2025-01-22 16:18:30 +01:00

978 lines
32 KiB
Python

#
# This module builds upon Cycles nodes work licensed as
# Copyright 2011-2013 Blender Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import shutil
from typing import Any, Dict, Optional, Tuple
import bpy
import lnx.assets
import lnx.log as log
import lnx.make_state
import lnx.material.cycles_functions as c_functions
import lnx.material.node_meta as node_meta
import lnx.material.mat_state as mat_state
from lnx.material.parser_state import ParserState, ParserContext, ParserPass
from lnx.material.shader import Shader, ShaderContext, floatstr, vec3str
import lnx.node_utils
import lnx.utils
if lnx.is_reload(__name__):
lnx.assets = lnx.reload_module(lnx.assets)
log = lnx.reload_module(log)
lnx.make_state = lnx.reload_module(lnx.make_state)
c_functions = lnx.reload_module(c_functions)
lnx.material.cycles_nodes = lnx.reload_module(lnx.material.cycles_nodes)
node_meta = lnx.reload_module(node_meta)
from lnx.material.cycles_nodes import *
mat_state = lnx.reload_module(mat_state)
lnx.material.parser_state = lnx.reload_module(lnx.material.parser_state)
from lnx.material.parser_state import ParserState, ParserContext, ParserPass
lnx.material.shader = lnx.reload_module(lnx.material.shader)
from lnx.material.shader import Shader, ShaderContext, floatstr, vec3str
lnx.node_utils = lnx.reload_module(lnx.node_utils)
lnx.utils = lnx.reload_module(lnx.utils)
else:
lnx.enable_reload(__name__)
# Particle info export
particle_info: Dict[str, bool] = {}
state: Optional[ParserState]
def parse(nodes, con: ShaderContext,
vert: Shader, frag: Shader, geom: Shader, tesc: Shader, tese: Shader,
parse_surface=True, parse_opacity=True, parse_displacement=True, basecol_only=False):
global state
state = ParserState(ParserContext.OBJECT, mat_state.material.name)
state.parse_surface = parse_surface
state.parse_opacity = parse_opacity
state.parse_displacement = parse_displacement
state.basecol_only = basecol_only
state.con = con
state.vert = vert
state.frag = frag
state.geom = geom
state.tesc = tesc
state.tese = tese
output_node = node_by_type(nodes, 'OUTPUT_MATERIAL')
if output_node is not None:
custom_particle_node = node_by_name(nodes, 'LnxCustomParticleNode')
parse_material_output(output_node, custom_particle_node)
# Make sure that individual functions in this module aren't called with an incorrect/old parser state, set it to
# None so that it will raise exceptions when not set
state = None
def parse_material_output(node: bpy.types.Node, custom_particle_node: bpy.types.Node):
global particle_info
parse_surface = state.parse_surface
parse_opacity = state.parse_opacity
parse_displacement = state.parse_displacement
particle_info = {
'index': False,
'age': False,
'lifetime': False,
'location': False,
'size': False,
'velocity': False,
'angular_velocity': False
}
wrd = bpy.data.worlds['Lnx']
mat_state.emission_type = mat_state.EmissionType.NO_EMISSION
# Surface
if parse_surface or parse_opacity:
state.parents = []
state.parsed = set()
state.normal_parsed = False
curshader = state.frag
state.curshader = curshader
out_basecol, out_roughness, out_metallic, out_occlusion, out_specular, out_opacity, out_ior, out_emission_col = parse_shader_input(node.inputs[0])
if parse_surface:
curshader.write(f'basecol = {out_basecol};')
