||||
var partialRot = new Quat().fromAxisAngle(axis, partialAngle);
|
||||
|
||||
// Apply this partial rotation to current
|
||||
var newRot = new Quat();
|
||||
newRot.multquats(partialRot, currentRot);
|
||||
// Apply this partial rotation to current local rotation
|
||||
var newLocalRot = new Quat();
|
||||
newLocalRot.multquats(partialRot, currentLocalRot);
|
||||
|
||||
// Apply the new rotation
|
||||
objectToUse.transform.rot.setFrom(newRot);
|
||||
// Apply the new local rotation
|
||||
objectToUse.transform.rot.setFrom(newLocalRot);
|
||||
} else {
|
||||
// No damping, apply instant rotation
|
||||
objectToUse.transform.rot.setFrom(calculatedRotation);
|
||||
objectToUse.transform.rot.setFrom(targetRotation);
|
||||
}
|
||||
|
||||
objectToUse.transform.buildMatrix();
|
||||
@ -179,12 +202,5 @@ class SetLookAtRotationNode extends LogicNode {
|
||||
runOutput(0);
|
||||
}
|
||||
|
||||
// Getter method for output sockets
|
||||
override function get(from: Int): Dynamic {
|
||||
// Output index 1 is the rotation socket (global rotation)
|
||||
if (from == 1) {
|
||||
return calculatedRotation;
|
||||
}
|
||||
return null;
|
||||
}
|
||||
// No output sockets needed - this node only performs actions
|
||||
}
|
||||
|
@ -280,7 +280,11 @@ class DebugConsole extends Trait {
|
||||
|
||||
function drawObjectNameInList(object: iron.object.Object, selected: Bool) {
|
||||
var _y = ui._y;
|
||||
ui.text(object.uid+'_'+object.name);
|
||||
|
||||
if (object.parent.name == 'Root')
|
||||
ui.text(object.uid+'_'+object.name+' ('+iron.Scene.active.raw.world_ref+')');
|
||||
else
|
||||
ui.text(object.uid+'_'+object.name);
|
||||
|
||||
if (object == iron.Scene.active.camera) {
|
||||
var tagWidth = 100;
|
||||
|
Reference in New Issue
Block a user