forked from LeenkxTeam/LNXSDK
Update Files
This commit is contained in:
@ -0,0 +1,110 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
///original version written by Erwin Coumans, October 2013
|
||||
|
||||
#ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
|
||||
#define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
|
||||
|
||||
|
||||
#include "btMLCPSolverInterface.h"
|
||||
|
||||
///This solver is mainly for debug/learning purposes: it is functionally equivalent to the btSequentialImpulseConstraintSolver solver, but much slower (it builds the full LCP matrix)
|
||||
class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
btScalar m_leastSquaresResidualThreshold;
|
||||
btScalar m_leastSquaresResidual;
|
||||
|
||||
btSolveProjectedGaussSeidel()
|
||||
:m_leastSquaresResidualThreshold(0),
|
||||
m_leastSquaresResidual(0)
|
||||
{
|
||||
}
|
||||
|
||||
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
{
|
||||
if (!A.rows())
|
||||
return true;
|
||||
//the A matrix is sparse, so compute the non-zero elements
|
||||
A.rowComputeNonZeroElements();
|
||||
|
||||
//A is a m-n matrix, m rows, n columns
|
||||
btAssert(A.rows() == b.rows());
|
||||
|
||||
int i, j, numRows = A.rows();
|
||||
|
||||
btScalar delta;
|
||||
|
||||
for (int k = 0; k <numIterations; k++)
|
||||
{
|
||||
m_leastSquaresResidual = 0.f;
|
||||
for (i = 0; i <numRows; i++)
|
||||
{
|
||||
delta = 0.0f;
|
||||
if (useSparsity)
|
||||
{
|
||||
for (int h=0;h<A.m_rowNonZeroElements1[i].size();h++)
|
||||
{
|
||||
int j = A.m_rowNonZeroElements1[i][h];
|
||||
if (j != i)//skip main diagonal
|
||||
{
|
||||
delta += A(i,j) * x[j];
|
||||
}
|
||||
}
|
||||
} else
|
||||
{
|
||||
for (j = 0; j <i; j++)
|
||||
delta += A(i,j) * x[j];
|
||||
for (j = i+1; j<numRows; j++)
|
||||
delta += A(i,j) * x[j];
|
||||
}
|
||||
|
||||
btScalar aDiag = A(i,i);
|
||||
btScalar xOld = x[i];
|
||||
x [i] = (b [i] - delta) / aDiag;
|
||||
btScalar s = 1.f;
|
||||
|
||||
if (limitDependency[i]>=0)
|
||||
{
|
||||
s = x[limitDependency[i]];
|
||||
if (s<0)
|
||||
s=1;
|
||||
}
|
||||
|
||||
if (x[i]<lo[i]*s)
|
||||
x[i]=lo[i]*s;
|
||||
if (x[i]>hi[i]*s)
|
||||
x[i]=hi[i]*s;
|
||||
btScalar diff = x[i] - xOld;
|
||||
m_leastSquaresResidual += diff*diff;
|
||||
}
|
||||
|
||||
btScalar eps = m_leastSquaresResidualThreshold;
|
||||
if ((m_leastSquaresResidual < eps) || (k >=(numIterations-1)))
|
||||
{
|
||||
#ifdef VERBOSE_PRINTF_RESIDUAL
|
||||
printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual,k);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
|
Reference in New Issue
Block a user