curshader.write(f'roughness = {out_roughness};')
curshader.write(f'metallic = {out_metallic};')
curshader.write(f'occlusion = {out_occlusion};')
curshader.write(f'specular = {out_specular};')
curshader.write(f'emissionCol = {out_emission_col};')
if mat_state.emission_type == mat_state.EmissionType.SHADELESS:
if '_EmissionShadeless' not in wrd.world_defs:
wrd.world_defs += '_EmissionShadeless'
elif mat_state.emission_type == mat_state.EmissionType.SHADED:
if '_EmissionShaded' not in wrd.world_defs:
wrd.world_defs += '_EmissionShaded'
lnx.assets.add_khafile_def('rp_gbuffer_emission')
if parse_opacity:
curshader.write('opacity = {0};'.format(out_opacity))
curshader.write('ior = {0};'.format(out_ior))
# Volume
# parse_volume_input(node.inputs[1])
# Displacement
if parse_displacement and disp_enabled() and node.inputs[2].is_linked:
state.parents = []
state.parsed = set()
state.normal_parsed = False
rpdat = lnx.utils.get_rp()
if rpdat.lnx_rp_displacement == 'Tessellation' and state.tese is not None:
state.curshader = state.tese
else:
state.curshader = state.vert
out_disp = parse_displacement_input(node.inputs[2])
state.curshader.write('vec3 disp = {0};'.format(out_disp))
if custom_particle_node is not None:
if not (parse_displacement and disp_enabled() and node.inputs[2].is_linked):
state.parents = []
state.parsed = set()
state.normal_parsed = False
state.curshader = state.vert
custom_particle_node.parse(state.curshader, state.con)
def parse_group(node, socket): # Entering group
index = socket_index(node, socket)
output_node = node_by_type(node.node_tree.nodes, 'GROUP_OUTPUT')
if output_node is None:
return
inp = output_node.inputs[index]
state.parents.append(node)
out_group = parse_input(inp)
state.parents.pop()
return out_group
def parse_group_input(node: bpy.types.Node, socket: bpy.types.NodeSocket):
index = socket_index(node, socket)
parent = state.parents.pop() # Leaving group
inp = parent.inputs[index]
res = parse_input(inp)
state.parents.append(parent) # Return to group
return res
def parse_input(inp: bpy.types.NodeSocket):
if inp.type == 'SHADER':
return parse_shader_input(inp)
elif inp.type in ('RGB', 'RGBA', 'VECTOR'):
return parse_vector_input(inp)
elif inp.type == 'VALUE':
return parse_value_input(inp)
def parse_shader_input(inp: bpy.types.NodeSocket) -> Tuple[str, ...]:
# Follow input
if inp.is_linked:
link = inp.links[0]
if link.from_node.type == 'REROUTE':
return parse_shader_input(link.from_node.inputs[0])
if link.from_socket.type != 'SHADER':
log.warn(f'Node tree "{tree_name()}": socket "{link.from_socket.name}" of node "{link.from_node.name}" cannot be connected to a shader socket')
state.reset_outs()
return state.get_outs()
return parse_shader(link.from_node, link.from_socket)
else:
# Return default shader values
state.reset_outs()
return state.get_outs()
def parse_shader(node: bpy.types.Node, socket: bpy.types.NodeSocket) -> Tuple[str, ...]:
supported_node_types = (
'MIX_SHADER',
'ADD_SHADER',
'BSDF_PRINCIPLED',
'BSDF_DIFFUSE',
'BSDF_GLOSSY',
'BSDF_SHEEN',
'AMBIENT_OCCLUSION',
'BSDF_ANISOTROPIC',
'EMISSION',
'BSDF_GLASS',
'HOLDOUT',
'SUBSURFACE_SCATTERING',
'BSDF_TRANSLUCENT',
'BSDF_TRANSPARENT',
'BSDF_VELVET',
)
state.reset_outs()
if node.type in supported_node_types:
