forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			127 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Haxe
		
	
	
	
	
	
| package auratests.dsp;
 | |
| 
 | |
| import utest.Assert;
 | |
| 
 | |
| import kha.arrays.Float32Array;
 | |
| 
 | |
| import aura.Aura;
 | |
| import aura.dsp.FFTConvolver;
 | |
| import aura.types.AudioBuffer;
 | |
| import aura.types.Complex;
 | |
| import aura.utils.MathUtils;
 | |
| import aura.utils.TestSignals;
 | |
| 
 | |
| @:access(aura.dsp.FFTConvolver)
 | |
| class TestFFTConvolver extends utest.Test {
 | |
| 	var audioBuffer: AudioBuffer;
 | |
| 	var fftConvolver: FFTConvolver;
 | |
| 
 | |
| 	function setup() {
 | |
| 		audioBuffer = new AudioBuffer(2, FFTConvolver.FFT_SIZE);
 | |
| 		fftConvolver = new FFTConvolver();
 | |
| 	}
 | |
| 
 | |
| 	function test_process_noFadeIfTemporalInterpLengthIsZero() {
 | |
| 		fftConvolver.temporalInterpolationLength = 0;
 | |
| 
 | |
| 		for (i in 0...audioBuffer.channelLength) {
 | |
| 			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 		}
 | |
| 
 | |
| 		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		discardOverlapForNextProcess();
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			Assert.floatEquals(Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 
 | |
| 		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			Assert.floatEquals(0, audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(0, audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	function test_process_crossfadeIfTemporalInterpLengthIsLargerZero() {
 | |
| 		fftConvolver.temporalInterpolationLength = 20;
 | |
| 
 | |
| 		for (i in 0...audioBuffer.channelLength) {
 | |
| 			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 		}
 | |
| 		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		discardOverlapForNextProcess();
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			final t = minF(i, fftConvolver.temporalInterpolationLength) / fftConvolver.temporalInterpolationLength;
 | |
| 			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 
 | |
| 		for (i in 0...audioBuffer.channelLength) {
 | |
| 			audioBuffer.getChannelView(0)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | |
| 			audioBuffer.getChannelView(1)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | |
| 		}
 | |
| 		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			final t = minF(i, fftConvolver.temporalInterpolationLength) / fftConvolver.temporalInterpolationLength;
 | |
| 			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	function test_process_crossfadeEntireChunkSize() {
 | |
| 		fftConvolver.temporalInterpolationLength = -1;
 | |
| 
 | |
| 		for (i in 0...audioBuffer.channelLength) {
 | |
| 			audioBuffer.getChannelView(0)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 			audioBuffer.getChannelView(1)[i] = Math.sin(i * 4 * Math.PI / audioBuffer.channelLength);
 | |
| 		}
 | |
| 		setImpulseFreqsToConstant(new Complex(1.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		discardOverlapForNextProcess();
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			final t = minF(i, FFTConvolver.CHUNK_SIZE) / FFTConvolver.CHUNK_SIZE;
 | |
| 			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(lerp(0.0, Math.sin(i * 4 * Math.PI / audioBuffer.channelLength), t), audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 
 | |
| 		for (i in 0...audioBuffer.channelLength) {
 | |
| 			audioBuffer.getChannelView(0)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | |
| 			audioBuffer.getChannelView(1)[i] = Math.sin(i * 8 * Math.PI / audioBuffer.channelLength);
 | |
| 		}
 | |
| 		setImpulseFreqsToConstant(new Complex(0.0, 0.0));
 | |
| 		fftConvolver.process(audioBuffer);
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			final t = minF(i, FFTConvolver.CHUNK_SIZE) / FFTConvolver.CHUNK_SIZE;
 | |
| 			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(0)[i]);
 | |
| 			Assert.floatEquals(lerp(Math.sin(i * 8 * Math.PI / audioBuffer.channelLength), 0.0, t), audioBuffer.getChannelView(1)[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	function setImpulseFreqsToConstant(value: Complex) {
 | |
| 		for (i in 0...FFTConvolver.FFT_SIZE) {
 | |
| 			fftConvolver.impulseFFT.getOutput(0 + fftConvolver.currentImpulseAlternationIndex)[i] = value;
 | |
| 			fftConvolver.impulseFFT.getOutput(2 + fftConvolver.currentImpulseAlternationIndex)[i] = value;
 | |
| 		}
 | |
| 		fftConvolver.currentImpulseAlternationIndex = 1 - fftConvolver.currentImpulseAlternationIndex;
 | |
| 
 | |
| 		fftConvolver.overlapLength[0] = FFTConvolver.CHUNK_SIZE;
 | |
| 		fftConvolver.overlapLength[1] = FFTConvolver.CHUNK_SIZE;
 | |
| 		fftConvolver.prevImpulseLengths[0] = FFTConvolver.CHUNK_SIZE;
 | |
| 		fftConvolver.prevImpulseLengths[1] = FFTConvolver.CHUNK_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	function discardOverlapForNextProcess() {
 | |
| 		for (c in 0...FFTConvolver.NUM_CHANNELS) {
 | |
| 			for (i in 0...fftConvolver.overlapPrev[c].length) {
 | |
| 				fftConvolver.overlapPrev[c][i] = 0.0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 |