node_meta.get_node_meta(node).parse_func(node, socket, state)
elif node.type == 'GROUP':
if node.node_tree.name.startswith('Leenkx PBR'):
if state.parse_surface:
# Normal
if node.inputs[5].is_linked and node.inputs[5].links[0].from_node.type == 'NORMAL_MAP':
log.warn(tree_name() + ' - Do not use Normal Map node with Leenkx PBR, connect Image Texture directly')
parse_normal_map_color_input(node.inputs[5])
emission_factor = f'clamp({parse_value_input(node.inputs[6])}, 0.0, 1.0)'
basecol = parse_vector_input(node.inputs[0])
# Multiply base color with inverse of emission factor to
# copy behaviour of the Mix Shader node used in the group
# (less base color -> less shading influence)
state.out_basecol = f'({basecol} * (1 - {emission_factor}))'
state.out_occlusion = parse_value_input(node.inputs[2])
state.out_roughness = parse_value_input(node.inputs[3])
state.out_metallic = parse_value_input(node.inputs[4])
# Emission
if node.inputs[6].is_linked or node.inputs[6].default_value != 0.0:
state.out_emission_col = f'({basecol} * {emission_factor})'
mat_state.emission_type = mat_state.EmissionType.SHADED
if state.parse_opacity:
state.out_opacity = parse_value_input(node.inputs[1])
state.out_ior = 1.450;
else:
return parse_group(node, socket)
elif node.type == 'GROUP_INPUT':
return parse_group_input(node, socket)
elif node.type == 'CUSTOM':
if node.bl_idname == 'LnxShaderDataNode':
return node_meta.get_node_meta(node).parse_func(node, socket, state)
else:
log.warn(f'Node tree "{tree_name()}": material node type {node.type} not supported')
return state.get_outs()
def parse_displacement_input(inp):
if inp.is_linked:
l = inp.links[0]
if l.from_node.type == 'REROUTE':
return parse_displacement_input(l.from_node.inputs[0])
return parse_vector_input(inp)
else:
return None
def parse_vector_input(inp: bpy.types.NodeSocket) -> vec3str:
"""Return the parsed result of the given input socket."""
# Follow input
if inp.is_linked:
link = inp.links[0]
if link.from_node.type == 'REROUTE':
return parse_vector_input(link.from_node.inputs[0])
res_var = write_result(link)
st = link.from_socket.type
if st in ('RGB', 'RGBA', 'VECTOR'):
return res_var
elif st in ('VALUE', 'INT'):
return f'vec3({res_var})'
else:
log.warn(f'Node tree "{tree_name()}": socket "{link.from_socket.name}" of node "{link.from_node.name}" cannot be connected to a vector-like socket')
return to_vec3([0.0, 0.0, 0.0])
# Unlinked reroute
elif inp.type == 'VALUE':
return to_vec3([0.0, 0.0, 0.0])
# Use direct socket value
else:
if mat_batch() and inp.is_uniform:
return to_uniform(inp)
else:
return to_vec3(inp.default_value)
def parse_vector(node: bpy.types.Node, socket: bpy.types.NodeSocket) -> str:
"""Parses the vector/color output value from the given node and socket."""
supported_node_types = (
'ATTRIBUTE',
# RGB outputs
'RGB',
'TEX_BRICK',
'TEX_CHECKER',
'TEX_ENVIRONMENT',
'TEX_GRADIENT',
'TEX_IMAGE',
'TEX_MAGIC',
'TEX_MUSGRAVE',
'TEX_NOISE',
'TEX_POINTDENSITY',
'TEX_SKY',
'TEX_VORONOI',
'TEX_WAVE',
'VERTEX_COLOR',
'BRIGHTCONTRAST',
'GAMMA',
'HUE_SAT',
'INVERT',
'MIX',
'BLACKBODY',
'VALTORGB',
'CURVE_VEC',
'CURVE_RGB',
'COMBINE_COLOR',
'COMBHSV',
'COMBRGB',
'WAVELENGTH',
# Vector outputs
'CAMERA',
'NEW_GEOMETRY',
'HAIR_INFO',
'OBJECT_INFO',
'PARTICLE_INFO',
'TANGENT',
'TEX_COORD',
'UVMAP',
'BUMP',
'MAPPING',
'NORMAL',
'NORMAL_MAP',
'VECT_TRANSFORM',
'COMBXYZ',
'VECT_MATH',
'DISPLACEMENT',
'VECTOR_ROTATE',
)
if node.type in supported_node_types:
return node_meta.get_node_meta(node).parse_func(node, socket, state)
elif node.type == 'GROUP':
return parse_group(node, socket)
elif node.type == 'GROUP_INPUT':
return parse_group_input(node, socket)
elif node.type == 'CUSTOM':
if node.bl_idname == 'LnxShaderDataNode':
return node_meta.get_node_meta(node).parse_func(node, socket, state)
log.warn(f'Node tree "{tree_name()}": material node type {node.type} not supported')
return "vec3(0, 0, 0)"
def parse_normal_map_color_input(inp, strength_input=None):
frag = state.frag
if state.basecol_only or not inp.is_linked or state.normal_parsed:
return
state.normal_parsed = True
frag.write_normal += 1
if not get_lnx_export_tangents() or mat_get_material().lnx_decal: # Compute TBN matrix
frag.write('vec3 texn = ({0}) * 2.0 - 1.0;'.format(parse_vector_input(inp)))
frag.write('texn.y = -texn.y;')
frag.add_include('std/normals.glsl')
frag.write('mat3 TBN = cotangentFrame(n, -vVec, texCoord);')
frag.write('n = TBN * normalize(texn);')
else:
frag.write('n = ({0}) * 2.0 - 1.0;'.format(parse_vector_input(inp)))
if strength_input is not None:
strength = parse_value_input(strength_input)
if strength != '1.0':
frag.write('n.xy *= {0};'.format(strength))
frag.write('n = normalize(TBN * n);')
state.con.add_elem('tang', 'short4norm')
frag.write_normal -= 1
def parse_value_input(inp: bpy.types.NodeSocket) -> floatstr:
# Follow input
if inp.is_linked:
link = inp.links[0]
if link.from_node.type == 'REROUTE':
return parse_value_input(link.from_node.inputs[0])
res_var = write_result(link)
socket_type = link.from_socket.type
if socket_type in ('RGB', 'RGBA', 'VECTOR'):
# RGB to BW
return rgb_to_bw(res_var)
elif socket_type in ('VALUE', 'INT'):
return res_var
else:
log.warn(f'Node tree "{tree_name()}": socket "{link.from_socket.name}" of node "{link.from_node.name}" cannot be connected to a scalar value socket')
return '0.0'
# Use value from socket
else:
if mat_batch() and inp.is_uniform:
return to_uniform(inp)
else:
return to_vec1(inp.default_value)
def parse_value(node, socket):
supported_node_types = (
'ATTRIBUTE',
'CAMERA',
'FRESNEL',
'NEW_GEOMETRY',
'HAIR_INFO',
'LAYER_WEIGHT',
'LIGHT_PATH',
'OBJECT_INFO',
'PARTICLE_INFO',
'VALUE',
'WIREFRAME',
'TEX_BRICK',
'TEX_CHECKER',
'TEX_GRADIENT',
'TEX_IMAGE',
'TEX_MAGIC',
'TEX_MUSGRAVE',
'TEX_NOISE',
'TEX_POINTDENSITY',
'TEX_VORONOI',
'TEX_WAVE',
'LIGHT_FALLOFF',
'NORMAL',
'CLAMP',
'VALTORGB',
'MATH',
'MIX',
'RGBTOBW',
'SEPARATE_COLOR',
'SEPHSV',
'SEPRGB',
'SEPXYZ',
'VECT_MATH',
'MAP_RANGE',
)
if node.type in supported_node_types:
return node_meta.get_node_meta(node).parse_func(node, socket, state)
elif node.type == 'GROUP':
if node.node_tree.name.startswith('Leenkx PBR'):
# Displacement
if socket == node.outputs[1]:
return parse_value_input(node.inputs[7])
else:
return None
else:
return parse_group(node, socket)
elif node.type == 'GROUP_INPUT':
return parse_group_input(node, socket)
elif node.type == 'CUSTOM':
if node.bl_idname == 'LnxShaderDataNode':
return node_meta.get_node_meta(node).parse_func(node, socket, state)
log.warn(f'Node tree "{tree_name()}": material node type {node.type} not supported')
return '0.0'
def vector_curve(name, fac, points):
curshader = state.curshader
# Write Ys array
ys_var = name + '_ys' + state.get_parser_pass_suffix()
curshader.write('float {0}[{1}];'.format(ys_var, len(points))) # TODO: Make const
for i in range(0, len(points)):
curshader.write('{0}[{1}] = {2};'.format(ys_var, i, points[i].location[1]))
# Get index
fac_var = name + '_fac' + state.get_parser_pass_suffix()
curshader.write('float {0} = {1};'.format(fac_var, fac))
index = '0'
for i in range(1, len(points)):
index += ' + ({0} > {1} ? 1 : 0)'.format(fac_var, points[i].location[0])
# Write index
index_var = name + '_i' + state.get_parser_pass_suffix()
curshader.write('int {0} = {1};'.format(index_var, index))
# Linear
# Write Xs array
facs_var = name + '_xs' + state.get_parser_pass_suffix()
curshader.write('float {0}[{1}];'.format(facs_var, len(points))) # TODO: Make const
for i in range(0, len(points)):
curshader.write('{0}[{1}] = {2};'.format(facs_var, i, points[i].location[0]))
# Map vector
return 'mix({0}[{1}], {0}[{1} + 1], ({2} - {3}[{1}]) * (1.0 / ({3}[{1} + 1] - {3}[{1}]) ))'.format(ys_var, index_var, fac_var, facs_var)
def write_normal(inp):
if inp.is_linked and inp.links[0].from_node.type != 'GROUP_INPUT':
normal_res = parse_vector_input(inp)
if normal_res != None:
state.curshader.write('n = {0};'.format(normal_res))
def is_parsed(node_store_name: str):
return node_store_name in state.parsed
def res_var_name(node: bpy.types.Node, socket: bpy.types.NodeSocket) -> str:
"""Return the name of the variable that stores the parsed result
from the given node and socket."""
name = node_name(node.name) + '_' + safesrc(socket.name) + '_res'
if '__' in name: # Consecutive _ are reserved
name = name.replace('_', '_x')
return name
def write_result(link: bpy.types.NodeLink) -> Optional[str]:
"""Write the parsed result of the given node link to the shader."""
res_var = res_var_name(link.from_node, link.from_socket)
need_dxdy_offset = node_need_reevaluation_for_screenspace_derivative(link.from_node)
if need_dxdy_offset:
res_var += state.get_parser_pass_suffix()
# Unparsed node
if not is_parsed(res_var):
state.parsed.add(res_var)
st = link.from_socket.type
if st in ('RGB', 'RGBA', 'VECTOR'):
res = parse_vector(link.from_node, link.from_socket)
if res is None:
log.error(f'{link.from_node.name} returned `None` while parsing!')
return None
state.curshader.write(f'vec3 {res_var} = {res};')
elif st == 'VALUE':
res = parse_value(link.from_node, link.from_socket)
if res is None:
log.error(f'{link.from_node.name} returned `None` while parsing!')
return None
if link.from_node.type == "VALUE" and not link.from_node.lnx_material_param:
state.curshader.add_const('float', res_var, res)
else:
state.curshader.write(f'float {res_var} = {res};')
if state.dxdy_varying_input_value:
state.curshader.write(f'{res_var} = {apply_screenspace_derivative_offset_if_required(res_var)};')
state.dxdy_varying_input_value = False
# Normal map already parsed, return
elif link.from_node.type == 'NORMAL_MAP':
return None
return res_var
def write_procedurals():
if state.curshader not in state.procedurals_written:
state.curshader.add_function(c_functions.str_tex_proc)
state.procedurals_written.add(state.curshader)
def glsl_type(socket_type: str):
"""Socket to glsl type."""
if socket_type in ('RGB', 'RGBA', 'VECTOR'):
return 'vec3'
else:
return 'float'
def to_uniform(inp: bpy.types.NodeSocket):
uname = safesrc(inp.node.name) + safesrc(inp.name)
state.curshader.add_uniform(glsl_type(inp.type) + ' ' + uname)
return uname
def store_var_name(node: bpy.types.Node) -> str:
name = node_name(node.name)
if name[-1] == "_":
return name + '_x_store' # Prevent consecutive __
return name + '_store'
def texture_store(node, tex, tex_name, to_linear=False, tex_link=None, default_value=None, is_lnx_mat_param=None):
curshader = state.curshader
tex_store = store_var_name(node)
if node_need_reevaluation_for_screenspace_derivative(node):
tex_store += state.get_parser_pass_suffix()
if is_parsed(tex_store):
return tex_store
state.parsed.add(tex_store)
if is_lnx_mat_param is None:
mat_bind_texture(tex)
state.con.add_elem('tex', 'short2norm')
curshader.add_uniform('sampler2D {0}'.format(tex_name), link=tex_link, default_value=default_value, is_lnx_mat_param=is_lnx_mat_param)
triplanar = node.projection == 'BOX'
if node.inputs[0].is_linked:
uv_name = parse_vector_input(node.inputs[0])
if triplanar:
uv_name = 'vec3({0}.x, 1.0 - {0}.y, {0}.z)'.format(uv_name)
else:
uv_name = 'vec2({0}.x, 1.0 - {0}.y)'.format(uv_name)
else:
uv_name = 'vec3(texCoord.xy, 0.0)' if triplanar else 'texCoord'
if triplanar:
if not curshader.has_include('std/mapping.glsl'):
curshader.add_include('std/mapping.glsl')
if state.normal_parsed:
nor = 'TBN[2]'
else:
nor = 'n'
curshader.write('vec4 {0} = vec4(triplanarMapping({1}, {2}, {3}), 0.0);'.format(tex_store, tex_name, nor, uv_name))
else:
if mat_state.texture_grad:
curshader.write('vec4 {0} = textureGrad({1}, {2}.xy, g2.xy, g2.zw);'.format(tex_store, tex_name, uv_name))
else:
curshader.write('vec4 {0} = texture({1}, {2}.xy);'.format(tex_store, tex_name, uv_name))
if to_linear:
curshader.write('{0}.rgb = pow({0}.rgb, vec3(2.2));'.format(tex_store))
return tex_store
def apply_screenspace_derivative_offset_if_required(coords: str) -> str:
"""Apply screen-space derivative offsets to the given coordinates,
if required by the current ParserPass.
"""
# Derivative functions are only available in fragment shaders
if state.curshader.shader_type == 'frag':
if state.current_pass == ParserPass.DX_SCREEN_SPACE:
coords = f'({coords}) + {dfdx_fine(coords)}'
elif state.current_pass == ParserPass.DY_SCREEN_SPACE:
coords = f'({coords}) + {dfdy_fine(coords)}'
return '(' + coords + ')'
def node_need_reevaluation_for_screenspace_derivative(node: bpy.types.Node) -> bool:
if state.current_pass not in (ParserPass.DX_SCREEN_SPACE, ParserPass.DY_SCREEN_SPACE):
return False
should_compute_offset = node_meta.get_node_meta(node).compute_dxdy_variants
if should_compute_offset == node_meta.ComputeDXDYVariant.ALWAYS:
return True
elif should_compute_offset == node_meta.ComputeDXDYVariant.NEVER:
return False
# ComputeDXDYVariant.DYNAMIC
for inp in node.inputs:
c_node, _ = lnx.node_utils.input_get_connected_node(inp)
if c_node is None:
continue
if node_need_reevaluation_for_screenspace_derivative(c_node):
return True
return False
def dfdx_fine(val: str) -> str:
# GL_ARB_derivative_control is unavailable in OpenGL ES (= no fine/coarse variants),
# OES_standard_derivatives is automatically enabled in kha.SystemImpl
return f'dFdx({val})' if lnx.utils.is_gapi_gl_es() else f'dFdxFine({val})'
def dfdy_fine(val: str) -> str:
return f'dFdy({val})' if lnx.utils.is_gapi_gl_es() else f'dFdyFine({val})'
def to_vec1(v):
return str(v)
def to_vec2(v):
return f'vec2({v[0]}, {v[1]})'
def to_vec3(v):
return f'vec3({v[0]}, {v[1]}, {v[2]})'
def cast_value(val: str, from_type: str, to_type: str) -> str:
"""Casts a value that is already parsed in a glsl string to another
value in a string.
vec2 types are not supported (not used in the node editor) and there
is no cast towards int types. If casting from vec3 to vec4, the w
coordinate/alpha channel is filled with a 1.
If this function is called with invalid parameters, a TypeError is
raised.
"""
if from_type == to_type:
return val
if from_type in ('int', 'float'):
if to_type in ('int', 'float'):
return val
elif to_type in ('vec2', 'vec3', 'vec4'):
return f'{to_type}({val})'
elif from_type == 'vec3':
if to_type == 'float':
return rgb_to_bw(val)
elif to_type == 'vec4':
return f'vec4({val}, 1.0)'
elif from_type == 'vec4':
if to_type == 'float':
return rgb_to_bw(val)
elif to_type == 'vec3':
return f'{val}.xyz'
raise TypeError("Invalid type cast in shader!")
def rgb_to_bw(res_var: vec3str) -> floatstr:
# Blender uses the default OpenColorIO luma coefficients which
# originally come from the Rec. 709 standard (see ITU-R BT.709-6 Item 3.3)
return f'dot({res_var}, vec3(0.2126, 0.7152, 0.0722))'
def node_by_type(nodes, ntype: str) -> bpy.types.Node:
for n in nodes:
if n.type == ntype:
return n
def node_by_name(nodes, name: str) -> bpy.types.Node:
for n in nodes:
if n.bl_idname == name:
return n
def socket_index(node: bpy.types.Node, socket: bpy.types.NodeSocket) -> int:
for i in range(0, len(node.outputs)):
if node.outputs[i] == socket:
return i
def node_name(s: str) -> str:
"""Return a unique and safe name for a node for shader code usage."""
for p in state.parents:
s = p.name + '_' + s
if state.curshader.write_textures > 0:
s += '_texread'
s = safesrc(s)
if '__' in s: # Consecutive _ are reserved
s = s.replace('_', '_x')
return s
##
def make_texture(
image: bpy.types.Image, tex_name: str, matname: str,
interpolation: str, extension: str,
) -> Optional[Dict[str, Any]]:
"""Creates a texture binding entry for the scene's export data
('bind_textures') for a given texture image.
"""
tex = {'name': tex_name}
if image is None:
return None
if matname is None:
matname = mat_state.material.name
# Get filepath
filepath = image.filepath
if filepath == '':
if image.packed_file is not None:
filepath = './' + image.name
has_ext = filepath.endswith(('.jpg', '.png', '.hdr'))
if not has_ext:
# Raw bytes, write converted .jpg to /unpacked
filepath += '.raw'
elif image.source == "GENERATED":
unpack_path = os.path.join(lnx.utils.get_fp_build(), 'compiled', 'Assets', 'unpacked')
if not os.path.exists(unpack_path):
os.makedirs(unpack_path)
filepath = os.path.join(unpack_path, image.name + ".jpg")
lnx.utils.convert_image(image, filepath, "JPEG")
else:
log.warn(matname + '/' + image.name + ' - invalid file path')
return None
else:
filepath = lnx.utils.to_absolute_path(filepath, image.library)
# Reference image name
texpath = lnx.utils.asset_path(filepath)
texfile = lnx.utils.extract_filename(filepath)
tex['file'] = lnx.utils.safestr(texfile)
s = tex['file'].rsplit('.', 1)
if len(s) == 1:
log.warn(matname + '/' + image.name + ' - file extension required for image name')
return None
ext = s[1].lower()
do_convert = ext not in ('jpg', 'png', 'hdr', 'mp4') # Convert image
if do_convert:
new_ext = 'png' if (ext in ('tga', 'dds')) else 'jpg'
tex['file'] = tex['file'].rsplit('.', 1)[0] + '.' + new_ext
if image.packed_file is not None or not is_ascii(texfile):
# Extract packed data / copy non-ascii texture
unpack_path = os.path.join(lnx.utils.get_fp_build(), 'compiled', 'Assets', 'unpacked')
if not os.path.exists(unpack_path):
os.makedirs(unpack_path)
unpack_filepath = os.path.join(unpack_path, tex['file'])
if do_convert:
if not os.path.isfile(unpack_filepath):
fmt = 'PNG' if new_ext == 'png' else 'JPEG'
lnx.utils.convert_image(image, unpack_filepath, file_format=fmt)
else:
# Write bytes if size is different or file does not exist yet
if image.packed_file is not None:
if not os.path.isfile(unpack_filepath) or os.path.getsize(unpack_filepath) != image.packed_file.size:
with open(unpack_filepath, 'wb') as f:
f.write(image.packed_file.data)
# Copy non-ascii texture
else:
if not os.path.isfile(unpack_filepath) or os.path.getsize(unpack_filepath) != os.path.getsize(texpath):
shutil.copy(texpath, unpack_filepath)
lnx.assets.add(unpack_filepath)
else:
if not os.path.isfile(lnx.utils.asset_path(filepath)):
log.warn('Material ' + matname + '/' + image.name + ' - file not found(' + filepath + ')')
return None
if do_convert:
unpack_path = os.path.join(lnx.utils.get_fp_build(), 'compiled', 'Assets', 'unpacked')
if not os.path.exists(unpack_path):
os.makedirs(unpack_path)
converted_path = os.path.join(unpack_path, tex['file'])
# TODO: delete cache when file changes
if not os.path.isfile(converted_path):
fmt = 'PNG' if new_ext == 'png' else 'JPEG'
lnx.utils.convert_image(image, converted_path, file_format=fmt)
lnx.assets.add(converted_path)
else:
# Link image path to assets
# TODO: Khamake converts .PNG to .jpg? Convert ext to lowercase on windows
if lnx.utils.get_os() == 'win':
s = filepath.rsplit('.', 1)
lnx.assets.add(lnx.utils.asset_path(s[0] + '.' + s[1].lower()))
else:
lnx.assets.add(lnx.utils.asset_path(filepath))
# if image_format != 'RGBA32':
# tex['format'] = image_format
rpdat = lnx.utils.get_rp()
texfilter = rpdat.lnx_texture_filter
if texfilter == 'Anisotropic':
interpolation = 'Smart'
elif texfilter == 'Linear':
interpolation = 'Linear'
elif texfilter == 'Point':
interpolation = 'Closest'
if interpolation == 'Cubic': # Mipmap linear
tex['mipmap_filter'] = 'linear'
tex['generate_mipmaps'] = True
elif interpolation == 'Smart': # Mipmap anisotropic
tex['min_filter'] = 'anisotropic'
tex['mipmap_filter'] = 'linear'
tex['generate_mipmaps'] = True
elif interpolation == 'Closest':
tex['min_filter'] = 'point'
tex['mag_filter'] = 'point'
# else defaults to linear
if extension != 'REPEAT': # Extend or clip
tex['u_addressing'] = 'clamp'
tex['v_addressing'] = 'clamp'
if image.source == 'MOVIE':
tex['source'] = 'movie'
tex['min_filter'] = 'linear'
tex['mag_filter'] = 'linear'
tex['mipmap_filter'] = 'no'
tex['generate_mipmaps'] = False
return tex
def make_texture_from_image_node(image_node: bpy.types.ShaderNodeTexImage, tex_name: str, matname: str = None) -> Optional[Dict[str, Any]]:
if matname is None:
matname = mat_state.material.name
return make_texture(image_node.image, tex_name, matname, image_node.interpolation, image_node.extension)
def is_pow(num):
return ((num & (num - 1)) == 0) and num != 0
def is_ascii(s):
return len(s) == len(s.encode())
##
def get_lnx_export_tangents():
return bpy.data.worlds['Lnx'].lnx_export_tangents
def safesrc(name):
return lnx.utils.safesrc(name)
def disp_enabled():
return lnx.utils.disp_enabled(lnx.make_state.target)
def assets_add(path):
lnx.assets.add(path)
def assets_add_embedded_data(path):
lnx.assets.add_embedded_data(path)
def tree_name() -> str:
return state.tree_name
def mat_batch():
return mat_state.batch
def mat_bind_texture(tex):
mat_state.bind_textures.append(tex)
def mat_get_material():
return mat_state.material
def mat_get_material_users():
return mat_state.mat_users